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Abstract
A few alternative definitions of (molecular) graph energy have recently appeared

in the literature, among others the Laplacian energy-like invariant, or Laplacian-like
energy, defined by Liu and Liu. It was already shown that the Laplacian-like energy
shares a number of properties with the usual graph energy. Here we exhibit further
similarities between them by showing that among the n-vertex trees, n ∈ N, the star
Sn has minimal Laplacian-like energy and the path Pn has maximal Laplacian-like
energy.

1 Introduction

Let G = (V, E) be a finite, simple and undirected graph with vertices V = {1, 2, . . . , n}
and m = |E| edges. The degree of a vertex u ∈ V will be denoted by du. Let G

have adjacency matrix A with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, and Laplacian matrix

L = D−A, where D is the diagonal matrix of vertex degrees, with eigenvalues μ1 ≥ μ2 ≥
. . . ≥ μn = 0. Additional details on the theory of graph spectra may be found in [1].

The energy and the Laplacian-like energy of G are defined as follows

E = E(G) =
n∑

i=1

|λi|, LEL = LEL(G) =
n∑

i=1

√
μi.

1This work was supported by the research program P1-0285 of the Slovenian Agency for Research and
the research grant 144015G of the Serbian Ministry of Science and Environmental Protection.

MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 61 (2009) 407-417 
 

                                          ISSN 0340 - 6253 
 



The energy of a graph was defined by Ivan Gutman in [2] and it has a long known chemical

applications; for details see the surveys [3, 4, 5]. Much work has appeared in the literature

in the last decade, and, in particular, in this journal (see, for instance, [6]-[19]). On the

other hand, the Laplacian-like energy has been recently defined in [20], as a counterpart

to yet another concept of the Laplacian energy defined in [21], whose further properties

may be found in [22]-[25].

Among the trees, it has been long known [26, 27] that, for n ∈ N, the path Pn has

maximum energy and that the star Sn has minimum energy. Our goal here is to show

that the analogous result holds for the Laplacian-like energy of trees.

Theorem 1 If G is a tree on n vertices, n ≥ 4, then

LEL(Sn) ≤ LEL(G) ≤ LEL(Pn). (1)

Equality holds in first inequality if and only if G ∼= Sn, and in the second inequality if and

only if G ∼= Pn.

The plan of the paper is as follows: In the next section we will first establish a partial

ordering of graphs which perfectly correlates with Laplacian-like energy, and in Section 3

we will use recent results of Mohar [30] to establish Theorem 1. Additional remarks may

be found in concluding section.

2 Partial ordering via Laplacian coefficients

Suppose G is connected. Then n ≥ μ1 and μn−1 > 0, so that 0 is a simple eigenvalue

of G. Let

Λ(G, x) =
n∑

k=0

(−1)kckx
n−k

be the characteristic polynomial of the Laplacian matrix L of G. Here ck = ck(G),

0 ≤ k ≤ n, are the absolute values of the coefficients of Λ(G, x). It is easy to see that

c0 = 1, c1 = 2m, cn = 0, and cn−1 = nτ(G), where τ(G) denotes the number of spanning

trees of G. Detailed introduction to graph Laplacians may be found in [31]-[33].

The eigenvalues n ≥ μ1 ≥ μ2 ≥ . . . ≥ μn−1 > 0 are the roots of Λ(G, x)/x, so from

Viette’s formulas we see that the values c1, c2, . . . , cn−1 are the elementary symmetric

functions of μ1, μ2, . . . , μn−1:

ck =
∑

I⊆{1,2,...,n−1}, |I|=k

∏
i∈I

μi. (2)

Let us move, for the moment, to a more general setting. Consider the open set in Rn−1

M = {(μ1, μ2, . . . , μn−1): n > μ1 > μ2 > . . . > μn−1 > 0}.

- 408 -



Let C denote the set of coefficients of polynomials having roots in M,

C = {(c1, c2, . . . , cn−1): (∃(μ1, μ2, . . . , μn−1) ∈ M)

xn−1 − c1x
n−1 + c2x

n−2 + . . . + (−1)n−1cn−1 = (x − μ1)(x − μ2) · · · (x − μn−1)}.

