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Abstract

I. Gutman et al. have recently conjectured that the energy of a graph does
not exceed its Laplacian energy. We disprove this conjecture by giving a few small
counterexamples and, in addition, an infinite set of counterexamples. Nevertheless,
we do show that the standard deviation of eigenvalues of the adjacency matrix of
every graph does not exceed the standard deviation of eigenvalues of its Laplacian
matrix.

1 Introduction

Let G = (V, E) be a finite, simple and undirected graph with vertices V' = {1,...,n} and
m = |E| edges. The degree of a vertex u € V will be denoted by d,. Let G have the
adjacency matrix A with eigenvalues A\; > Ay > --- > A, and the Laplacian matrix L

with eigenvalues p1 > o > -+ > p, = 0.
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These eigenvalues obey the following well-known relations:
Sh=0, > A =2m,
i=1 i=1
> =2m, Z/szZm—f—Zd?.
i=1 i=1 i=1

Further details on the spectral graph theory can be found in [1].

The energy and the Laplacian energy of G are defined as follows

n n 2
E=EG) =Y |\, LE=LEG) =Y |u-—|.
=1 i=1 n
Having in mind that 0 is the average value of Ay, ..., A,, while 277" is the average value of

U1, - ., pn, we may think of E(G) and LE(G) as the absolute deviation of corresponding
eigenvalues.

The energy of a graph was defined by Ivan Gutman in [2] and it has a long known
chemical applications; for details see the surveys [3, 4, 5]. Much work has appeared in the
literature in the last decade, and, in particular, in this journal (see, for instance, [6]-[19]).
On the other hand, the Laplacian energy has been recently defined in [20], with some
further properties given in [21].

Ivan Gutman et al. have conjectured in [22] that E(G) < LE(G) holds for any graph.
We have checked this conjecture on all connected graphs up to ten vertices, and we have
found two counterexamples on 9 vertices and 115 counterexamples on 10 vertices. The
two counterexamples on 9 vertices and the two counterexamples with fewest number of
edges on 10 vertices are shown in Fig. 1. Note that the graphs on 10 vertices in this figure

are chemical graphs as well.

2 A negative result

There is a simple infinite set of counterexamples. Let KK, be the graph obtained from
two copies of the complete graph K, by joining a vertex from one copy of K, to two
vertices from the other copy of K,. For example, the graph K Kg is shown in Fig. 2. It

turns out that KK, is a counterexample for all other values of n > 9 as well.

Proposition 1 F(KK,) > LE(KK,) for every n > 8.
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E ~15.03045, LE ~ 14.76604 E ~ 15.18101, LE ~ 14.96204

Figure 1: A few small counterexamples.

Proof. The adjacency matrix of K K, has an eigenvalue —1 with multiplicity 2n —4, and

four simple eigenvalues Ay, ..

., A4 which are the roots of the characteristic polynomial of

the obvious four-vertex divisor of KK, (see, e.g., [1, Chapter 4] to learn more about the

concept of the divisor of a graph)

p(A) =X =2(n — 2N 4+ (n® —6n + N> +2(n® —n — 3)A — (n® — 8n + 11).

Proposition may be verified directly for n = 8.

For n > 9, the following holds:

= 2421 —11>0
= —4<0

= (n-12%>0

= —n?+8n—-11<0

)

)

)

) = 2(n27n74)>0
)

) = —0.56n? +4.656n + 2.3936 < 0
)

= 2(n*+m+8)>0
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E ~ 28.36128, LE ~ 28.24695
Figure 2: Graph K Kj.

Therefore, p(A) has three positive roots, one in each of the intervals (0,1), (n —2,n — 1)
and (n — 1,n), and a single negative root in the interval (—3,—2.2). We can assume
A1, A2, A3 > 0 and Ay < 0. We have

)\1+>\2+)\3+)\4:2(n—2),

and thus,

E(KKTL) ‘/\1‘+|)\2‘+|)\3|+|)\4|+(27’L*4)‘ *1‘

= M+Xt+A3—N\+2n—4

2n —2) — 20 +2n —4

> 4n — 3.6.

Similarly, the Laplacian matrix of K K, has an eigenvalue n with multiplicity 2n — 5,

a simple eigenvalue n + 1, and four additional eigenvalues
0,n,(n+3+vVn2+6n—-"7)/2,(n+3—vn2+6n-7)/2

which are the roots of the Laplacian characteristic polynomial of the divisor of KK, (see

Theorem 4.7 and remark after Theorem 4.5 of [1])
pt = (2n 4+ 3)pd 4+ (n® 4 3n 4+ 4)p? — dnp.
Since the average of these eigenvalues is n — 1 + 2/n, we obtain that for n > 3
LE(KK,)=3n—"T7+ % +Vn2+6n—T.
Then for n > 9 we have

8
E(KK,) — LE(KK,) > n+34— — = Vn? + 60— 7 = g(n).
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The first derivative of g(n) is positive for n > 1. Since further g(9) ~ 0.1974 > 0, we
conclude that E(KK,) > LE(KK,) for all n > 9. |
3 A positive result

Let us recall that the standard deviation o of a set of data P = {p1,...,pn}, having

average value p, is defined as

While absolute deviations of adjacency and Laplacian eigenvalues of a graph turn out to

be incomparable, their standard deviations behave in a much more predictable manner.

Theorem 2 The standard deviation of the adjacency eigenvalues of any graph does not

exceed the standard deviation of its Laplacian eigenvalues.

Proof. The statement of the theorem reduces to the inequality

n n 2
S (m- )
i=1 i=1 n

On the left-hand side we have

Z M =2m,
i=1
while on the right-hand side we have
n om 2 n 4m2
B T
; <M . > m ; ; .

Our theorem is now a consequence of the inequality 4m? < n Y% | d?, which is obtained

by applying the Cauchy-Schwartz inequality to the vertex degree vector (dq,ds,...,d,)
and (1,1,...,1). n

4 Conclusion

It is natural to expect that the standard deviation and the absolute deviation are relatively
close to each other. Hence, if the standard deviation of Laplacian eigenvalues of a graph
is much larger than the standard deviation of adjacency eigenvalues, then the Laplacian

energy of a graph should be larger than its energy, as conjectured. Therefore, further
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counterexamples for the conjectured inequality F(G) < LE(G) should be sought among

graphs for which the value 3°; d? — % is rather small, or, in other words, among graphs

that are almost regular. This is a common feature of all counterexamples presented

here, and it was a starting point in our search for the structure of the infinite set of

counterexamples using the system newGRAPH [23].
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