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Abstract

Let G be a simple graph with n vertices and m edges, with ordinary
spectrum \;, ¢ = 1,2, .- n, and with Laplacian spectrum p;, ¢ = 1,2,--- n.
The energy and the Laplacian energy of the graph G are defined as E(G) =

n n
> [N\l and LE(G) = 3 | — 22|, respectively. In [9] the authors provided
i i=1

i=
numerous examples for the inequality F(G) < LE(G) and conjectured that
it holds for all graphs. In this paper we show that the conjecture does not
hold.

1 Introduction

Let G be a simple undirected graph possessing n vertices and m edges. Let A
be the symmetric (0, 1)—adjacency matrix of G and D = diag(dy,ds, . .. d,) be the
diagonal matrix of vertex degrees. The Laplacian matrix of G is L = D — A. Let
A1, Ag,. .. A, be the adjacency spectrum of G, and let uy, po,. .. i, be the Laplacian

spectrum of G.
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The energy E(G) of a graph G is defined as [2]

n

E(G) = I\l (1)

=1
This quantity has a clear connection to chemical problems [3-5] and has recently

been much investigated (see [6, 7, 10, 11, 13, 15] and the references cited therein).
The Laplacian energy LE(G) of a graph G has been defined [8] as

2

i — —1.
n

For recent investigations of this quantity see [14].

The quantities E(G) and LE(G) were found to have a number of analogous
properties [8]. It is easy to see that if the graph G is regular, then E(G) = LE(G)
[8]. And there are non-regular graphs with the same property [9]. In [9] the authors
also provided numerous examples for the inequality E(G) < LE(G) and conjec-
tured that it holds for all graphs. In this paper we show that the conjecture does
not hold by counterexamples. Finally, we show that there exist infinite examples
satisfying E(G) > LE(G).

2 Counterexamples

We now provide an example showing that the conjecture in [9] does not hold.
Counsider the following graph Gsgs of order 7. (Gsss is the graph 11 —388 in [1]). It
was shown in [1] that the adjacency spectra of Gsgs is {3.17741,1.73205,0.67836 ,
—1,—1,-1.73205, —1.85577}. By direct calculation we obtain E(G3ss) ~ 11.17564
q > 11.1756. And also by direct calculation we obtain the characteristic polynomial
of Laplacian matrix of Gsgs is ¢(z) = 27 — 2225+ 1962° — 9002 + 222873 — 278422 +
1344z. So its Laplacian spectrum is {4++/2, 3++/3, 4, 4, 4—+/2, 3—+/3, 0}. Tt is
then immediate to verify that LE(Gssg) = 11.14967 < 11.1497. Thus LE(G3gs) <

E(G3gs) holds. In fact, the graph Gsgs is the minimal counterexample.
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G388

Let G; U G5 denote the graph consisting of two (disconnected) components G
and Go, and let kG denote the graph consisting of k£ (k > 0 be integer) copies
of the graph G. As usual, by C,, K,, P, denoted the n-vertex cycle, the n-
vertex complete graph and the n-vertex path, respectively. For the graph energy
the equalities

E(G1UGy) = E(Gy) + E(G), (3)

E(kG) = kE(G).

are always satisfied. And it is easy to verify that
LE(kG) = kLE(G).

So we have E(kG3ss) > LE(kG3ss), for all k> 0 be an integer.

Consider now the graph G = G333 U K3. Its Laplacian spectrum is the union of
the Laplacian spectra of Gsg and K3, viz., {4+ V2,3443,4,4,3,3,4—+/2,3—
V3,0, 0}. Therefore, by Eq. (2) LE(G) = 14.6925 < E(G) = E(Gass)+ E(K3) =
15.1756. And then E(kG) > LE(kG), for all k > 0 be an integer.

In an analogous manner one can verify that the graph G' = G335 U K satisfying
E(G) > LE(G), and E(kG) > LE(kG), for all k > 0 be an integer.
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