Let F : M → C be the bijection defined by Viette’s formulas (2) which represent poly-

nomial coefficients from C via the roots from M. Viette’s formulas are continuously

differentiable functions and we have

∂ck

∂μj

=
∑

j∈I⊆{1,2,...,n−1}, |I|=k

∏
i∈I\{j}

μi. (3)

Notice that ∂ck/∂μj is a polynomial of degree k − 1 in variables μ1, . . . , μn−1. The

Jacobian determinant of the function F is then

det JF =

∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

∂c2
∂μ1

∂c2
∂μ2

. . . ∂c2
∂μn−1

. . . . . . . . . . . .
∂cn−1

∂μ1

∂cn−1

∂μ2
. . . ∂cn−1

∂μn−1

∣∣∣∣∣∣∣∣∣∣
also a polynomial in variables μ1, . . . , μn−1, of degree at most (n − 1)(n − 2)/2. This

determinant may be calculated in the same way as any other Vandermonde-type determi-

nant: if, for any i �= j, we have that μi = μj, then the columns i and j of JF are identical,

and the determinant of JF becomes equal to 0. Hence, μi − μj is a factor of det JF , and

since there are (n − 1)(n − 2)/2 factors of this form, we have

det JF = c
∏

1≤i<j≤n−1

(μi − μj), (4)

for some nonzero constant c. The value of the constant may be obtained by comparing

coefficients of μn−2
1 μn−3

2 · · ·μn−2 on both sides of (4).

Thus, the Jacobian determinant of F is nonzero on whole M. By the inverse function

theorem [34], we conclude that, for every point μ ∈ M, F has continuously differentiable

inverse function F−1
μ in some neighborhood of F (μ). However, F is bijection, so the

function F−1
μ must coincide with F−1 in the neighborhood of F (μ). Thus, we may conclude

that F−1 is continuously differentiable on whole C, and that M and C are homeomorphic.

The Laplacian-like energy function LEL : M → R, defined by

LEL(μ1, μ2, . . . , μn−1) =
√

μ1 +
√

μ2 + . . . +
√

μn−1,

may then be represented as an implicit function of coefficients from C. By the chain rule,

for arbitrary k, 1 ≤ k ≤ n − 1, we have

∂LEL

∂ck

=
n−1∑
j=1

∂LEL

∂μj

· ∂μj

∂ck

=
n−1∑
j=1

∂LEL/∂μj

∂ck/∂μj

.
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Now, ∂LEL/∂μj = 1
2
√

μj
> 0, while from (3) it follows that ∂ck/∂μj > 0 for points of M.

Thus,
∂LEL

∂ck

> 0

and the Laplacian-like energy function LEL is strictly increasing on C in each coordinate.

So far we have dealt with the case of distinct eigenvalues only. The remaining step is

to consider the closures of M and C: first, the closure of M is the compact set

M̄ = {(μ1, μ2, . . . , μn−1): n ≥ μ1 ≥ μ2 ≥ . . . ≥ μn−1 ≥ 0}.

Its image under equations (2) is the set C̄ of coefficients of polynomials having roots

in M̄. The continuously differentiable bijection F between M and C extends to the

bijection F̄ between M̄ and C̄, showing that C̄ is the closure of C. Then the Laplacian-

like energy function LEL, which is strictly increasing on C in each coordinate, must be

strictly increasing on C̄ as well.

Restoring our setting back to the Laplacian coefficients of graphs, and noting that

C̄ contains the Laplacian coefficients of disconnected graphs as well, we arrive at the

following

Lemma 2 Let G and H be two n-vertex graphs. If ck(G) ≤ ck(H) for k = 1, . . . , n − 1,

then LEL(G) ≤ LEL(H). Furthermore, if a strict inequality ck′(G) < ck′(H) holds for

some k′, 1 ≤ k′ ≤ n − 1, then LEL(G) < LEL(H).

We may now introduce relations �c and ≺c on the set of n-vertex graphs by defining

G �c H ⇔ (∀k = 1, . . . , n − 1) ck(G) ≤ ck(H)

and

G ≺c H ⇔ G �c H and ck(G) < ck(H) for some 1 ≤ k ≤ n − 1.

The above lemma may then be restated as: If G ≺c H, then LEL(G) < LEL(H).

3 Proof of Theorem 1

Recently, Zhou and Gutman [35] proved a conjecture from [36] that the extreme values

of Laplacian coefficients among all n-vertex trees are attained on one side by the path Pn

of length n− 1, and on the other side by the star Sn = K1,n−1 of order n. In other words,

ck(Sn) ≤ ck(T ) ≤ ck(Pn), 0 ≤ k ≤ n

holds for all trees T of order n. Applying Lemma 2 to these inequalities, we immediately

obtain Theorem 1, except for the case of equality.
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In order to settle the case of equality, we may use a recent strengthening of the above

result by Mohar [30], who proved that all Laplacian coefficients are monotone under two

operations called π and σ.

Let u0 be a vertex of tree T . Suppose that P = u0u1 . . . up (p ≥ 1) is a path in T

whose internal vertices u1, . . . , up−1 all have degree 2 in T and where up is a leaf (i.e., a

vertex of degree 1 in T ). Then we say that P is a pendant path of length p attached at u0.

