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Abstract

We find the allowed point-group symmetries of the cubic polyhedra with face

sizes restricted to 3, 4, 5 and 6. For each group and face signature (p3, p4, p5), a

polyhedron with the smallest possible number of vertices is identified.

1 Introduction

Of many scientific motivations for the study of polyhedra, one is provided by recent

progress in the chemistry and physics of carbon. Research over the past two decades has
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added fullerenes,19,21 nanotubes,16 carbon onions,27 peapods,25 toroids,22 nanocones,20

nanohorns17 and the graphenes24 to the traditional repertoire of carbon allotropes. Most

of the new structures are based on modified graphite networks in which each carbon

centre has three directly bonded neighbours. Such trivalent networks correspond to cubic

graphs. The first of the new carbons to be discovered, the fullerenes, are cubic polyhedral

cages in which exactly twelve faces are pentagonal and all others are hexagonal; at least

one such polyhedron exists for all n = 20 + 2h where h is the number of hexagonal faces

(h �= 1).15 The truncated icosahedral fullerene, C60, was first to be characterised19,21

and still has the highest availability and most extensive chemistry, but higher fullerenes

including isomers of C70, C76, C84 have also been found.

Systematic theoretical treatments of the class of fullerene molecules rely on the use

of models based on graph theory, both to enumerate the possible isomers and to make

qualitative deductions about their electronic structure10 and overall stability.12 Many

qualitative arguments in chemistry also rely on point-group symmetry. It turns out that

the possible point-group symmetries of fullerenes are restricted: there are just 28 groups.13

Theoretical treatments often consider a wider class of carbon cages, in which the restric-

tion on face sizes is eased or lifted altogether.

One plausible extension of the classical fullerenes is to the set of cubic polyhedra of

positive curvature, i.e., those with face sizes restricted to 3, 4, 5 and 6. Small face sizes

are not favoured for carbon, as they lead to steric strain, but rings of these sizes are

known in organic chemistry, and are realised in polyhedral hydrocarbon molecules such

as cubane,8 prismane,18 and cuneane.3 The polyhedral hydrocarbons CnHn also include

dodecahedrane,26 with the same carbon skeleton as the smallest mathematically possible

fullerene, C20.

A general polyhedron with v vertices, p faces and e edges satisfies the Euler relation

v + p = e + 2

and in the particular case of cubic polyhedra (e = 3v/2, f = n/2 + 2) this leads to a

relation for the numbers of faces of each size:

∑
r

(6 − r)pr = 12 (1)
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where pr is the number of faces of size r. The Euler formula is related to the Gauss-Bonnet

formula in differential geometry, and thus 6 − r can be considered as the curvature of a

face of size r. If a cubic polyhedron has no face of size greater than 6, then it can be said

to be of positive curvature. It is known9,14 that every triple t = (p3, p4, p5) that satisfies

Equation (1) can be realised as a polyhedron with p3 triangular, p4 quadrilateral and p5

pentagonal faces and some number of hexagonal faces, h ≡ p6. There are thus 19 classes

of cubic polyhedra of positive curvature, each corresponding to a unique ‘face-signature’

(p3, p4, p5).

In the present paper we complete the work that has been done for the classical

fullerenes and other bifaced cubic polyhedra, and derive the list of allowed symmetry

groups for each class of cubic polyhedra of positive curvature, and for each class construct

a smallest (lowest-order) polyhedron for each allowed symmetry.

General constructions for deriving infinite families of polyhedra of given face signature

and point-group symmetry from a single example are already available. The Goldberg-

Coxeter construction takes a cubic polyhedron and two integers k, l, and returns a cubic

polyhedron with k2 + kl + l2 times as many vertices, the same rotational symmetry, and

the same triple.5,7 Another construction that preserves the triple is to split the faces in

two hemispheres by a simple zigzag6 and insert a cylindrical tube of layers of hexagons.

Constructions of both types have been used to derive electron counting rules for the

fullerenes.12 Thus, given the minimal examples, it is possible to build series of polyhedral

chemical graphs for exploration of their properties as functions of number of vertices,

number, type and separation of non-hexagonal faces, and overall symmetry.

Enumeration of graphs was performed with the CPF program2 and the results filtered

by symmetry group. The Schlegel diagrams were made with CaGe1 and 3D drawings were

made using the ’topological coordinates’12 derived from eigenvectors of the adjacency

matrix with the Psplot program written by R. Batten.

