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Abstract

For a graph G of n vertices, let λ1, λ2, · · · , λn be the eigenvalues of its

adjacency matrix. The Estrada index of G is defined by EE(G) =
n∑

i=1

eλi .

In this paper, we give some new lower and upper bounds for EE of bipartite
graphs. We determine the first three trees with the greatest Estrada index.

1 Introduction

All graphs considered here are finite and simple. Notations and terminology not
defined will conform to those in [2]. For a graph G, let n and m denote the number
of vertices and the number of edges, respectively. A (n,m)–graph means a graph with
n vertices and m edges. For a graph G, its characteristic polynomial P (G, x) is the
characteristic polynomial of its adjacency matrix, that is, P (G, x) = det(xI−A(G)).
Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency matrix A(G). Then the
spectrum of G is Spec(G) = {λ1, λ2, · · · , λn}. The number of zero eigenvalues in the
spectrum of the graph G is called its nullity and is denoted by η(G), see [17].

A graph-spectrum-based graph invariant, recently put forward by Estrada [3-7],
is defined as

EE = EE(G) =
n∑

i=1

eλi .

EE is nowadays usually referred to as the Estrada index, see [9-12,15].
Although invented only a few years ago [3, 4], the Estrada index has already

found numerous applications. It was used to quantify the degree of folding of
long-chain molecules, especially proteins [3–5]; for this purpose the EE-values of
pertinently constructed weighted graphs were employed. Another, fully unrelated,
application of EE was put forward by Estrada and Rodŕıguez-Velázquez [6, 7]. They
showed that EE provides a measure of the centrality of complex (communication, so-
cial, metabolic, etc.) networks. In addition to this, in a recent work [8] a connection
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between EE and the concept of extended atomic branching was considered. Very
recently the authors in [11, 12, 13, 16] established some lower and upper bounds
for EE and gave some general mathematical properties of the Estrada index. In
particular, from [3-16] we found the following results:

1. [7] Denoting by Mk = Mk(G) =
n∑

i=1
λi

k the kth spectral moment of the graph

G, then

EE(G) =
∑
k≥0

Mk(G)
k!

.

2. [8] For a bipartite graph G, if η(G) is the multiplicity of its eigenvalue zero,
then

EE(G) = η(G) + 2
∑
+

ch(λi), (1)

where ch(x) = ex+e−x

2 ,
∑
+

denotes the summation over all positive eigenvalues of the

corresponding graph.
3. [16] For a (n,m)–graph G, the Estrada index of G is bounded by√

n2 + 4m ≤ EE(G) ≤ n − 1 + e
√

2m, (2)

where the equality of both sides holds if and only if G ∼= Kn.
4. [16] For a bipartite (n,m)–graph G, the Estrada index of G is bounded by√

n2 + 4m ≤ EE(G) ≤ n − 2 + ch(
√

m), (3)

where the equality of lift-hand side of (3) holds if and only if G ∼= Kn and the
equality of right-hand side of (3) is attained for graphs of form G ∼= Ka,b ∪Kc, with
a, b, c ≥ 0, a + b + c = n and ab = m.

Very recently, Gutman in [13] gave some lower bounds of Estrada index of a
graph as follows:

5. If G is an (n,m)-graph with at least one edge and nullity η(G) > 0, then

EE(G) ≥ η(G) + (n − η(G))ch

(√
2m

n − η(G)

)
.

Equality holds if and only if G consists either of isolated vertices and copies of K2,
or of isolated vertices and copies of various complete bipartite graphs Ka,b with the
product a · b is constant.

The authors in [16] posed the following conjecture.

Conjecture A. Among n-vertex trees, the path has minimum and the star maxi-
mum Estrada index, that is,

EE(Sn) > EE(Tn) > EE(Pn),

where Tn is a tree of n vertices and Tn �∈ {Sn, Pn}.

In this paper, our main goal is to investigate the Estrada index of bipartite
graphs. Some new lower and upper bounds for EE of bipartite graphs are obtained.
We determine the first three trees with the greatest Estrada index, thus proving the
first inequality of Conjecture A.
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2 Some Lemmas

In this section, at first we consider the following function.

fk(x1, x2, · · · , xt) = xk
1 + xk

2 + · · · + xk
t , (4)

where k is a positive integer, x1 ≥ x2 ≥ x3 · · · ≥ xt ≥ 0 and
∑t

i=1 xi = m.

