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Abstract
We investigate the efficiency of noninteger n-generalized exponential type orbitals in
energy calculations of isoelectronic series of atoms from Be to Ne and K [Ar]4s°3d' (2D) and

Cr' [Ar]4s"3d> (°S) using combined Hartree-Fock-Roothaan theory. The results of
calculations are compared with the values obtained in literature. All of the nonlinear
parameters are fully optimized. It is shown that the use of noninteger n-generalized
exponential type orbitals in atomic electronic structure calculations gives the superior
agreement with numerical Hartree-Fock calculations. The minimum energy error, which is
0.00204432 Hartree, is observed for the neutral Be atom with respect to corresponding
numerical Hartree-Fock result.

1. Introduction
It is well known that the Hartree-Fock-Roothaan (HFR) methods are widely used in

calculation of electronic structure of closed and some open shell multi-electron systems [1-3].
These methods are not suitable for an arbitrary open shell electronic configuration [4-14] due
to the off-diagonal multipliers because they, in general, cannot be eliminated. In the previous
works [15, 16], by the use of principle of indistinguishabilty of identical particles, all of the
insufficiencies arising in Roothaan’s open shell Hartree-Fock (HF) theory have been
eliminated. In these papers, the combined open shell HF and HFR equations for atomic-
molecular and nuclear systems applicable to any multideterminantal state of a single
configuration that has any number of open shells of any symmetry were suggested. The open
shell combined Hartree-Fock-Roothaan (CHFR) theory [15-19], in which the problem of the
off-diagonal multipliers does not arise, has been applied and tested successfully for some

arbitrary open shells atoms in nonrelativistic electronic structure calculations. In order to
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solve the open shell atomic CHFR equations, one must expand the atomic orbitals as linear
combination of basis functions. Accuracy of total energy calculations and computational cost
directly depend on the quality of the chosen atomic basis sets. Therefore, it is desirable to use
the exponential type atomic orbitals in atomic calculations because they satisfy the cusp
condition at the nuclei [20] and the exponential decay for large distances [21].

It is well known that, in atomic structure calculations, the Slater type orbitals (STO) and
Gaussian type orbitals (GTO) as basis functions are currently used. The STO and GTO are
defined by [22, 23]
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respectively. In these equations, I'(x) and S, (6,¢) are the gamma function and complex or
real spherical harmonics, respectively; ¢ >0 is the orbital exponent. Conventional integer n-
STO (ISTO) assume that the principal quantum number »" in Eq. (1) is positive integer
(n’En) and, hence, in this case F(2n*+l)=(2n*)!. However, the noninteger n-STO

(NSTO) which considerably improves the description of electronic structure [24-36] is also
used as basis functions in atomic HFR calculations. During the past decade, the NSTO basis
sets for atoms have been prepared by Koga [31-36] using the traditional HFR method. The
accuracy of these basis sets can be measured by comparison with numerical Hartree-Fock
(NHF) results which are available in literature.

The subject of the quality of basis sets, because of its important role in electronic
structure calculations, has received much attention in literature. In order to improve the
quality of given basis sets, many different modified basis sets have been proposed. To obtain
the best values of physical properties for atoms and their ions, such as nuclear quadrupole
coupling constant, nuclear magnetic shielding, diamagnetic susceptibility, electric field
gradient, etc., use of the accurate wave functions, appearing in basis sets approach, is of

fundamental importance in the study of electronic structure calculations. For the quantitative
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descriptions of atomic electronic structure, the noninteger n-generalized exponential type
orbitals (GETO) were proposed [37] and applied to HFR calculations within the minimal

basis sets approximation. The normalized GETO are defined by
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where 4 is the nonlinear parameter which can be determined by energy minimization.

