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Abstract

A quadruplet of RS-stereoisomers appearing in a stereoisogram is categorized
into either one of five types by means of chirality, RS-stereogenicity, and sclerality,
i.e., Type I (chiral/RS-stereogenic/ascleral), Type II (chiral/RS-astereogenic/scleral),
Type III (chiral/RS-stereogenic/scleral), Type IV (achiral/RS-astereogenic/ascleral),
and Type V (achiral/RS-stereogenic/scleral). Each quadruplet is considered to be
an entity to be counted just once, where the entity can be regarded as an equiv-
alence class under the corresponding RS-stereoisomeric group G (e.g., T

dσ̃Î
for a

quadruplet of tetrahedral promolecules). To accomplish itemized enumeration of
such quadruplets, three modes of action of G are discussed by considering three
subgroups of index 2, i.e., the maximum point subgroup GCσ, the maximum RS-
permutation group GCσ̃, and the maximum ligand-inversion group G

CÎ
(e.g., Td,

Tσ̃, or T
Î

for a quadruplet of tetrahedral promolecules). Such a quadruplet consists
of two E-pairs, each of which is defined as a pair of enantiomers (chiral promolecules)
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or a pair of self-enantiomers (an achiral promolecule); it consists of two D-pairs, each
of which is defined as a pair of RS-diastereomers (RS-stereogenic promolecules) or
a pair of self-RS-diastereomers (an RS-astereogenic promolecule); and it consists of
two H-pairs, each of which is defined as a pair of holantimers (scleral promolecules)
or a pair of self-holantimers (an ascleral promolecule). The two E-pairs, D-pairs,
or H-pairs contained in each quadruplet are considered to construct an equivalence
class of G and also an equivalence class of GCσ, GCσ̃, or G

CÎ
. Thereby, such equiv-

alence classes are enumerated under G and GCσ (or GCσ̃ or G
CÎ

) to give partially
itemized generating functions, where the number of the equivalence classes can be
regarded as the number of quadruplets to be counted. The results of the enumera-
tions by means of E-pairs, D-pairs, and H-pairs are combined to accomplish itemized
enumeration with respect to Types I–V. Pólya’s theorem is discussed as a special
case of the present approach.

1 Introduction

The dichotomy between enantiomers and “diastereomers” has been one of the fundamental
concepts in stereochemistry [1, 2] . The dichotomy has been adopted in most textbooks on
organic stereochemistry [3 –5] and on organic chemistry [6 –10] , although there appeared
some confusion caused by a verbal transmutation of the term “diastereomers”, as indicated
from a chemical philological point of view [11] .

enantio-
mers

RS-diastereo-
mers

holanti-
mers

RS-stereoisomers

others

enantiomers diastereomers (others)

stereoisomers

Figure 1: Conventional terminology vs. the present terminology for stereoisomerism. A
broken-lined box represents a term of the conventional terminology, while a solid-lined
box represents a term of the present terminology.

The term “diastereomers” connotes various kinds of stereoisomers, because it represents
“others” derived from a set of stereoisomers minus pairs of enantiomers, as shown by
broken-lined boxes in Fig. 1. Obviously, the term “diastereomers” suffers from diverse
connotation just as the term “nonnatives” coming from the dichotomy between natives
and nonnatives indefinitely refers to all people other than natives. In other words from a
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mathematical point of view, such diastereomers as specified by the conventional definition
cannot be categorized into an equivalence class, whereas a set of stereoisomers is an
equivalence class and a pair of enantiomers is an equivalence class.

The indefiniteness of the term “diastereomers” has provided organic chemists with at
least two serious confusions: a confusion over chirality and stereogenicity (Confusion 1)
in the history of the CIP (Cahn, Ingold and Prelog) system [12 –14] and a confusion over
prochirality and prostereogenicity (Confusion 2) in generating pro-R/pro-S-descriptors
[15, 16] .

To avoid these confusions, we have developed the concept of RS-stereoisomers by
means of newly-defined RS-stereoisomeric groups [17, 18] and alternatively by means of
newly-defined stereoisograms [19 –21] . The new concept RS-stereoisomers is an inter-
mediate concept to bridge the gap between stereoisomers and enantiomers, as shown by
solid-lined boxes in Fig. 1. Thereby, Confusion 1 and difficulties of pseudoasymmetry as-
sociated closely with Confusion 1 have been avoided on a rational basis [20] . In addition,
Confusion 2 over prochirality has also been avoided completely [22] .

One of the important features derived from the concept of RS-stereoisomers is the
fact that a set of RS-stereoisomers appearing in a stereoisogram can be characterized as
an equivalence class if a stereo-skeleton (e.g., a tetrahedral stereo-skeleton) is given to
derive the RS-stereoisomers. This feature enables us to count sets of RS-stereoisomers
one by one under the action of an RS-stereoisomeric group of the stereo-skeleton. This
is parallel to the fact that pairs of enantiomers can be counted one by one under the
action of a point group of the stereo-skeleton. Although we have reported an article
entitled “Combinatorial Enumeration of RS-Stereoisomers Itemized by Chirality, RS-
Stereogenicity, and Sclerality” in this journal [23] , the treatment did not directly use such
equivalence classes under the action of RS-stereoisomeric groups but instead it employed
equivalence classes under the actions of point groups, RS-permutation groups, and ligand-
inversion groups distinctly. Hence, it is desirable to investigate the direct action of RS-
stereoisomeric groups in order to comprehend the interaction of the groups related to
RS-stereoisomeric groups.

As found in the preceding paragraphs, the aim of the present article is to count sets of
RS-stereoisomers under the direct action of an RS-stereoisomeric group, where the direct
action will be examined in comparison with the actions of its subgroups of index 2 i.e., the
maximum point subgroup, the maximum RS-permutation subgroup, and the maximum
ligand-inversion subgroup. The results are then compared with those by Pólya’s theorem,
which will be derived as a special case of the present approach.
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2 RS-Stereoisomeric Groups

2.1 Quarter Cosets and Five Types of RS-Stereoisomers

In the previous paper reported in this journal [23] , we have defined an RS-stereoisomeric
group (G) which governs a set of substitution positions of a given stereo-skeleton as
follows:

G = GC + σGC + σ̃GC + ÎGC . (1)

Although the detailed formulation on G should not be repeated, a brief introduction of
its minimum essences is desirable to keep the present paper self-contained.

The group GC appearing in eq. 1 corresponds to the maximum chiral subgroup of the
point group. The element σ (∈ σGC) corresponds to a rotoreflection of the point group so
that the coset σGC contains relevant rotoreflections. The element σ̃ (∈ σ̃GC) corresponds
to a permutation σ but does not provide the reflection of ligands so that the coset σ̃GC

contains relevant permutations. The element Î (∈ ÎGC) represents an operation which
provides the reflection of ligands, but does not the reflection of the skeleton, so that the
coset ÎGC contains relevant ligand-inversion operations.

The RS-stereoisomeric group G is divided into quarter cosets as shown in eq. 1.
Because the group GC is a normal subgroup of G, the set of quarter cosets, i.e.,

G/GC = {GC , σGC , σ̃GC , ÎGC}, (2)

can be regarded as a factor group. This remarkable feature of the group G has been
applied to prove the existence of five types of RS-stereoisomers, which are characterized
by means of the five subgroups of the factor group G/GC [18] :

Type I: {GC , ÎGC} (3)

Type II: {GC , σ̃GC} (4)

Type III: {GC} (5)

Type IV: {GC , σGC , σ̃GC , ÎGC} (6)

Type V: {GC , σGC}. (7)

The five types have been visualized by means of stereoisograms (e.g., Fig. 2) [19, 20] .
Each of the stereoisograms contains four RS-stereoisomers corresponding to the quarter
cosets, where the boldfaced letters A and A (or B and B) represent a pair of enantiomers.