2 The possible groups

Given a triple t = (p3, p4, p5), we denote by pt the class of 3-valent polyhedra having p3

triangular, p4 quadrilateral, p5 pentagonal and h hexagonal faces, and no other faces. The

number of vertices of a polyhedron belonging to the class pt is n = 2p3+2p4+2p5+2h−4.
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In chemical applications it is often important to make the distinction between the

symmetry of the polyhedron as a combinatorial object and the physical symmetry of

its realisation as an affine object in 3D space. The symmetry group of a polyhedron

as listed below is a combinatorial; it describes the maximum symmetry achievable by a

three-dimensional embedding of the graph. If G is a 3-connected plane graph, then Mani’s

theorem23 guarantees the existence of an embedding in 3D space with full symmetry. All 3-

valent plane graphs with faces of size between 3 and 6 are 3-connected, with the exception

of one infinite series [5, Theorem 2.0.2]. In a given chemical realisation, in the course of

vibrations, in a given electronic state or with a given charge or electron configuration, or

subjected to the forces of a crystalline environment, the geometric structure of a molecule

whose underlying graph is that of the polyhedron may in fact have a point group that is

only a subgroup of this maximum symmetry.

The list of groups for the extreme triples (4, 0, 0), (0, 6, 0) and (0, 0, 12), i.e., the bifaced

cubic polyhedra, are available in published work4,11,13 and are summarized in

Theorem 2.1 For the bifaced cubic polyhedra described by the triple (p3, p4, p5), the pos-

sible point groups and vertex counts of minimal examples are 1:

(i) (p3, p4, p5) = (4, 0, 0):

D2(24), D2h(16), D2d(20), T (28), Td(4).

(ii) (p3, p4, p5) = (0, 6, 0):

C1(40), Cs(34), C2(26), Ci(140), C2v(22), C2h(44), D2(24), D3(20), D2d(16), D2h(20),

D3d(20), D3h(14), D6(84), D6h(12), O(56), Oh(8).

(iii) (p3, p4, p5) = (0, 0, 12):

C1(36), C2(32), Ci(56), Cs(34), C3(40), D2(28), S4(44), C2v(30), C2h(48), D3(32),

S6(68), C3v(34), C3h(62), D2h(40), D2d(36), D5(60), D6(72), D3h(26), D3d(32),

T (44), D5h(30), D5d(40), D6h(36), D6d(24), Td(28), Th(92), I(140), Ih(20).

The results of the present investigations on the remaining 16 triples are summarized in

Theorem 2.2 For the cubic polyhedra with at least two face sizes chosen from {3, 4, 5}
and no face of size greater than 6, described by the triple (p3, p4, p5), the possible point

groups and vertex counts of minimal examples are:

1See http://www.liga.ens.fr/~dutour/PointGroup/Classification.html for Schlegel diagrams
of minimal examples. For 3D drawings of the minimal fullerenes, see.12
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(i) (p3, p4, p5) = (3, 1, 1):

C1(20), Cs(12).

(ii) (p3, p4, p5) = (3, 0, 3):

C1(18), Cs(14), C3(22), C3v(10), C3h(20).

(iii) (p3, p4, p5) = (2, 3, 0):

C1(22), Cs(26), C2(18), C2v(10), D3(42), D3h(6).

(iv) (p3, p4, p5) = (2, 2, 2):

C1(16), Cs(14), Ci(56), C2(10), C2v(8), C2h(16).

(v) (p3, p4, p5) = (2, 1, 4):

C1(16), Cs(14), C2(14), C2v(12).

(vi) (p3, p4, p5) = (2, 0, 6):

C1(24), Cs(22), Ci(40), C2(16), C2v(18), C2h(20), D3(36), D3d(12), D3h(18).

(vii) (p3, p4, p5) = (1, 4, 1):

C1(18), Cs(12).

(viii) (p3, p4, p5) = (1, 3, 3):

C1(14), Cs(12), C3(28), C3v(10).

(ix) (p3, p4, p5) = (1, 2, 5):

C1(18), Cs(14).

(x) (p3, p4, p5) = (1, 1, 7):

C1(20), Cs(18).

(xi) (p3, p4, p5) = (1, 0, 9):

C1(30), Cs(26), C3(34), C3v(22).

(xii) (p3, p4, p5) = (0, 5, 2):

C1(20), Cs(20), C2(18), C2v(14), D5(70), D5h(10).

(xiii) (p3, p4, p5) = (0, 4, 4):

C1(18), Cs(18), Ci(48), C2(16), C2v(14), C2h(32), D2(20), D2h(16), D2d(12), S4(36).

(xiv) (p3, p4, p5) = (0, 3, 6):

C1(20), Cs(20), C2(18), C2v(18), C3(26), C3v(16), C3h(44), D3(26), D3h(14).