P e s, (0,9), 3)

In this work, using NSTO and GETO basis sets, the CHFR calculations have been
performed for the neutral and 20 cationic members of the ground states energies for

isoelectronic series of atoms from Be to Ne and, K [Ar]4s’3d’ (ZD) (Z=19-30) and Cr" [Ar]

45°3¢° (GS ) (Z=24-30). The quality of these basis sets are investigated and compared with

NHF values. All of the nonlinear parameters are fully optimized. The total and orbital
energies are in good agreement with those presented in the literature. Although the present
calculations are nonrelativistic, the NSTO and GETO basis sets, in our opinion, can also be
used in relativistic schemes. In Ref. [38], as a first step towards to this goal, the simple
formulas for one- and two-electron one-center integrals over NSTO basis sets were derived in
the quasi-relativistic approach. These integrals over GETO basis sets can also be described
with the help of presented method. In presented approximation, all of these integrals reduced
to some common integrals, which have to be calculated using NSTO or GETO functions. The
computational method is described in the next section. Hartree atomic units used throughout
this work.
2. Computational method

The CHFR calculation procedure, used in this work, was mainly described in our
previous papers [17-19], where it was applied to atoms containing only s- and p-orbitals.
Here, the calculations of energies for some heavy elements having the d-orbitals are also

performed. All of the nonlinear parameters n", ¢ and g are determined by SCF optimization

process using the quasi-Newton method.
According to CHFR theory, the expression of the energy functional in algebraic

approximation is defined by
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Dyt = (CT[MC)M’ (5)
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Here, f is the matrix of fractional occupancy of shells, #, / and K are the one-and two-
electron matrices. The properties of coupling projection coefficients 4}, and B}, which are

non-variable coefficients specific for the system under consideration, are described in Refs.
[18, 19]. In atomic case, one-and two- electron integrals over the NSTO and GETO were
evaluated in Refs. [32, 37, 39] by the use of relations in terms of the gamma and
hypergeometric functions.

For the determination of optimum values of nonlinear parameters in GETO, the initial
values of the nonlinear parameters were taken from the NSTO results [18, 19]. The values of
nonlinear parameters obtained are, then, used in the optimization of GETO nonlinear
parameters. We observed that the virial ratios do not deviate from the exact value of -2 by
more than 1x107". We notice that our optimizations in all of the calculations are sufficiently

accurate.
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Table 1. The NSTO and GETO total energies (Exsto and Egero), optimal u parameters, total

energy errors AE, . and AE, . = forthe ground states ‘S of the N isoelectronic
series (in Hartree)
z omom i) Fr
7 N 54.356092199 (5(;%'93571071127984?) 0.044841980 0.030786357
8 0" 74.330134166 (704..9354654?5250326385) 0.042471446 0.027585377
9 F? 97.567255764 (907.‘956%23789182?33) 0.041721792 0.026179213
10 Ne® 124.062503414 1(34923232;1;(5);‘ 0.041711905 0.025643215
11 Na' 153.813178781 ](8392228232?)3 0.042114790 0.025617868
12 Mg”  186.817660577 l(gégzgg;(l)gz;)l 0.042782537 0.025931642
13 Al 223.074910581 2(3393?322222? 0.043639398 0.026491680
14 sit’ 262.584231835 z(gzgggégg;gé)z 0.044642996 0.027243099
15 p* 305.345138716 3(859;%3;?23? 0.045768010 0.028151328
16 s 351.357282382 3((5)193;;2%43‘?)5 0.046998438 0.029193414
17 CI'™  400.620405761 1809%2431;2?;)7 0.048323769 0.030353553
18 Al 453.134315237 igz;gigéi?? 0.049736786 0.031620437
19 K™ 508.89886221 5(8893;7“1)2233? 0.051232425 0.032985801
20 Ca™®  567.913930744 5(8792(3)421?3125? 0.052807019 0.034443439
21 Sc™  630.179429053 6((3)0933?223232)1 0.054457850 0.035988602
22 Ti'™  695.695283535 6(359;;(3)2223(1))2 0.056182869 0.037617592
23 VIS 764.461434485 7(849333?23;‘2)5 0.057980497 0.039327488
24 Cr'7  836.477832958 fg%ggiggggg 0.059849510  0.041115952
25 Mn"™®  911.744438457 9((1)19;61??2843185 0.061788927 0.042981081
26 Fe''  990.261217184 9(309:233282?22? 0.063797969 0.044921323
27 Co™  1072.028140712 1?07;&054273028713352)1 0.065876002 0.046935394