In Fig. 2, we use the following symbols for representing relationships which are con-
tained in stereoisograms:
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�
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A
�
 �
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Figure 2: Stereoisograms for representing RS-stereoisomers of five types [20] . The sym-
bols A and A (or B and B) represent a pair of enantiomers. Each stereoisogram consists
of a quadruplet of RS-stereoisomers, which may coalesce with one another according
to either one of the five RS-stereoisomeric types. As one extreme case, the four RS-
stereoisomers of a Type-III stereoisogram are different (i.e., A, A, B and B). The other
extreme case is a Type-IV stereoisogram, which consists of a degenerate RS-stereoisomer
(i.e., A).
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symbol relationship [24] attribute [24]
�
 �� enantiomeric chiral�� (self-enantiomeric) achiral
�
 � RS-diastereomeric RS-stereogenic� (self-RS-diastereomeric) RS-astereogenic
�
 � holantimeric scleral� (self-holantimeric) ascleral

It should be noted that the symbol ( �� ) represents a “self-enantiomeric” relationship,
which is designated simply as being achiral in stereochemical convention. The symbol
( �� ) in the Type-V stereoisogram shown in Fig. 2 is in agreement with the subgroup
{GC , σGC} (eq. 7) for Type V. The symbol ( � ) represents a “self-RS-diastereomeric”
relationship, which is designated as being RS-astereogenic if we emphasize the symmet-
rical nature of a relevant promolecule in the present terminology. The symbol ( � ) in
the Type-II stereoisogram shown in Fig. 2 is in agreement with the subgroup {GC , σ̃GC}
(eq. 4) for Type II. The symbol ( � ) representing a “self-holantimeric” relationship
indicates that the Type-I stereoisogram shown in Fig. 2 is in agreement with the subgroup
{GC , ÎGC} (eq. 3) for Type I.

The set of four RS-stereoisomers contained in each stereoisogram (Fig. 2) is referred
to as a quadruplet, whether the four are different or superposable according to its RS-
stereoisomeric type (Type I, . . ., or Type V). Such a quadruplet of RS-stereoisomers is
regarded as an equivalence class under the action of the RS-stereoisomeric group G, so
that the quadruplet is counted just once during enumeration under G.

Throughout the present article, a tetrahedral stereo-skeleton belonging to the point
group Td is adopted as a typical example to generate derivatives of Types I–V. By start-
ing from the point group Td for treating a tetrahedral skeleton, the corresponding RS-
stereoisomeric group (Tdσ̃Î) has been discussed in previous articles [17, 19, 25] .

Tdσ̃Î = T + σT + σ̃T + ÎT (8)

= {I, C2(1), C2(2), C2(3), C3(1), C3(3), C3(2), C3(4), C
2
3(1), C

2
3(4), C

2
3(3), C

2
3(2);

σd(1), S4(3), S
3
4(3), σd(6), σd(2), σd(4), S4(1), S

3
4(1), σd(3), S

3
4(2), σd(5), S4(2);

σ̃d(1), S̃4(3), S̃
3
4(3), σ̃d(6), σ̃d(2), σ̃d(4), S̃4(1), S̃

3
4(1), σ̃d(3), S̃

3
4(2), σ̃d(5), S̃4(2);

Î , Ĉ2(1), Ĉ2(2), Ĉ2(3), Ĉ3(1), Ĉ3(3), Ĉ3(2), Ĉ3(4), Ĉ
2
3(1), Ĉ

2
3(4), Ĉ

2
3(3), Ĉ

2
3(2)} (9)
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= {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2);

(1)(2 3)(4), (1 2 4 3), (1 3 4 2), (1 4)(2)(3), (1)(2)(3 4), (1 2)(3)(4),

(1 3 2 4), (1 4 2 3), (1)(2 4)(3), (1 2 3 4), (1 3)(2)(4), (1 4 3 2);

(1)(2 3)(4), (1 2 4 3), (1 3 4 2), (1 4)(2)(3), (1)(2)(3 4), (1 2)(3)(4),

(1 3 2 4), (1 4 2 3), (1)(2 4)(3), (1 2 3 4), (1 3)(2)(4), (1 4 3 2);

(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2)} (10)

2.2 Action of RS-Stereoisomeric Groups

2.2.1 Cycle Indices of RS-Stereoisomeric Groups

As an extension of enumerations under point groups (e.g., Fujita’s USCI (unit-subduced-
cycle-index) approach [26 –29] and Fujita’s proligand method [30 –32] ), we shall con-
sider cases in which a given skeleton has n substitution positions governed by an RS-
stereoisomeric group G.

Suppose that the action of an element P of G on the skeleton is represented as a
product of d-cycles (d = 1, 2, . . . , n), where the number of the d-cycles is equal to νd(P ).
On the same line as Fujita’s proligand method [30 –32] , the number of promolecules
as RS-stereoisomers can be counted by using the following cycle index with chirality
fittingness (CI-CF):

CI-CF(G; $d, bd)

=
1

|G|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

+
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (11)

where the sphericity index (SI) ad (for $d) is assigned to a d-cycle appearing in the P of
σGC or ĨGC if d is odd; the SI cd (for $d) is assigned to a d-cycle appearing in the P of
σGC or ÎGC if d is even; and the SI bd is assigned to a d-cycle appearing in the P of GC

or σ̃GC whether d is odd or even. Note that, during enumeration processes under eq. 11,
each quadruplet which constructs a single stereoisogram is regarded as one entity which
is counted just once. Thus, in one extreme case (Type IV shown in Fig. 2), a degenerate
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promolecule A is counted just once as one quadruplet; and, in the other extreme cases
(Type III shown in Fig. 2), the set of four promolecules (A, A, B, and B) is counted just
once as another quadruplet.

Suppose that the n substitution positions in the skeleton of G-symmetry accommodate
n proligands selected from the following warehouse:

X = {X1, X2, . . . , Xm; p1, p2, . . . , pm′ ; p1, p2, . . . pm′}, (12)

where X1, X2, etc. represent achiral proligands; p1, p2, etc. represent chiral proligands;
p1, p2, etc. represent chiral proligands of opposite chirality; and m and m′ represent non-
negative integers. The selection of such substituents produces an isomer having θ1 of X1,
θ2 of X2, · · · θm of Xm; θ′1 of p1, θ′2 of p2, · · · θ′m′ of pm′ ; θ′′1 of p1, θ′′2 of p2, · · · θ′′m′ of pm′ ,
where these numbers satisfy the following partition:

[θ] = θ1 + θ2 + · · · + θm

+ θ′1 + θ′2 + · · · + θ′m′

+ θ′′1 + θ′′2 + · · · + θ′′m′ = n. (13)

Then, each proligand is characterized by a molecular formula represented as follows:

Wθ = Xθ1
1 Xθ2

2 · · ·Xθm
m pθ′1

1 pθ′2
2 · · · pθ′

m′
m′ p

θ′′1
1 p

θ′′2
2 · · · pθ′′

m′
m′ . (14)

Let the symbol Nθ denote the number of such isomers (quadruplets) as having the molec-
ular formula Wθ, where each quadruplet of RS-stereoisomers is counted just once. By
using the CI-CF (eq. 11), Theorem 1 of Ref. [30] (or equivalently Theorem 2 of Ref. [32]
) can be applied to this case so as to give the following theorem:

Theorem 1 Suppose that the n substitution positions in the skeleton governed by the
RS-stereoisomeric group G accommodate n proligands selected from the warehouse (eq.
12) so as to give quadruplets of RS-stereoisomers. Then, the number Nθ of quadruplets
having the formula Wθ (eq. 14) is calculated by means of the CI-CF (eq. 11) so as to give
the following generating function:

∑

[θ]

NθWθ = CI-CF(G; $d, bd), (15)

where the summation is concerned with the partitions represented by [θ] (eq. 13) and the
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SIs are replaced by the following ligand inventories:

ad = Xd
1 + Xd

2 + · · · + Xd
m (16)

cd = Xd
1 + Xd

2 + · · · + Xd
m + 2pd/2

1 p
d/2
1 + 2pd/2

2 p
d/2
2 + · · · + 2pd/2

m′ p
d/2
m′ (17)

bd = Xd
1 + Xd

2 + · · · + Xd
m + pd

1 + pd
2 + · · · + pd

m′ + pd
1 + pd

2 + · · · + pd
m′ . (18)

It should be noted that the three modes of proligand packing due to sphericities are
effective through the SIs for this case of RS-stereoisomeric groups on the same line as the
case of point groups [30, 32] .

