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Abstract

Let G be a simple graph with n vertices and m edges, with ordinary
spectrum λi, i = 1, 2, · · · , n, and with Laplacian spectrum μi, i = 1, 2, · · · , n.
The energy and the Laplacian energy of the graph G are defined as E(G) =
n∑

i=1
|λi| and LE(G) =

n∑
i=1

∣∣μi − 2m
n

∣∣ , respectively. In [9] the authors provided

numerous examples for the inequality E(G) ≤ LE(G) and conjectured that
it holds for all graphs. In this paper we show that the conjecture does not
hold.

1 Introduction

Let G be a simple undirected graph possessing n vertices and m edges. Let A

be the symmetric (0, 1)−adjacency matrix of G and D = diag(d1, d2, . . . dn) be the

diagonal matrix of vertex degrees. The Laplacian matrix of G is L = D − A. Let

λ1, λ2,. . .λn be the adjacency spectrum of G, and let μ1, μ2,. . .μn be the Laplacian

spectrum of G.
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The energy E(G) of a graph G is defined as [2]

E(G) =
n∑

i=1

|λi|. (1)

This quantity has a clear connection to chemical problems [3–5] and has recently

been much investigated (see [6, 7, 10, 11, 13, 15] and the references cited therein).

The Laplacian energy LE(G) of a graph G has been defined [8] as

LE(G) =
n∑

i=1

∣∣∣∣μi − 2m

n

∣∣∣∣ . (2)

For recent investigations of this quantity see [14].

The quantities E(G) and LE(G) were found to have a number of analogous

properties [8]. It is easy to see that if the graph G is regular, then E(G) = LE(G)

[8]. And there are non-regular graphs with the same property [9]. In [9] the authors

also provided numerous examples for the inequality E(G) ≤ LE(G) and conjec-

tured that it holds for all graphs. In this paper we show that the conjecture does

not hold by counterexamples. Finally, we show that there exist infinite examples

satisfying E(G) > LE(G).

2 Counterexamples

1

We now provide an example showing that the conjecture in [9] does not hold.

Consider the following graph G388 of order 7. (G388 is the graph 11−388 in [1]). It

was shown in [1] that the adjacency spectra of G388 is {3.17741, 1.73205, 0.67836 ,

−1,−1,−1.73205,−1.85577}. By direct calculation we obtain E(G388) ≈ 11.17564

q > 11.1756. And also by direct calculation we obtain the characteristic polynomial

of Laplacian matrix of G388 is φ(x) = x7−22x6+196x5−900x4+2228x3−2784x2+

1344x. So its Laplacian spectrum is {4+
√

2, 3+
√

3, 4, 4, 4−√
2, 3−√

3, 0}. It is

then immediate to verify that LE(G388) ≈ 11.14967 < 11.1497. Thus LE(G388) <

E(G388) holds. In fact, the graph G388 is the minimal counterexample.
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G388

2

Let G1 ∪G2 denote the graph consisting of two (disconnected) components G1

and G2, and let kG denote the graph consisting of k (k > 0 be integer) copies

of the graph G. As usual, by Cn, Kn, Pn denoted the n-vertex cycle, the n-

vertex complete graph and the n-vertex path, respectively. For the graph energy

the equalities

E(G1 ∪ G2) = E(G1) + E(G2), (3)

E(kG) = kE(G).

are always satisfied. And it is easy to verify that

LE(kG) = kLE(G).

So we have E(kG388) > LE(kG388), for all k > 0 be an integer.

Consider now the graph G = G388 ∪K3. Its Laplacian spectrum is the union of

the Laplacian spectra of G388 and K3, viz., {4+
√

2, 3+
√

3, 4, 4, 3, 3, 4−√
2, 3−√

3, 0, 0}. Therefore, by Eq. (2) LE(G) = 14.6925 < E(G) = E(G388)+E(K3) =

15.1756. And then E(kG) > LE(kG), for all k > 0 be an integer.

In an analogous manner one can verify that the graph G = G388 ∪K4 satisfying

E(G) > LE(G), and E(kG) > LE(kG), for all k > 0 be an integer.
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