Lemma 1. If xi − xj ≥ 2α > 0 for some i and j, then for k ≥ 2 we have

fk(x1, x2, · · · , xi, · · · , xj , · · · , xt) > fk(x1, x2, · · · , xi − α, · · · , xj + α, · · · , xt).

Proof. Note that

fk(x1, x2, · · · , xi, · · · , xj , · · · , xt) − fk(x1, x2, · · · , xi − α, · · · , xj + α, · · · , xt)
= xk

i − (xi − α)k + xk
j − (xj + α)k

= α
k∑

r=1

(
xk−r

i (xi − α)r−1 − xk−r
j (xj + α)r−1

)
.

By xi − xj ≥ 2α > 0, the result follows. �

By Lemma 1, it is easy to get that

Lemma 2. For k ≥ 2,

mk

tk−1
≤ fk(x1, x2, · · · , xt) ≤ mk, (5)

where the equality of lift-hand side of (5) holds if and only if xi = m
t for all i, while

the equality of right-hand side of (5) holds if and only if x1 = m and xi = 0 for
i ≥ 2. �

3 Estrada index of bipartite graph

It is easy to see that if G has k connected components G1, G2, · · ·, Gk, then EE(G) =
k∑

i=1
EE(Gi). So, we shall investigate the Estrada index of connected bipartite graph

here. From Theorem 2 in [13] and Theorem 5 in [16], one find the following result.
By Lemmas 1 and 2 we give a new proof of the result.

Theorem 1([13, 16]). For a connected bipartite (n,m)–graph G with n ≥ 2, the
Estrada index of G is bounded by

η(G) + (n − η(G))ch

(√
2m

n − η(G)

)
≤ EE(G) ≤ n − 2 + 2ch(

√
m), (6)

where the equality of left-hand side of (6) holds if and only if all positive eigenvalues
are equal, while the equality of right-hand side of (6) holds if and only if G is a
complete bipartite graph.

Proof. Let G be a connected bipartite graph, by (1) we have

EE(G) = η(G) + 2
∑
+

∞∑
k=0

λ2k
i

(2k)!

= η(G) + 2
∞∑

k=0

1
(2k)!

∑
+

λ2k
i .
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It is well known that the eigenvalues of bipartite graphs are symmetric respect to
zero. Then G has t = (n− η(G))/2 positive eigenvalues and

∑
+

λ2
i = m. Set xi = λ2

i

for 1 ≤ i ≤ t. By Lemma 2, for all k ≥ 2 we have that
∑
+

λ2k
i attains the minimum

value if and only if all positive eigenvalues are equal and attains the maximum value
if and only if G has only one positive eigenvalue, that is, t = 1. Note that a con-
nected bipartite G has only one positive eigenvalue if and only if G is a complete
bipartite graph, see [17]. Therefore, the results follows from (1). �

As a corollary of Theorem 1, we have

Corollary 1. The star n has maximum Estrada index among all trees of n vertices,
that is

EE(Sn) > EE(Tn),

where Tn is a tree of n vertices and Tn �∼= Sn. �

Let λ1(G) be the greatest eigenvalue of G. Then,
∑

+,i≥2
λ2

i = m − λ1(G)2, where∑
+,i≥2

denotes the summation over all positive eigenvalues except for λ1(G). A proof

similar with that of Theorem 1, one show that

Theorem 2. For a connected bipartite (n,m)–graph G, the Estrada index of G is
bounded by

η(G) + ch

(√
m − λ2

1(G)
)

+ (n − η(G) − 2)ch
(√

2m
n−η(G)−2

)
≤ EE(G) ≤ n − 4 + ch(λ1(G)) + ch

(√
m − λ2

1(G)
)

,
(7)

where the equality of left-hand side of (7) holds if and only if all positive eigenvalues
except for λ1(G) are equal, while the equality of right-hand side of (7) holds if and
only if G has four nonzero eigenvalues. �

4 Trees with the maximal Estrada indices

For a tree T with n vertices, from [17] one find that if the order of the maximum
matching is θ, then η(T ) = n−2θ, that is, T has θ positive eigenvalues. By Theorem
1, we have

Theorem 3. Let T a tree of n (n ≥ 2) vertices with the order θ of the maximum
matching. Then its Estrada index is bounded by

n − 2θ + θch

⎛⎝√2(n − 1)
θ

⎞⎠ ≤ EE(T ) ≤ n − 2 + 2ch(
√

n − 1), (8)

where the equality of left-hand side of (8) holds if and only if all positive eigenvalues
are equal, while the equality of right-hand side of (8) holds if and only if G ∼= Sn.�

Theorem 4. Let T1 and T2 be two trees of n vertices. If T1 has exactly two positive
eigenvalues and T2 has at least two positive eigenvalues with λ1(T1) > λ1(T2), then
EE(T1) > EE(T2).

Proof. Let λ1(T1) and λ2(T1) be two positive eigenvalues of T1. Denote by
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λ1(T2), λ2(T2), · · · , λt(T2) all positive eigenvalues of T2 with λ1(T2) ≥ λ2(T2) ≥ · · · ≥
λt(T2). By (1), it follows that

EE(T1) = n − 4 + 2
∞∑

k=0

1
(2k)!

fk(λ2
1(T1), λ2

2(T1)), (9)

EE(T2) = η(T ) + 2
∞∑

k=0

1
(2k)!

fk(λ2
1(T2), λ2

2(T2), · · · , λ2
t (T2)), (10)

where λ2
1(T1) + λ2

2(T1) = λ2
1(T2) + λ2

2(T2) + · · · + λ2
t (T2) = n − 1.

Since λ1(T1) > λ1(T2), by Lemma 1, we have

fk(λ2
1(T1), λ2

2(T1)) > fk(λ2
1(T2), λ2

2(T2), · · · , λ2
t (T2)),

for k ≥ 2. By (9) and (10), EE(T1) > EE(T2). �

The authors in [14] determine the first six trees with the greatest eigenvalue, see
Figure 1, where Si

n is the tree with the ith greatest eigenvalue.
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Figure 1. Trees Si
n, i = 1, 2, 3, 4, 5, 6

From [14], λ1(S1
n) > λ1(S2

n) > λ1(S3
n) > λ1(S4

n) > λ1(S5
n) > λ1(S6

n), for n ≥ 5.
By direct computation, one see that Si

n, for i = 2, 3, 4, 6, have exactly two positive
eigenvalues. So, by Theorems 1 and 4, for two trees T 1

n and T 2
n of n ≥ 5 vertices we

have
EE(S1

n) > EE(S2
n) > EE(S3

n) > EE(S5
n) > EE(S6

n) > EE(T 1
n)

and
EE(S1

n) > EE(S2
n) > EE(S3

n) > EE(T 2
n),

where T 1
n �∈ {Si

n|i = 1, 2, 3, 4, 5, 6} and T 2
n �∈ {Si

n|i = 1, 2, 3}. Therefore we have

Theorem 5. Among trees of n vertices, the first three trees with the greatest
Estrads index are S1

n, S2
n and S3

n, respectively. �

5 Remarks

Let n ≥ 6, by direct computation, for S4
n and S5

n we have

EE(S4
n) = n − 6 + e

√
−1+n/2+1/2

√
24−8n+n2 + e−

√
−1+n/2+1/2

√
24−8n+n2+

e
√

−1+n/2−1/2
√

24−8n+n2 + e−
√

−1+n/2−1/2
√

24−8n+n2 + e + e−1,
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EE(S5
n) = n − 4 + e

√
−1/2+n/2+1/2

√
29−10n+n2 + e−

√
−1/2+n/2+1/2

√
29−10n+n2+

e
√

−1/2+n/2−1/2
√

29−10n+n2 + e−
√

−1/2+n/2−1/2
√

29−10n+n2
.

Using software Mathematics, by calculating we find EE(S4
n) > EE(S5

n) for n ≥
6. It is not easy to prove that EE(S4

n) > EE(S5
n). Therefore, we shall try to find

some new methods to prove it and to determine the first thirteen trees with the
greatest Estrada index by using the results in [1, 15].
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