To exemplify the usefulness of the present approach, let us count methane derivatives
by using eq. 15 and the relevant equations. The RS-stereoisomeric group Tdσ̃Î for counting
methane derivatives (eq. 10) has 48 permutation operations, where the cycle structure of
each operation is used by following eq. 11. Thereby, we obtain the following CI-CFs:

CI-CF(Tdσ̃Î ; $d, bd) =
1

48

{

b4
1 + 3b2

2 + 8b1b3 + 6a2
1c2 + 6c4

+ 6b2
1b2 + 6b4 + a4

1 + 3c2
2 + 8a1a3

}

. (19)

According to eq. 12, we take account of the following warehouse for methane derivatives:

X = {A, B, X, Y; p, q, r, s; p, q, r, s}, (20)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p, q/q,
r/r, and s/s represent pairs of enantiomeric proligands. Thereby, eqs. 16–18 for counting
methane derivatives are obtained as follows:

ad = Ad + Bd + Xd + Yd (21)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 (22)

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd. (23)

The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 19) and the
resulting equation is expanded so as to give the corresponding generating function for
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RS-astereogenic RS-stereogenic

A

BY
X

1 (C1, I)

p

pq
q

2 (C1, I)

chiral

p

pp
p

3 (T, II)

p

AA
A

4 (C3, II)

A

pp
p

5 (C3, II)

q

pp
p

6 (C3, II)

p

pp
p

7 (C3, II)

A

Ap
p

8 (C2, II)

p

pq
q

9 (C2, II)

A

Ap
B

10 (C1, II)

A

Aq
p

11 (C1, II)

A

Bp
p

12 (C1, II)

A

pp
p

13 (C1, II)

A

qp
p

14 (C1, II)

p

pq
p

15 (C1, II)

p

pq
q

16 (C1, II)

p

pr
q

17 (C1, II)

A

Bp
X

18 (C1, III)

A

Bq
p

19 (C1, III)
A

qp
p

20 (C1, III)

A

rq
p

21 (C1, III)
p

pr
q

22 (C1, III)

p

qs
r

23 (C1, III)

achiral

A

AA
A

24 (Td , IV)

B

AA
A

25 (C3v, IV)

A

AB
B

26 (C2v, IV)

p

pp
p

27 (S4, IV)

B

XA
A

28 (Cs, IV)

A

Ap
p

29 (Cs, IV)

A

Bp
p

30 (Cs, V)

Figure 3: Quadruplets of RS-Stereoisomers (Types I to V) for tetrahedral molecules. The
symbols A, B, C, and D represent atoms or achiral ligands. The symbols p, q, r, and s
represents chiral ligands, while each symbol with an overbar represents the correspond-
ing chiral ligand with the opposite chirality. An arbitrary promolecule is depicted as a
representative of each quadruplet of RS-stereoisomers (e.g., A in Fig. 2).
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counting promolecules:

f [T] = ABXY + [ppqq + · · · ]
+ [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]
+ [ABpp + · · · ]
+

1

2
[(A3p + A3p) + · · · ] +

1

2
[(A2Bp + A2Bp) + · · · ]

+
1

2
[(A2p2 + A2p2) + · · · ] +

1

2
[(A2pq + A2pq) + · · · ]

+
1

2
[(ABp2 + ABp2) + · · · ]

+
1

2
[(Ap2p + Ap2p) + · · · ] +

1

2
[(Ap3 + Ap3) + · · · ] +

1

2
[(Ap2q + Ap2q) + · · · ]

+
1

2
[(p4 + p4) + · · · ] +

1

2
[(p3p + p3p) + · · · ]

+
1

2
[(p3q + p3q) + · · · ] +

1

2
[(p2pq + p2pq) + · · · ]

+
1

2
[(p2q2 + p2q2) + · · · ] +

1

2
[(p2qq + p2qq) + · · · ]

+
1

2
[(p2qr + p2qr) + · · · ]

+
1

2
[(ABXp + ABXp) + · · · ] +

1

2
[(ABpq + ABpq) + · · · ]

+
1

2
[(Appq + Appq) + · · · ] +

1

2
[(Apqr + Apqr) + · · · ]

+
1

2
[(ppqr + ppqr) + · · · ] +

1

2
[(pqrs + pqrs) + · · · ] (24)

The results are depicted in Fig. 3, where the categorization into five types is shown
for the sake of convenience, although eq. 24 itself involves no such categorization. In
Fig. 3, an arbitrary representative is selected from each quadruplet of RS-stereoisomers.
For example, an entity 18 of Type III is a representative A selected from A, A, B,
and B, which are shown in the Type-III stereoisogram (Fig. 2). Note that the four RS-
stereoisomers (A, A, B, and B) is conceptually recognized to become degenerate into
a single entity (counted as one quadruplet) under the action of the RS-stereoisomeric
group Tdσ̃Î . Because the present approach differentiates between a chiral proligand and
its enantiomeric proligand, a quadruplet of RS-stereoisomers is represented by the term
1
2
(ABXp+ABXp), where the participation of two RS-diastereomers for ABXp (or ABXp)

is not explicitly described. Note that the formulas of the two RS-diastereomers are
identical with ABXp (or ABXp), while the formulas of the two enantiomers are different
to be ABXp and ABXp. As a result, the number of such an entity is calculated as the
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coefficient 1 appearing in the term 1× 1
2
(ABXp+ABXp), where the coefficient 1 is omitted

for the sake of simplicity, as found in eq. 24.

3 Effects of Subgroups of Index 2

The RS-stereoisomeric group (G) contains three subgroups of index 2, which correspond
to the three subgroups of the factor group G/GC (eqs. 3, 4, and 7). This section is
devoted to discuss effects of such subgroups of index 2.

3.1 Simultaneous Action of an RS-Stereoisomeric Group and its

Maximum Point Subgroup

One of the three subgroups of index 2 contained in the RS-stereoisomeric group (G) is
the maximum point-subgroup represented as follows:

GCσ = GC + σGC , (25)

which is concerned with chirality/achirality. The index 2 of the group GCσ is represented
by the following coset decomposition:

G = GCσ + σ̃GCσ, (26)

where we have |G|/|GCσ| = 2.
Under the the action of the point group GCσ, each pair of enantiomeric promolecules

or each achiral promolecule is counted just once. In agreement of this feature, let us
encircle the two promolecules of each enantiomeric or self-enantiomeric pair appearing
in Fig. 2. Thereby, we obtain Fig. 4, where each enantiomeric pair (e.g., A �
 �� A) or
each self-enantiomeric pair (e.g., A �� A) in a stereoisogram is regarded as an entity
to be taken into consideration. It should be noted that such a self-enantiomeric pair as
A �� A is conceptually derived by putting A = A in the enantiomeric pair A �
 �� A.
In order to clarify our standpoint of enumeration (cf. Fig. 4), let us refer to the entity
(i.e., the pair of two enantiomeric or self-enantiomeric promolecules) as an E-pair. In
this treatment, an E-pair for a pair two enantiomeric promolecules is regarded as being
chiral, while an E-pair for a pair of self-enantiomeric promolecules (a hypothetical pair)
is regarded as being achiral.

Our present target is to count inequivalent E-pairs under the action of the point group
GCσ and of the RS-stereoisomeric group G:

Self-RS-diastereomeric and/or Self-Holantimeric E-Pairs—Types I, II, and IV
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Figure 4: Stereoisograms of five types, each of which contains two chiral or achiral E-
pairs encircled by oval boxes. Two E-pairs contained in a stereoisogram of Type I, II, or
IV are self-RS-diastereomeric and/or self-holantimeric, while two E-pairs contained in a
stereoisogram of Type III or V are RS-diastereomeric and holantimeric.
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The two chiral E-pairs of the Type-I stereoisogram (Fig. 4) are identical with each
other in isolation [33] . After incorporated in the Type I stereoisogram, they are
superposable under the action of G, although they are not superposable under the
action of GCσ. Because the two E-pairs coincide with each other by the operations
of GCÎ , the set of the two chiral E-pairs (as an entity) can be referred to as being
self-holantimeric. As a result, the two chiral E-pairs become degenerate to give a
single entity which is counted just once under GCσ as well as under G [34] .