(xv) (p3, p4, p5) = (0, 2, 8):

C1(24), Cs(22), Ci(40), C2(20), C2v(18), C2h(28), D4(48), D4h(24), D4d(16), D2(28),

D2h(24), D2d(40), S4(136).

(xvi) (p3, p4, p5) = (0, 1, 10):

C1(28), Cs(24), C2(26), C2v(22).
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Proof.

Size and number of faces restrict the possibilities for the rotation of the polyhedron.

If Δ is a k-fold axis of (proper) rotation of a graph with triple (p3, p4, p5), then k = 1, 2,

3 or 6, and if pr �= 0, then k could be equal to r. When considering a candidate group G

for a triple (p3, p4, p5), we will denote by kmax the largest value of k of the rotations of G.

Further restrictions arise from orbit sizes: the group generated by a rotation of order k

splits those faces not on the axis into orbits of size k; the presence of an inversion requires

that all orbits of faces are of even size.

If (p3, p4, p5) = (3, 1, 1), (1, 4, 1), (1, 1, 7), (1, 2, 5), then a priori k could be 1, 2, 3, 4,

5, or 6. But, by orbit sizes, the only possibility is k = 1. Ci is incompatible with odd

values of pr so the possible groups are C1 and Cs. Both are realised.

If (p3, p4, p5) = (2, 1, 4), then k = 1 or 2. For kmax = 1, Ci is ruled out by odd p4, but C1

and Cs are possible. If kmax = 2, then the unique 2-fold axis passes through the single 4-

gonal face. Of the three groups with a single 2-fold axis, C2h is ruled out because it contains

Ci, but C2 and C2v are possible. The same analysis applies to (p3, p4, p5) = (0, 1, 10).

If (p3, p4, p5) = (1, 3, 3), then k = 1 or 3. For kmax = 1, Ci is ruled out by odd p3,

but C1 and Cs are possible. If kmax = 3, the unique 3-fold axis passes through the single

3-gonal face. Of the three groups with a single 3-fold axis, C3h is ruled out because its

mirror plane demands even p3. The same analysis applies to (p3, p4, p5) = (1, 0, 9).

If (p3, p4, p5) = (3, 0, 3), then k = 1 or 3. For kmax = 1, and odd p3, only C1 or Cs are

possible. If kmax = 3 the 3-gons fall into an orbit of size 3 and the 3-fold axis is unique.

Of the groups with a single 3-fold axis, S6 is ruled out as it contains no orbit of size 3,

but C3, C3v and C3h are possible.

If (p3, p4, p5) = (2, 3, 0), then k = 1, 2 or 3. If kmax = 1, the possibilities are C1 or Cs.

If kmax = 2, then there is a unique 2-fold axis since the presence of multiple 2-fold axes

in the absence of a 3-fold axis implies D2 as a subgroup and an orbit of size 4 or more for

the 3-gons, which is ruled out by p3 = 2. C2h is ruled out because it contains Ci, but C2

and C2v are possible. If kmax = 3, then the unique 3-fold axis, passes through the centres

of the two 3-gons. In fact, the 3-fold axis also implies the presence of an orthogonal 2-fold

axis. To see this, take one 3-gon, say T1, and add rings of hexagons around it until one

reaches a 4-gon and so, by symmetry, three 4-gons. Continue to add hexagons until forced

to add the remaining 3-gon T2. The structure around T1 is identical to that around T2
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and hence the symmetry is D3, D3h or D3d, but D3d would imply six 4-gons. D3 and D3h

are both realised.

If (p3, p4, p5) = (2, 2, 2), then k = 1 or 2. If kmax = 1, then C1, Cs and Ci are

all possible. If kmax = 2, then the candidates are C2, C2v, C2h, D2, D2d, D2h and S4.

However, S4 and groups of which D2 is a subgroup are ruled out as 3- and 5-gons would

have to occur in orbits of size 4 or more. The other possibilities are all realised.

If (p3, p4, p5) = (2, 0, 6), then k = 1, 2 or 3. If kmax = 1, then C1, Cs and Ci are all

possible. If kmax = 2, then D2 and S4 are ruled out by orbit size, but C2, C2v and C2h

are all possible. If kmax = 3, the unique 3-fold axis must pass through the two 3-gons.

Take a 3-gon and add hexagons around it, until one reaches one pentagon and so, by

symmetry a set of three pentagons, then continue until the three remaining pentagons are

reached. Continue to add hexagons in a unique way to complete the graph. The graph

has a symmetry that exchanges the 3-gons and also the two groups of pentagons. Hence

its symmetry group is D3, D3d or D3h. All are realised.