Suppose that degT (u0) ≥ 3 and that P = u0u1 . . . up and Q = u0v1 . . . vq are distinct

pendant paths attached at u0. Then we form a tree T ′ = π(T, u0, P,Q) by removing the

paths P and Q and replacing them with a longer path R = u0u1 . . . upv1v2 . . . vq. We say

that T ′ is a π-transform of T .

Mohar proved that every tree which is not a path contains a vertex of degree at least

three at which (at least) two pendant paths are attached, and, in particular, that every

tree can be transformed into a path by a sequence of π-transformations. He also proved

the following

Theorem 3 ([30]) Let T ′ = π(T, u0, P, Q) be a π-transform of a tree T of order n. For

d = 1, . . . , k − 1, let nd be the number of vertices in T − P − Q that are at distance d

from u0 in T . Then

ck(T ) ≤ ck(T
′) −

k−1∑
d=1

nd

(
n − 3 − d

k − 1 − d

)
for 2 ≤ k ≤ n − 2

and ck(T ) = ck(T
′) for k ∈ {0, 1, n − 1, n}.

Next, let u0 be a vertex of a tree T of degree p + 1. Suppose that u0u1, u0u2, . . . ,

u0up are pendant edges incident with u0, and that v0 is the neighbor of u0 distinct from

u1, . . . , up. Then we form a tree T ′ = σ(T, u0) by removing the edges u0u1, . . . , u0up

from T and adding p new pendant edges v0v1, . . . , v0vp incident with v0. We say that T ′

is a σ-transform of T .

Mohar proved that every tree which is not a star contains a vertex u0 such that

p = degT (u0) − 1 neighbors of u0 are leaves of T , while the remaining neighbor of u0

is not a leaf. Consequently, every tree can be transformed into a star by a sequence of

σ-transformations. He also proved the following

Theorem 4 ([30]) Let T ′ = σ(T, u0) be a σ-transform of a tree T of order n. For

d = 2, . . . , k, let nd be the number of vertices in T − u0 that are at distance d from u0

in T . Then

ck(T ) ≥ ck(T
′) +

k∑
d=2

nd p

(
n − 2 − d

k − d

)
for 2 ≤ k ≤ n − 2

and ck(T ) = ck(T
′) for k ∈ {0, 1, n − 1, n}.
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From Theorems 3 and 4, we see that the set of n-vertex trees possess a unique minimal

element Sn and a unique maximal element Pn under partial ordering �c. This character-

izes the case of equality in Theorem 1 as well: if LEL(Sn) = LEL(T ), then ck(Sn) = ck(T )

for all k, and, consequently, Sn
∼= T ; if LEL(T ) = LEL(Pn), then ck(T ) = ck(Pn) for

all k, and, consequently, T ∼= Pn.

4 Concluding remarks

The fact that Sn has minimal Laplacian-like energy among all connected graphs (not only

trees) on n vertices has already been shown in [20, Theorem 4.2], as a consequence of a

lower bound on LEL(G).

However, our proof via Lemma 2 is of entirely different nature. Moreover, its basic

ingredient, Lemma 2, together with π and σ-transformations may be used to yield other

extremal results on the Laplacian-like energy of trees, in conjuction with existing results

on the numbers of matchings, which are already used to prove a myriad of results on usual

graph energy.

For example, if we consider an arbitrary n-vertex tree T with a given maximum de-

gree Δ, then applying π-transformation at each vertex of degree ≥ 3, except at one

vertex of degree Δ, yields a starlike tree S(p1, . . . , pΔ), with paths of lengths p1, . . . , pΔ,

p1 + . . . + pΔ = n − 1, emanating from a vertex of degree Δ. Moreover,

LEL(T ) < LEL(S(p1, . . . , pΔ)). (5)

Next, for a graph G, let mk(G) be the number of matchings of G containing precisely

k edges, and let S(G) denote the subdivision graph of G. Zhou and Gutman [35] proved

that for every acyclic graph T of order n,

ck(T ) = mk(S(T )), 0 ≤ k ≤ n. (6)

Moreover, in this particular case, we have S(S(p1, . . . , pΔ)) = S(2p1, . . . , 2pΔ), where the

first S denotes the subdivision graph, and the second and third S refer to corresponding

starlike trees.