The two chiral E-pairs of the Type-II stereoisogram (Fig. 4) are also identical with
each other in isolation [33] . They are superposable under the action of G, although
they are not superposable under the action of GCσ. The set of the two chiral E-
pairs can be referred to as being self-RS-diastereomeric. As a result, the two chiral
E-pairs construct an entity to be counted just once under GCσ as well as under G.

The two achiral E-pairs of the Type-IV stereoisogram (Fig. 4) are also identical
with each other in isolation [33] . They are superposable under the action of G,
just as they are superposable under the action of GCσ. The set of the two achiral
E-pairs can be referred to as being self-RS-diastereomeric and self-holantimeric. As
a result, the two achiral E-pairs become degenerate to give an entity to be counted
just once under GCσ as well as under G.

RS-Diastereomeric and Holantimeric E-Pairs—Types III and V The two chiral
E-pairs of the Type-III stereoisogram (Fig. 4) are not superposable under the action
of GCσ. The two achiral E-pairs of the Type-V stereoisogram (Fig. 4) are not
superposable under the action of GCσ. Both the set of the two chiral E-pairs (Type
III) and the set of the two achiral E-pairs (Type V) can be referred to as being RS-
diastereomeric and holantimeric. Because the two E-pairs of Type III (or of Type
V) exhibit no degeneration, they give two entities to be counted separately under
GCσ. Under the action of G, on the other hand, they are regarded as constructing
a quadruplet which is counted just once .

According to the behavior shown in Fig. 4, the number of the E-pairs under GCσ is
obtained by means of the following CI-CF:

CI-CF(GCσ; $d, bd)

=
1

|GCσ|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

}

, (27)

where each E-pair is counted just once. This means that a quadruplet of a Type-I, -II,
or -IV stereoisogram contributes the number of E-pairs by one, while a quadruplet of a
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Type-III or -V stereoisogram contributes the number of E-pairs by two.
By an analogy of GC vs. GCσ (index 2), the index 2 for GCσ vs. G indicates that

the number of self-RS-diastereomeric and/or self-holantimeric E-pairs (i.e., the number
of quadruplets of Type-I, -II, and -IV) can be calculated by means of following CI-CF:

CI-CF[I/II/IV](G; $d, bd)

= 2CI-CF(G; $d, bd) − CI-CF(GCσ; $d, bd)

=
2

|G|

⎧

⎨

⎩

∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (28)

which is obtained by collecting the SIs for the elements contained in the coset σ̃GCσ of eq.
26. The derivation of eq. 28 is alternatively rationalized as follows: The CI-CF(G; $d, bd)

(eq. 11) counts each quadruplet just once, so that the resulting number is the sum of the
number (NE) of self-RS-diastereomeric and/or self-holantimeric E-pairs (i.e., the number
of quadruplets of Type I, II, and IV) plus the number (N ′

E) of RS-diastereomeric and
holantimeric E-pairs (i.e., the number of quadruplets of Type III and V). On the other
hand, the CI-CF(GCσ; $d, bd) (eq. 27) counts each self-RS-diastereomeric and/or self-
holantimeric E-pair (i.e., each quadruplet of Type I, II, and IV) just once (NE), while it
counts two E-pairs separately for a quadruplet of Type III and V (2N ′

E). It follows that
we can put 2(NE + N ′

E) − (NE + 2N ′
E) = NE, which is the number to be obtained (eq.

28).
The number (N ′

E) of RS-diastereomeric and holantimeric E-pairs (i.e., the number of
quadruplets of Type III and V) is calculated by the following CI-CF:

CI-CF[III/V](G; $d, bd)

= CI-CF(GCσ; $d, bd) − CI-CF(G; $d, bd)

=
1

|G|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

−
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n −
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (29)

because we can put (NE + 2N ′
E) − (NE + N ′

E) = N ′
E. Obviously, eq. 29 is obtained by

changing the signs of the elements corresponding to the coset σ̃GCσ (eq. 26, i.e., σ̃GC +
ÎGC) which appears in eq. 11.

Let us use the warehouse (eq. 12), the partition (eq. 13), and the molecular formula
(eq. 14). Let the symbol N

[τ ]
θ (τ = I, II, . . ., V or their combination) denote the number of
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such isomers as having the molecular formula Wθ, where each quadruplet contained in a
stereoisomer is counted just once. By using one of the CI-CFs (eqs. 28 and 29), Theorem
1 of Ref. [30] (or equivalently Theorem 2 of Ref. [32] ) can be applied to this case so as
to give the following generating function:

∑

[θ]

N
[τ ]
θ Wθ = CI-CF[τ ](G; $d, bd), (30)

where τ = I/II/IV or III/V; the summation is concerned with the partitions represented
by [θ] (eq. 13); and the SIs are replaced by the ligand inventories shown in eqs. 16–18.
It should be noted that three modes of proligand packing are effective for this case of
RS-stereoisomeric groups on the same line as the case of point groups [30, 32] .

The maximum point group (Td) of the RS-stereoisomeric group Tdσ̃Î (eq. 10) has the
following 24 permutation operations:

Td = T + σT (31)

= {I, C2(1), C2(2), C2(3), C3(1), C3(3), C3(2), C3(4), C
2
3(1), C

2
3(4), C

2
3(3), C

2
3(2);

σd(1), S4(3), S
3
4(3), σd(6), σd(2), σd(4), S4(1), S

3
4(1), σd(3), S

3
4(2), σd(5), S4(2)} (32)

= {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2);

(1)(2 3)(4), (1 2 4 3), (1 3 4 2), (1 4)(2)(3), (1)(2)(3 4), (1 2)(3)(4),

(1 3 2 4), (1 4 2 3), (1)(2 4)(3), (1 2 3 4), (1 3)(2)(4), (1 4 3 2)}. (33)

According to eq. 26, we obtain the following coset decomposition:

Tdσ̃Î = Td + σ̃Td, (34)

where we have |Tdσ̃Î |/|Td| = 2.
By collecting the SIs for the elements contained in the coset σ̃Td of eq. 34, eq. 28 for

this case gives the following CI-CF:

CI-CF[I/II/IV](Tdσ̃Î ; $d, bd) =
1

24

(

a4
1 + 3c2

2 + 8a1a3 + 6b2
1b2 + 6b4

)

. (35)

We change the signs of the elements corresponding to the coset σ̃Td (eq. 34, i.e., σ̃T +
ÎT) which appears in eq. 19. Thereby, eq. 29 for this case gives the following CI-CF:

CI-CF[III/V](Tdσ̃Î ; $d, bd) =
1

48

(

b4
1 + 3b2

2 + 8b1b3 + 6a2
1c2 + 6c4

− 6b2
1b2 − 6b4 − a4

1 − 3c2
2 − 8a1a3

)

. (36)
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Let us use the warehouse for methane derivatives (eq. 20) and the ligand inventories
(eqs. 21–23). Suppose that the right-hand side of eq. 30 is replaced by eq. 35 or eq. 36
and that the left-hand side is regarded as N

[I/II/IV]
θ or N

(III/V)
θ .