3. Results and discussion

We have solved the atomic CHFR equations for the neutral and 20 cationic members

of the ground state of isoelectronic series of atoms Be to Ne and, K [Ar]4sO3d1 (-D

2

) and Cr'
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[Ar]4s"3d’ (6S ) by using the expansion of single-particle radial wave function in terms of

NSTO and GETO basis sets in algebraic approach. The coupling projection coefficients, used
in the calculation of open shell electronic configurations, have been taken from Refs. [18, 19].

In the energy minimization process, we have restricted the exponential parameter g to be

common to all GETO basis sets. The total energies obtained from the NSTO, GETO and NHF
calculations for the isoelectronic series of N (Z=7-27) atom are explicitly illustrated in Table
1. We see from this table, GETO results are about 1.5 times more accurate than NSTO. This
feature is also observed for all the isoelectronic series of atoms examined in this work.

The GETO’s total energy (Egero) errors (AE,

iy ) Telative to the NHF values [40]
for the isoelectronic series of Be to Ne are also shown in Figure 1. This figure shows that the
Ecgero error curves are, in general, similar to those for NSTO total energy (Exsto) [18] relative

to the NHF values. The AE in all calculations are not exceeded 0.200111221 Hartree

E(iETlliENHF
which is observed for the neutral Ne atom. The minimum Eggro error for the neutral Be atom

within the isoelectronic series considered is obtained as 0.002044325 Hartree.
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Fig. 1. The energy differences between Egrro and Enpr as a function of atomic number Z for
isoelectronic series of the atoms Be to Ne (in Hartree)

The energy differences between Egrro and Exsro (AE ) for the isoelectronic

Eysto—Ecero

series of Be to Ne are also shown in Figure 2. The AE, values in each isoelectronic

wsto~Egero
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series for Be to Ne are generally increased. It should be noted that we observed the small
discrepancy between the GETO and NSTO basis sets of results from this figure, and this
discrepancy seems to increase by increasing atomic number Z. In Ref. [37], Koga and
Kanayama pointed out that the x values constantly increase when the atomic number Z
increases and, simultancously, increase towards 1. Therefore, as we expect, the total energy
differences between two basis sets decrease when the atomic number Z increases. As shown
in figure 2, as not anticipated, the total energy errors always increase except the isoelectronic
series of Be atom. This figure also shows that the GETO efficiency is better than in the case
of NSTO especially with an increase in either the atomic number Z or in the number of
electrons. An interesting feature observed in CHFR calculations for isoelectronic series using

GETO basis sets is that the values of n;, are larger than their nominal value (n, =1) and

constantly increase when Z increases. The variations of optimal values of principal quantum

number are determined as 1.001712671<n, <1.021633251, 2.253168391<n, <2.746353776 and

1.649153722 < n;p <1.968191279.
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Fig. 2. The energy differences between Exsto and Egero as a function of atomic number Z for
isoelectronic series of the atoms Be to Ne (in Hartree)

The CHFR total energy calculations have been also carried out for the ground states of

isoelectronic series for the configurations K [Ar]4s’3d’ (ZD) and Cr' [Ar] 4s°3d° (°S ) For
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these isoelectronic series, in tables 2 and 3, we present the total energies obtained from the

GETO and NSTO basis sets, x# values and total energy differences between Eggro and Exsto