Using (6) our problem of comparing Laplacian coefficients of starlike trees may be

reduced to the problem of comparing matchings of their subdivisions. From that point

on, we need a similar partial ordering to �c, which has been used for a long time in

literature on graph energy: for two n-vertex graphs G and H we define

G �m H ⇔ (∀k = 1, . . . , n − 1) mk(G) ≤ mk(H)

and

G ≺m H ⇔ G �m H and mk(G) < mk(H) for some 1 ≤ k ≤ n − 1.
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Let us recall a particular result on �m. Denote the vertices of the path Pn by v1, v2,

. . . , vn so that vi and vi+1 are adjacent. Let two graphs G and H have disjoint vertex

sets. If v is a vertex of G and w a vertex of H, then let GvwH denote the graph obtained

by identifying vertices v and w. In this notation, Gutman and Zhang [37] have shown the

following result:

Lemma 5 ([37]) For an arbitrary vertex v of the graph G having n = 4k + i vertices,

where i ∈ {−1, 0, 1, 2}, we have

Pnv2vG ≺m Pnv4vG ≺m · · · ≺m Pnv2kvG

≺m Pnv2k+1vG ≺m Pnv2k−1vG ≺m · · · ≺m Pnv3vG ≺m Pnv1vG.

Applying previous lemma to any pair of paths from S(2p1, . . . , 2pΔ), whose lengths are

pi, pj ≥ 4, we easily get that

S(2p1, . . . , 2pi, . . . , 2pj, . . . , 2pΔ) ≺m S(2p1, . . . , 2pi + 2pj − 2, . . . , 2, . . . , 2pΔ).

Iterating the application of Lemma 5 as long as there are at least two paths of length at

least four in corresponding starlike trees, we get that

S(2p1, . . . , 2pΔ) ≺m S(2n − 2Δ, 2, . . . , 2),

from (6)

S(p1, . . . , pΔ) ≺c S(n − Δ, 1, . . . , 1),

and finally from Lemma 2

LEL(S(p1, . . . , pΔ) < LEL(S(n − Δ, 1, . . . , 1)).

Thus, we have just shown

Theorem 6 If T is a tree with n vertices and maximum degree Δ, then LEL(T ) ≤
LEL(S(n − Δ, 1, . . . , 1)), with equality if and only if T ∼= S(n − Δ, 1, . . . , 1).

The equation (6) thus represents a strong link between the energy and Laplacian-like

energy, which may be used, up to certain degree, to carry over existing results on the

energy of trees to the Laplacian-like energy. So, it appears as if the energy and Laplacian-

like energy behave in quite a similar way, at least when trees are considered.

However, the Laplacian-like energy may be even more natural from graph-theoretical

point of view. After the trees, the next simple class of graphs are unicyclic graphs. Let P l
n

be the unicyclic graph obtained by connecting a vertex of a cycle Cl with a pendant vertex

of Pn−l. There is a conjecture of Caporossi, Cvetković, Gutman and Hansen, obtained

with the use of system AutoGraphiX [38]:
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Conjecture 7 ([39]) Among unicyclic graphs on n vertices, the cycle Cn has maximal

energy if n ≤ 7 and n = 9, 10, 11, 13 and 15. For all other values of n, the unicyclic graph

with maximum energy is P 6
n .

Best result so far is by Hou, Gutman and Woo [40], who showed that E(P 6
n) is maximal

within the class of connected unicyclic bipartite n-vertex graphs that differ from Cn.

In particular, they proved that among bipartite unicyclic graphs either Cn or P 6
n have

maximal energy.

However, when the system AutoGraphiX is put to work on the Laplacian-like energy

of unicyclic graphs, we obtain a more natural conjecture:

Conjecture 8 Among unicyclic graphs on n vertices, the cycle Cn has maximal Laplacian-

like energy.

When it comes to general graphs, the Laplacian-like energy behaves in a nicer way than

the ordinary energy. Namely, from the interlacing theorem [1] it follows that E(G− u) ≤
E(G) for any vertex u, which then extends to any induced subgraph of G. However, it is

not known under what conditions on the edge e holds that

E(G − e) ≤ E(G)?

Best result so far by Day and So [41, Theorem 2.6] only claims that

E(G) − 2 ≤ E(G − e) ≤ E(G) + 2.

On the other hand, Laplacian eigenvalues of an edge-deleted graph G−e are interlaced

to those of G [42],

μ1(G) ≥ μ1(G − e) ≥ μ2(G) ≥ μ2(G − e) ≥ . . . ≥ μn−1(G) ≥ μn−1(G − e),

so that we immediately get

LEL(G − e) ≤ LEL(G).

All these remarks are in some favour of theoretical properties of Laplacian-like energy

when compared to ordinary energy. However, the motivation for the definition of en-

ergy comes from the approximations used in Hückel’s molecular orbital theory, while the

Laplacian-like energy is a pure mathematical fiction. Thus, it would be quite interesting

to see whether the Laplacian-like energy can find its place in chemical applications as

well.
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