The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 35). The ex-
pansion of the resulting equation gives the corresponding generating function for counting
quadruplets:

f [I/II/IV] = ABXY + [ppqq + · · · ]
+ [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]
+

1

2
[(A3p + A3p) + · · · ] +

1

2
[(A2Bp + A2Bp) + · · · ]

+
1

2
[(A2p2 + A2p2) + · · · ] +

1

2
[(A2pq + A2pq) + · · · ]

+
1

2
[(ABp2 + ABp2) + · · · ]

+
1

2
[(Ap2p + Ap2p) + · · · ] +

1

2
[(Ap3 + Ap3) + · · · ] +

1

2
[(Ap2q + Ap2q) + · · · ]

+
1

2
[(p4 + p4) + · · · ] +

1

2
[(p3p + p3p) + · · · ]

+
1

2
[(p3q + p3q) + · · · ] +

1

2
[(p2pq + p2pq) + · · · ]

+
1

2
[(p2q2 + p2q2) + · · · ] +

1

2
[(p2qq + p2qq) + · · · ]

+
1

2
[(p2qr + p2qr) + · · · ]

(37)

where each coefficient represents the number N
[I/II/IV]
θ , to which each quadruplet corre-

sponding to a stereoisogram contributes by one.
The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 36) and the

resulting equation is expanded so as to give the corresponding generating function for
counting quadruplets:

f [III/V] = [ABpp + · · · ]
+

1

2
[(ABXp + ABXp) + · · · ] +

1

2
[(ABpq + ABpq) + · · · ]

+
1

2
[(Appq + Appq) + · · · ] +

1

2
[(Apqr + Apqr) + · · · ]

+
1

2
[(ppqr + ppqr) + · · · ] +

1

2
[(pqrs + pqrs) + · · · ] (38)

where each coefficient represents the number N
[III/V]
θ , to which each quadruplet corre-
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sponding to a stereoisogram contributes by one. The categorization according to eqs. 37
and 38 is in agreement with Fig. 3.

3.2 Simultaneous Action of an RS-Stereoisomeric Group and its

Maximum RS-Permutation Subgroup

As another subgroup of index 2 contained in the RS-stereoisomeric group (G), we then
examine the maximum RS-permutation subgroup:

GCσ̃ = GC + σ̃GC (39)

for representing RS-stereogenic/RS-astereogenic. The index 2 of the group GCσ̃ is rep-
resented by the following coset decomposition:

G = GCσ̃ + σGCσ̃, (40)

where we have |G|/|GCσ̃| = 2. Under the the action of the maximum RS-permutation
subgroup GCσ̃, each pair of RS-diastereomeric promolecules or each RS-astereogenic
promolecule is counted just once.

Let us encircle each RS-diastereomeric or self-RS-diastereomeric pair appearing in
Fig. 2. Thereby, we obtain Fig. 5, where each RS-diastereomeric (e.g., A �
 � A or
A �
 � B) or self-RS-diastereomeric pair (e.g., A � A) is explicitly indicated. Note
that each RS-diastereomeric pair or each self-RS-diastereomeric one is an entity which
belongs to the maximum RS-permutation subgroup GCσ̃ or its subgroup. As an analogy
to the term E-pair, let us refer to a pair of two RS-diastereomeric promolecules and a
self-RS-diastereomeric promolecule under the names of an RS-stereogenic D-pair and an
RS-astereogenic D-pair, respectively.

Our target is to count inequivalent D-pairs under the action of the RS-permutation
group GCσ̃ and of the RS-stereoisomeric group G:

Self-Enantiomeric and/or Self-Holantimeric D-Pairs—Types I, IV, and V The
two D-pairs of the Type-I stereoisogram (Fig. 5) are identical with each other in
isolation. After the two D-pairs are incorporated into a stereoisogram, they are su-
perposable under the action of G, while they are not superposable under the action
of GCσ̃. The set of the two D-pairs can be referred to as being self-holantimeric. As
a result, the two D-pairs become degenerate to construct an entity to be counted
just once under GCσ̃ as well as under G.

The two RS-astereogenic D-pairs of the Type-IV stereoisogram (Fig. 5) are also
identical with each other in isolation. After incorporation in a stereoisogram, they
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Figure 5: Stereoisograms of five types, each of which contains two RS-stereogenic or RS-
astereogenic D-pairs encircled by oval boxes. Two D-pairs contained in a stereoisogram
of Type I, IV, or V are self-enantiomeric and/or self-holantimeric, while two D-pairs
contained in a stereoisogram of Type II or III are enantiomeric and holantimeric.
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are superposable under the action of G, just as they are superposable under the
action of GCσ̃. The set of the RS-astereogenic D-pairs can be referred to as being
self-enantiomeric and self-holantimeric. It follows that the two RS-astereogenic D-
pairs construct an entity to be counted just once under GCσ̃ as well as under G.

The two RS-stereogenic D-pairs of the Type-V stereoisogram (Fig. 5) are identical
with each other in isolation. They are superposable under the action of G, although
they are not superposable under the action of GCσ̃. Hence, the set of the two D-
pairs can be referred to as being self-enantiomeric. The two D-pairs construct an
entity to be counted just once under GCσ̃ as well as under G.

Enantiomeric and Holantimeric D-Pairs—Types II and III The two RS-stereoge-
nic D-pairs of the Type-III stereoisogram (Fig. 5) are not superposable under the
action of GCσ̃. The two RS-astereogenic D-pairs of the Type-II stereoisogram (Fig.
5) are not superposable under the action of GCσ̃. Both the set of the two RS-
stereogenic D-pairs (Type III) and the set of the two RS-astereogenic D-pairs (Type
II) can be referred to as being enantiomeric and holantimeric. Because the two D-
pairs of Type III (or of Type II) exhibit no degeneration, they give two entities to
be counted separately under GCσ̃. Under the action of G, on the other hand, they
are regarded as constructing a quadruplet which is counted just once .

According to the behavior shown in Fig. 5, the number of the D-pairs under GCσ̃ is
obtained by means of the following CI-CF:

CI-CF(GCσ̃; bd)

=
1

|GCσ̃|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n

}

, (41)

where each D-pair is counted just once. This means that a quadruplet of a Type-I, -IV,
or -V stereoisogram contributes the number of D-pairs by one, while a quadruplet of a
Type-II or -III stereoisogram contributes the number of D-pairs by two.

By an analogy of GC vs. GCσ (index 2) and GCσ vs. G (index 2), the index 2 for
GCσ̃ vs. G indicates that the number of self-enantiomeric and/or self-holantimeric D-pairs
(i.e., the number of quadruplets of Type-I, -IV, and -V) can be calculated by means of
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following CI-CF:

CI-CF[I/IV/V](G; $d, bd)

= 2CI-CF(G; $d, bd) − CI-CF(GCσ̃; bd)

=
2

|G|

⎧

⎨

⎩

∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n +
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (42)

which is obtained by collecting the SIs for the elements contained in the coset σGCσ̃ of
eq. 26.

In an analogous way to the derivation of eq. 28, the derivation of eq. 42 is ratio-
nalized as follows: The CI-CF(G; $d, bd) (eq. 11) counts each quadruplet just once, so
that the resulting number is the sum of the number (ND) of self-enantiomeric and/or
self-holantimeric D-pairs (i.e., the number of quadruplets of Type I, IV, and V) plus the
number (N ′

D) of enantiomeric and holantimeric D-pairs (i.e., the number of quadruplets
of Type II and III). On the other hand, the CI-CF(GCσ̃; $d, bd) (eq. 41) counts each self-
enantiomeric and/or self-holantimeric D-pair (i.e., each quadruplet of Type I, IV, and V)
just once (ND), while it counts two D-pairs separately for a quadruplet of Type II and III
(2N ′

D). It follows that we can put 2(ND +N ′
D)− (ND +2N ′

D) = ND, which is the number
to be obtained (eq. 42).

The number (N ′
D) of enantiomeric and holantimeric D-pairs (i.e., the number of

quadruplets of Type II and III) is calculated by the following CI-CF:

CI-CF[II/III](G; $d, bd)

= CI-CF(GCσ̃; bd) − CI-CF(G; $d, bd)

=
1

|G|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n −
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

+
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n −
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (43)

because we can put (ND + 2N ′
D) − (ND + N ′

D) = N ′
D. Obviously, eq. 43 is obtained by

changing the signs of the elements corresponding to the coset σGCσ̃ (eq. 26, i.e., σGC +
ÎGC) which appears in eq. 11.