(AE

GETO basis sets in the total energy calculations for the isoelectronic series of configurations

and AE ) . As can be seen from these tables, the efficiency of NSTO and

Eysro~Ennr Ecero—Ennr

K [Ar]4s’3d’ (ZD) and Cr™ [Ar] 4s°3d° (()S ) is poor when compared to the isoelectronic

series for Be to Ne atoms. The AE values for these isoelectronic series decrease

Egero~Ennr

smoothly with an increase the atomic number Z. It should be noted that the trend of total

energy errors AFE in the case of isoelectronic series K [Ar]4s’3d! (ZD) using the

Ensro=Ennr

NSTO basis sets is almost constant. The values of AE,

nsto~Ecero

and the variations of optimal

principal quantum number in isoelectronic series considered have the similar behaviour with
the isoelectronic series for Be to Ne. We notice that the deviations from nominal values of

principal quantum number are largest for 3d-orbital, i.e., 1.732394876 < n;, < 2.565245353 .

Table 2. The total energies Ensro and Eggro, # parameters, total energy differences

o e AN AE, . for the isoelectronic series K [Ar]4s°3d' 2D (in Hartree)

7 -Ensto -Egero Eysro—Enur

[19] ) [19] Egero—Enir
19 598.851381634 ig%g;égg?gg? 0224330086  0.164651360
20 676.252721310 ?g%gig;ﬁgg;‘? 0245729330 0.183884100
21 758.849276755 Zgzzgiég;gf 0.243090535  0.180150985
22 846.509362081 %%23?;?;’;‘ 0.240079999  0.176523516
23 939.207319355 ?g%é;%?‘;gz; 0238329075 0.174283559
24 1036.932938799 ‘?ggg;gfﬁf;? 0237475601 0.173016457
25 1139.680087694 1(103_3'776‘941920366593)2 0237258916 0.172440078
26 1247.444559744 1(2(;%;'7510995649777031)4 0237513546 0.172376276
27 1360223277271 ‘(306_(9"7228887689195301)6 0238131820 0.172709784
28 1478.013899031 1;‘073'7()3779“567587192)5 0239041079 0.173361985
29 1600.814595675 ‘(6098'7%1850856%8164%2 0.240190505  0.174277498
30 1728.623908862 1(702_3'7659306083250%7 0241543508 0.175416483




Table 3. The total energies Exsto and Egero, g parameters, total energy differences

- 611 -

iy A0 AE, . for the isoelectronic series Cr' [Ar] 4s°3d° °S (in Hartree)

z “Ensto “Faero Exsto—Enwr  AE, .

[19] (M) [19] aero~Exur
24 1042.636094901 12)(35.675]990296678671)1 0.503298249 0.420125539
25 1148.633507128 13;36761885730(5327(;8 0.475713172 0.390518092
26 1260.156391428 13585;;5:;&? 0.458585522 0.371686257
27 1377.181383800 1(307.;'6286791725895562)0 0.447476340 0.359100620
28 1499.694945177 1?09.26798;86217967417)3 0.440109503 0.350434907
29 1627.688157939 1(6&;'7707482%48072762)4 0.4352227210 0.344392936
30 1761.154680347 120§é$é62594‘366253)9 0.432062473 0.340196581

We report in this study the results of CHFR calculations of electronic ground states
for isoelectronic sequences of atomic ions. In particular, the efficiencies of the GETO and
NSTO basis sets for isoelectronic series of atoms Be to Ne and, K and Cr' are investigated

within the minimal basis sets approximation. The optimum g values, which are always
smaller than 1, are determined in GETO basis sets for ground states of all the isoelectronic
series. It is found that the optimum 7, values obtained are larger for GETO and smaller for

NSTO basis sets than the nominal value 1. These results show that the GETO basis sets can
be fulfilled the criteria which are the cusp value and asymptotic long-range behavior of
orbitals.

We show that the efficiency of the GETO basis sets increase especially with increase the
atomic number Z in isoelectronic series of light atoms. We notice that, for all of the
isoelectronic series considered the orbital energies using GETO and NSTO are improved
within the minimal basis sets framework. The resulting wave functions and parameters are
available by request through e-mail addresses: ihuseyin@comu.edu.tr  or
merturk@comu.edu.tr
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