If (p3, p4, p5) = (0, 5, 2), then k = 1, 2, or 5. If kmax = 1, then C1 and Cs are the

only possibilities. If kmax = 2, then C2, C2v are possible, whereas C2h and also groups

containing D2 are ruled out by odd p4. If kmax = 5, then by analogy with the case (2, 3, 0),

the symmetry group is D5 or D5h.

If (p3, p4, p5) = (0, 4, 4), then k = 1 or 2. This yields the possibilities C1, Cs, Ci, C2,

C2v, C2h, D2, D2d, D2h or S4, which are all realised.

If (p3, p4, p5) = (0, 3, 6), then k = 1, 2 or 3. p4 = 3 implies that there is at most one

3-fold axis and no inversion symmetry. This yields as possibilities C1, Cs, C2, C2v, C3,

C3v, C3h, D3 and D3h.

If (p3, p4, p5) = (0, 2, 8), then k = 1, 2 or 4. If kmax ≤ 2, then the possibilities are C1,

Cs, Ci, C2, C2h, C2v, D2, D2d, D2h and S4, all realised. If kmax = 4, p4 = 2 implies that

the 4-fold axis is unique and by analogy with the (2, 0, 6) case the symmetry is D4, D4d

or D4h. �
The pictures below give a catalogue of minimal examples for the realisable point groups

of the 16 triples treated in Theorem 2.2.
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(3, 1, 1), C1, 20 (3, 1, 1), Cs, 12 (3, 0, 3), C1, 18

(3, 0, 3), Cs, 14 (3, 0, 3), C3, 22 (3, 0, 3), C3v, 10

(3, 0, 3), C3h, 20 (2, 3, 0), C1, 22 (2, 3, 0), Cs, 26

(2, 3, 0), C2, 18 (2, 3, 0), C2v, 10 (2, 3, 0), D3, 42

(2, 3, 0), D3h, 6 (2, 2, 2), C1, 16 (2, 2, 2), Cs, 14

(2, 2, 2), Ci, 56 (2, 2, 2), C2, 10 (2, 2, 2), C2v, 8
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(2, 2, 2), C2h, 16 (2, 1, 4), C1, 16 (2, 1, 4), Cs, 14

(2, 1, 4), C2, 14 (2, 1, 4), C2v, 12 (2, 0, 6), C1, 24

(2, 0, 6), Cs, 22 (2, 0, 6), Ci, 40 (2, 0, 6), C2, 16

(2, 0, 6), C2v, 18 (2, 0, 6), C2h, 20 (2, 0, 6), D3, 36

(2, 0, 6), D3d, 12 (2, 0, 6), D3h, 18 (1, 4, 1), C1, 18

(1, 4, 1), Cs, 12 (1, 3, 3), C1, 14 (1, 3, 3), Cs, 12
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(1, 3, 3), C3, 28 (1, 3, 3), C3v, 10 (1, 2, 5), C1, 18

(1, 2, 5), Cs, 14 (1, 1, 7), C1, 20 (1, 1, 7), Cs, 18

(1, 0, 9), C1, 30 (1, 0, 9), Cs, 26 (1, 0, 9), C3, 34

(1, 0, 9), C3v, 22 (0, 5, 2), C1, 20 (0, 5, 2), Cs, 20

(0, 5, 2), C2, 18 (0, 5, 2), C2v, 14 (0, 5, 2), D5, 70

(0, 5, 2), D5h, 10 (0, 4, 4), C1, 18 (0, 4, 4), Cs, 18
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(0, 4, 4), Ci, 48 (0, 4, 4), C2, 16 (0, 4, 4), C2v, 14

(0, 4, 4), C2h, 32 (0, 4, 4), D2, 20 (0, 4, 4), D2h, 16

(0, 4, 4), D2d, 12 (0, 4, 4), S4, 36 (0, 3, 6), C1, 20

(0, 3, 6), Cs, 20 (0, 3, 6), C2, 18 (0, 3, 6), C3, 26

(0, 3, 6), C2v, 18 (0, 3, 6), C3v, 16 (0, 3, 6), C3h, 44

(0, 3, 6), D3, 26 (0, 3, 6), D3h, 14 (0, 2, 8), C1, 24
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(0, 2, 8), Cs, 22 (0, 2, 8), Ci, 40 (0, 2, 8), C2, 20

(0, 2, 8), C2v, 18 (0, 2, 8), C2h, 28 (0, 2, 8), D4, 48

(0, 2, 8), D4h, 24 (0, 2, 8), D4d, 16 (0, 2, 8), D2, 28

(0, 2, 8), D2h, 24 (0, 2, 8), D2d, 40 (0, 2, 8), S4, 136

(0, 1, 10), C1, 28 (0, 1, 10), Cs, 24 (0, 1, 10), C2, 26

(0, 1, 10), C2v, 22
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