Let us use the warehouse (eq. 12), the partition (eq. 13), and the molecular formula
(eq. 14). eq. 30 is effective for the simultaneous action of the RS-stereoisomeric group
and its maximum RS-permutation subgroup, where we put τ = I/IV/V or II/III and the
CI-CF in the right-hand side is replaced by eq. 42 or eq. 43.
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The maximum RS-permutation subgroup (Tσ̃) of the RS-stereoisomeric group Tdσ̃Î

(eq. 10) has the following 24 permutation operations:

Tσ̃ = T + σ̃T (44)

= {I, C2(1), C2(2), C2(3), C3(1), C3(3), C3(2), C3(4), C
2
3(1), C

2
3(4), C

2
3(3), C

2
3(2);

σ̃d(1), S̃4(3), S̃
3
4(3), σ̃d(6), σ̃d(2), σ̃d(4), S̃4(1), S̃

3
4(1), σ̃d(3), S̃

3
4(2), σ̃d(5), S̃4(2)} (45)

= {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2);

(1)(2 3)(4), (1 2 4 3), (1 3 4 2), (1 4)(2)(3), (1)(2)(3 4), (1 2)(3)(4),

(1 3 2 4), (1 4 2 3), (1)(2 4)(3), (1 2 3 4), (1 3)(2)(4), (1 4 3 2)}. (46)

According to eq. 40, we obtain the following coset decomposition:

Tdσ̃Î = Tσ̃ + σTσ̃, (47)

where we have |Tdσ̃Î |/|Tσ̃| = 2.
By collecting the SIs for the elements contained in the coset σTσ̃ of eq. 47, eq. 42 for

this case gives the following CI-CF:

CI-CF[I/IV/V](Tdσ̃Î ; $d, bd) =
1

24

(

6a2
1c2 + 6c4 + a4

1 + 3c2
2 + 8a1a3

)

. (48)

We change the signs of the elements corresponding to the coset σTσ̃ (eq. 47, i.e., σT

+ ÎT) which appears in eq. 19. Thereby, eq. 43 for this case gives the following CI-CF:

CI-CF[II/III](Tdσ̃Î ; $d, bd) =
1

48

(

b4
1 + 3b2

2 + 8b1b3 − 6a2
1c2 − 6c4

+ 6b2
1b2 + 6b4 − a4

1 − 3c2
2 − 8a1a3

)

. (49)

Let us use the warehouse for methane derivatives (eq. 20) and the ligand inventories
(eqs. 21–23). Suppose that the right-hand side of eq. 30 is replaced by eq. 48 or eq. 49
and that the left-hand side is regarded as N

[I/IV/V]
θ or N

[II/III]
θ .

The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 48). The ex-
pansion of the resulting equation gives the corresponding generating function for counting
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promolecules:

f [I/IV/V] = ABXY + [ppqq + · · · ]
+ [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]
+ [ABpp + · · · ], (50)

where each coefficient represents the number N
[I/IV/V]
θ , to which each quadruplet corre-

sponding to a stereoisogram contributes by one.
The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 49) and the

resulting equation is expanded so as to give the corresponding generating function for
counting promolecules:

f [II/III] =
1

2
[(A3p + A3p) + · · · ] +

1

2
[(A2Bp + A2Bp) + · · · ]

+
1

2
[(A2p2 + A2p2) + · · · ] +

1

2
[(A2pq + A2pq) + · · · ]

+
1

2
[(ABp2 + ABp2) + · · · ]

+
1

2
[(Ap2p + Ap2p) + · · · ] +

1

2
[(Ap3 + Ap3) + · · · ] +

1

2
[(Ap2q + Ap2q) + · · · ]

+
1

2
[(p4 + p4) + · · · ] +

1

2
[(p3p + p3p) + · · · ]

+
1

2
[(p3q + p3q) + · · · ] +

1

2
[(p2pq + p2pq) + · · · ]

+
1

2
[(p2q2 + p2q2) + · · · ] +

1

2
[(p2qq + p2qq) + · · · ]

+
1

2
[(p2qr + p2qr) + · · · ]

+
1

2
[(ABXp + ABXp) + · · · ] +

1

2
[(ABpq + ABpq) + · · · ]

+
1

2
[(Appq + Appq) + · · · ] +

1

2
[(Apqr + Apqr) + · · · ]

+
1

2
[(ppqr + ppqr) + · · · ] +

1

2
[(pqrs + pqrs) + · · · ], (51)

where each coefficient represents the number N
[II/III]
θ , to which each quadruplet corre-

sponding to a stereoisogram contributes by one. The categorization according to eqs. 50
and 51 is in agreement with Fig. 3.
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3.3 Simultaneous Action of an RS-Stereoisomeric Group and its

Maximum Ligand-Inversion Subgroup

As a further subgroup of index 2 contained in the RS-stereoisomeric group (G), we
examine the maximum ligand-inversion subgroup:

GCÎ = GC + ÎGC (52)

for representing sclerality/asclerality. The index 2 of the group GCÎ is represented by the
following coset decomposition:

G = GCÎ + σ̃GCÎ (53)

where we have |G|/|GCÎ | = 2.
Under the the action of the maximum ligand-inversion subgroup GCÎ , each pair of

holantimeric promolecules or each ascleral promolecule is counted just once. Let us en-
circle each holantimeric or self-holantimeric pair appearing in Fig. 2. Thereby, we obtain
Fig. 6, where each holantimeric (e.g., A �
 � B or A �
 � B) or self-holantimeric pair
(e.g., A � A or A � A) is explicitly indicated so that it is regarded as equivalent
so as to be counted just once under the action of the maximum inversion subgroup GCÎ .

As an analogy to the terms E-pair and D-pair, let us refer to such a pair of two
holantimeric or self-holantimeric promolecules as an H-pair. Thereby, such H-pairs can
be treated in an analogous way to E-pairs and D-pairs.

Self-Enantiomeric and/or Self-RS-diastereomeric H-Pairs—Types II, IV, and V
If the two scleral H-pairs of the Type-II stereoisogram (Fig. 6) are examined in iso-
lation, they are identical with each other. When incorporated in the stereoisogram,
they are superposable under the action of G, although they are not superposable
under the action of GCÎ . The set of the two scleral H-pairs can be referred to as
being self-RS-diastereomeric. Hence, the two scleral H-pairs become degenerate to
give a single entity, which is counted just once under GCÎ as well as under G.

The two ascleral H-pairs of the Type-IV stereoisogram (Fig. 6) are also identical
with each other in isolation. They are superposable under the action of G, just as
they are superposable under the action of GCσ̃. The set of the two scleral H-pairs
can be referred to as being self-enantiomeric and self-RS-diastereomeric. The two
ascleral H-pairs construct an entity to be counted just once under GCÎ as well as
under G.

The two scleral H-pairs of the Type-V stereoisogram (Fig. 6) are identical with each
other in isolation. They are superposable under the action of G, although they are
not superposable under the action of GCÎ . The set of the two scleral H-pairs can
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Figure 6: Stereoisograms of five types, each of which contains two scleral or ascleral H-
pairs encircled by oval boxes. Two H-pairs contained in a stereoisogram of Type II, IV,
or V are self-enantiomeric and/or self-RS-diastereomeric, while two H-pairs contained in
a stereoisogram of Type I or III are enantiomeric and RS-diastereomeric.
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be referred to as being self-enantiomeric. The two identical H-pairs are regarded as
an entity to be counted just once under GCÎ as well as under G.

Enantiomeric and RS-Diastereomeric H-Pairs—Types I and III The two scleral
H-pairs of the Type-III stereoisogram (Fig. 6) are not superposable under the action
of GCÎ . The two ascleral H-pairs of the Type-I stereoisogram (Fig. 6) are not super-
posable under the action of GCÎ . Both the set of the two scleral H-pairs (Type III)
and the set of the two ascleral H-pairs (Type I) can be referred to as being enan-
tiomeric and RS-diastereomeric. Because the two H-pairs of Type III (or of Type
I) exhibit no degeneration, they give two entities to be counted separately under
GCÎ . Under the action of G, on the other hand, they are regarded as constructing
a quadruplet which is counted just once.

According to the behavior shown in Fig. 6, the number of the H-pairs under GCÎ is
obtained by means of the following CI-CF:

CI-CF(GCĨ ; $d, bd)

=
1

|GCĨ |

⎧

⎨

⎩

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈ĨGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
. (54)

where each H-pair is counted just once. This means that a quadruplet of a Type-II, -IV,
or -V stereoisogram contributes to the number of H-pairs by one, while a quadruplet of a
Type-I or -III stereoisogram contributes to the number of H-pairs by two.

By an analogy of GC vs. GCσ (index 2), GCσ vs. G (index 2), and GCσ̃ vs. G (index
2), the index 2 for GCÎ vs. G indicates that the number of self-enantiomeric and/or self-
RS-diastereomeric H-pairs (i.e., the number of quadruplets of Type-II, -IV, and -V) can
be calculated by means of following CI-CF:

CI-CF[II/IV/V](G; $d, bd)

= 2CI-CF(G; $d, bd) − CI-CF(GCĨ ; $d, bd)

=
2

|G|

{

∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n +
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n

}

, (55)

which is obtained by collecting the SIs for the elements contained in the coset σ̃GCÎ of
eq. 26.

In an analogous way to the derivation of eqs. 28 and 42, the derivation of eq. 55 is
rationalized as follows: The CI-CF(G; $d, bd) (eq. 11) counts each quadruplet just once,
so that the resulting number is the sum of the number (NH) of self-enantiomeric and/or
self-RS-diastereomeric H-pairs (i.e., the number of quadruplets of Type II, IV, and V)
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plus the number (N ′
H) of enantiomeric and RS-diastereomeric H-pairs (i.e., the number of

quadruplets of Type I and III). On the other hand, the CI-CF(GCÎ ; $d, bd) (eq. 54) counts
each self-enantiomeric and/or self-RS-diastereomeric H-pair (i.e., each quadruplet of Type
II, IV, and V) just once (NH), while it counts two H-pairs separately for a quadruplet
of Type I and III (2N ′

H). It follows that we can put 2(NH + N ′
H) − (NH + 2N ′

H) = NH ,
which is the number to be obtained (eq. 55).

The number (N ′
H) of enantiomeric and RS-diastereomeric H-pairs (i.e., the number of

quadruplets of Type I and III) is calculated by the following CI-CF:

CI-CF[I/III](G; $d, bd)

= CI-CF(GCĨ ; $d, bd) − CI-CF(G; $d, bd)

=
1

|G|

{

∑

P∈GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n −
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

−
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n +
∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
, (56)

because we can put (NH + 2N ′
H) − (NH + N ′

H) = N ′
H . Obviously, eq. 56 is obtained by

changing the signs of the elements corresponding to the coset σGCÎ (eq. 53, i.e., σGC +
σ̃GC) which appears in eq. 11.

Let us use the warehouse (eq. 12), the partition (eq. 13), and the molecular formula
(eq. 14). eq. 30 is effective for the simultaneous action of the RS-stereoisomeric group
and its maximum ligand-inversion subgroup, where we put τ = II/IV/V or I/III and the
CI-CF in the right-hand side is replaced by eq. 55 or eq. 56.

The maximum ligand-inversion subgroup (TÎ) of the RS-stereoisomeric group Tdσ̃Î

(eq. 10) has the following 24 permutation operations:

TÎ = T + ÎT (57)

= {I, C2(1), C2(2), C2(3), C3(1), C3(3), C3(2), C3(4), C
2
3(1), C

2
3(4), C

2
3(3), C

2
3(2);

Î , Ĉ2(1), Ĉ2(2), Ĉ2(3), Ĉ3(1), Ĉ3(3), Ĉ3(2), Ĉ3(4), Ĉ
2
3(1), Ĉ

2
3(4), Ĉ

2
3(3), Ĉ

2
3(2)} (58)

= {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2);

(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1)(2 4 3), (1 2 3)(4),

(1 3 4)(2), (1 4 2)(3), (1)(2 3 4), (1 2 4)(3), (1 3 2)(4), (1 4 3)(2)}. (59)
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According to eq. 53, we obtain the following coset decomposition:

Tdσ̃Î = TÎ + σTÎ , (60)

where we have |Tdσ̃Î |/|TÎ | = 2.
By collecting the SIs for the elements contained in the coset σTÎ of eq. 60, we apply

eq. 55 to this case, obtaining the following CI-CF:

CI-CF[II/IV/V](Tdσ̃Î ; $d, bd) =
1

24

(

6b2
1b2 + 6b4 + 6a2

1c2 + 6c4

)

=
1

4

(

b2
1b2 + b4 + a2

1c2 + c4

)

. (61)

In eq. 19, the signs of the terms which correspond to the elements contained in the
coset σTÎ (eq. 60, i.e., σT + σ̃T) are changed from plus to minus. Thereby, eq. 56 for
this case gives the following CI-CF:

CI-CF[I/III](Tdσ̃Î ; $d, bd) =
1

48

(

b4
1 + 3b2

2 + 8b1b3 − 6a2
1c2 − 6c4

− 6b2
1b2 − 6b4 + a4

1 + 3c2
2 + 8a1a3

)

. (62)

Let us use the warehouse for methane derivatives (eq. 20) and the ligand inventories
(eqs. 21–23). Suppose that the right-hand side of eq. 30 is replaced by eq. 61 or eq. 62
and that the left-hand side is regarded as N

[II/IV/V]
θ or N

[I/III]
θ .

The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 61). The ex-
pansion of the resulting equation gives the corresponding generating function for counting
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quadruplets:

f [II/IV/V] = [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]
+ [ABpp + · · · ]
+

1

2
[(A3p + A3p) + · · · ] +

1

2
[(A2Bp + A2Bp) + · · · ]

+
1

2
[(A2p2 + A2p2) + · · · ] +

1

2
[(A2pq + A2pq) + · · · ]

+
1

2
[(ABp2 + ABp2) + · · · ]

+
1

2
[(Ap2p + Ap2p) + · · · ] +

1

2
[(Ap3 + Ap3) + · · · ] +

1

2
[(Ap2q + Ap2q) + · · · ]

+
1

2
[(p4 + p4) + · · · ] +

1

2
[(p3p + p3p) + · · · ]

+
1

2
[(p3q + p3q) + · · · ] +

1

2
[(p2pq + p2pq) + · · · ]

+
1

2
[(p2q2 + p2q2) + · · · ] +

1

2
[(p2qq + p2qq) + · · · ]

+
1

2
[(p2qr + p2qr) + · · · ],

(63)

where each coefficient represents the number N
[II/IV/V]
θ , to which each quadruplet corre-

sponding to a stereoisogram contributes by one.
The ligand inventories (eqs. 21–23) are introduced into the CI-CF (eq. 62) and the

resulting equation is expanded so as to give the corresponding generating function for
counting quadruplets:

f [I/III] = ABXY + [ppqq + · · · ]
+

1

2
[(ABXp + ABXp) + · · · ] +

1

2
[(ABpq + ABpq) + · · · ]

+
1

2
[(Appq + Appq) + · · · ] +

1

2
[(Apqr + Apqr) + · · · ]

+
1

2
[(ppqr + ppqr) + · · · ] +

1

2
[(pqrs + pqrs) + · · · ] (64)

where each coefficient represents the number N
[I/III]
θ , to which each quadruplet corre-

sponding to a stereoisogram contributes by one. The categorization according to eqs. 63
and 64 is consistent to Fig. 3.
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4 Itemized Enumerations

4.1 Usage of Several Differences

A general method to categorize into each of the five types (Types I to V) is not always
available. However, there are several cases which can be itemized to the five types.

Let us consider the difference between eq. 42 and eq. 55. Because Types IV and V are
commonly contained in both of the CI-CFs, they are cancelled out to give the following
CI-CF:

CI-CF[I−II](G; $d, bd)

= CI-CF[I/IV/V](G; $d, bd) − CI-CF[II/IV/V](G; $d, bd)

= CI-CF(GCÎ ; $d, bd) − CI-CF(GCσ̃; bd)

=
2

|G|

⎧

⎨

⎩

∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n −
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n

⎫

⎬

⎭
, (65)

where the symbol [I−II] designates the difference between Type I and Type II. If the
formulas of Type-I promolecules and those of Type II have no overlap, the terms for
Type-I promolecules have plus signs while the terms for Type-II promolecules have minus
signs. This condition holds true for the present enumeration based on a tetrahedral
skeleton.

As for tetrahedral promolecules of the present enumeration, the difference between eq.
48 and eq. 61 gives the following CI-CF:

CI-CF[I−II](Tdσ̃Î ; $d, bd) = CI-CF[I/IV/V](Tdσ̃Î ; $d, bd) − CI-CF[II/IV/V](Tdσ̃Î ; $d, bd)

=
1

24

(

a4
1 + 3c2

2 + 8a1a3 − 6b2
1b2 − 6b4

)

. (66)

It should be noted that, so long as we use the warehouse for methane derivatives (eq. 20),
the formulas of Type-I promolecules and those of Type II have no overlap. The ligand
inventories (eqs. 21–23) are introduced into the CI-CF (eq. 66). The expansion of the
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resulting equation gives the corresponding generating function for counting quadruplets:

f [I−II] = ABXY + [ppqq + · · · ]
− 1

2
[(A3p + A3p) + · · · ] − 1

2
[(A2Bp + A2Bp) + · · · ]

− 1

2
[(A2p2 + A2p2) + · · · ] − 1

2
[(A2pq + A2pq) + · · · ]

− 1

2
[(ABp2 + ABp2) + · · · ]

− 1

2
[(Ap2p + Ap2p) + · · · ] − 1

2
[(Ap3 + Ap3) + · · · ] − 1

2
[(Ap2q + Ap2q) + · · · ]

− 1

2
[(p4 + p4) + · · · ] − 1

2
[(p3p + p3p) + · · · ]

− 1

2
[(p3q + p3q) + · · · ] − 1

2
[(p2pq + p2pq) + · · · ]

− 1

2
[(p2q2 + p2q2) + · · · ] − 1

2
[(p2qq + p2qq) + · · · ]

− 1

2
[(p2qr + p2qr) + · · · ]. (67)

By collecting terms having a plus sign from eq. 67, we obtain the following generating
function for counting quadruplets of Type I:

f [I] = ABXY + [ppqq + · · · ]. (68)

Obviously, the remaining terms having a minus sign correspond to promolecules of Type
II.

Let us consider the difference between eq. 42 and eq. 28 Because Types I and IV are
commonly contained in both of the CI-CFs, they are cancelled out to give the following
CI-CF:

CI-CF[V−II](G; $d, bd)

= CI-CF[I/IV/V](G; $d, bd) − CI-CF[I/II/IV](G; $d, bd)

= CI-CF(GCσ; $d, bd) − CI-CF(GCσ̃; bd)

=
2

|G|

{

∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n −
∑

P∈σ̃GC

b
ν1(P )
1 b

ν2(P )
2 · · · bνn(P )

n

}

. (69)

As for tetrahedral promolecules of the present enumeration, the difference between eq.
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48 and eq. 35 gives the following CI-CF:

CI-CF[V−II](Tdσ̃Î ; $d, bd) = CI-CF[I/IV/V](Tdσ̃Î ; $d, bd) − CI-CF[I/II/IV](Tdσ̃Î ; $d, bd)

=
1

24

(

6a2
1c2 + 6c4 − 6b2

1b2 − 6b4

)

=
1

4

(

a2
1c2 + c4 − b2

1b2 − b4

)

. (70)

So long as we use the warehouse for methane derivatives (eq. 20), the formulas of Type-
V promolecules and those of Type II have no overlap also. The ligand inventories (eqs.
21–23) are introduced into the CI-CF (eq. 70). The expansion of the resulting equation
gives the corresponding generating function for counting quadruplets:

f [V−II] = [ABpp + · · · ]
− 1

2
[(A3p + A3p) + · · · ] − 1

2
[(A2Bp + A2Bp) + · · · ]

− 1

2
[(A2p2 + A2p2) + · · · ] − 1

2
[(A2pq + A2pq) + · · · ]

− 1

2
[(ABp2 + ABp2) + · · · ]

− 1

2
[(Ap2p + Ap2p) + · · · ] − 1

2
[(Ap3 + Ap3) + · · · ] − 1

2
[(Ap2q + Ap2q) + · · · ]

− 1

2
[(p4 + p4) + · · · ] − 1

2
[(p3p + p3p) + · · · ]

− 1

2
[(p3q + p3q) + · · · ] − 1

2
[(p2pq + p2pq) + · · · ]

− 1

2
[(p2q2 + p2q2) + · · · ] − 1

2
[(p2qq + p2qq) + · · · ]

− 1

2
[(p2qr + p2qr) + · · · ]. (71)

By collecting terms having a plus sign from eq. 71, we obtain the following generating
function for counting quadruplets of Type V:

f [V] = [ABpp + · · · ]. (72)

Obviously, the remaining terms having a minus sign correspond to quadruplets of Type
II.

Let us consider the difference between eq. 28 and eq. 55. Because Types II and IV are
commonly contained in both of the CI-CFs, they are cancelled out to give the following
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CI-CF:

CI-CF[I−V](G; $d, bd)

= CI-CF[I/II/IV](G; $d, bd) − CI-CF[II/IV/V](G; $d, bd)

= CI-CF(GCĨ ; $d, bd) − CI-CF(GCσ; $d, bd)

=
2

|G|

⎧

⎨

⎩

∑

P∈ÎGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n −
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n

⎫

⎬

⎭
. (73)

As for tetrahedral promolecules of the present enumeration, the difference between eq.
35 and eq. 61 gives the following CI-CF:

CI-CF[I−V](Tdσ̃Î ; $d, bd) = CI-CF[I/II/IV](Tdσ̃Î ; $d, bd) − CI-CF[II/IV/V](Tdσ̃Î ; $d, bd)

=
1

24

(

a4
1 + 3c2

2 + 8a1a3 − 6a2
1c2 − 6c4

)

. (74)

So long as we use the warehouse for methane derivatives (eq. 20), the formulas of Type-
I promolecules and those of Type V have no overlap also. The ligand inventories (eqs.
21–23) are introduced into the CI-CF (eq. 74). The expansion of the resulting equation
gives the corresponding generating function for counting quadruplets:

f [I−V] = ABXY + [ppqq + · · · ] − [ABpp + · · · ]. (75)

The terms having a plus sign in eq. 75 correspond to eq. 68, while the terms having a
minus sign in eq. 75 is in agreement with eq. 72.

By applying eqs. 68 and 72 to eq. 50, we are able to obtain the following generating
function for counting tetrahedral quadruplets of Type IV:

f [IV] = f [I/IV/V] − f [I] − f [V]

= [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]. (76)

Obviously, the generating functions for counting quadruplets of all of Types I–V can be
obtained by combining the above-mentioned generating functions.

It should be noted, however, that eq. 76 has not been derived by introducing the
ligand inventories (eqs. 21–23) into a single CI-CF. Such a single CI-CF is not so easy to
be obtained in general, unless we have more detailed data of the group-subgroup lattice
of an RS-stereoisomeric group.
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4.2 Itemization with Respect to Types I–V

4.2.1 Action of the Maximum Point Subgroup and its Maximum Chiral Sub-
group

Although such a single CI-CF for counting Type-IV quadruplets is not so easy to be
obtained in general, the one for counting tetrahedral Type-IV quadruplets can be obtained
without full data of the group-subgroup lattice of the RS-stereoisomeric group Tdσ̃Î .

The action of the maximum point subgroup (GCσ) and its maximum chiral subgroup
(GC) has been reported in our previous paper [23] , which showed that achiral pro-
molecules (Types IV and V) are counted by means of the following CI-CF (eq. 20 of [23]
):

CI-CF(IV/V)(GCσ; $d) = 2CI-CF(GCσ; $d, bd) − CI-CF(GC ; bd) (77)

=
1

|GC |
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n , (78)

where we use the relationship |GCσ| = 2|GC |. The action of the GCσ in the left-hand
side of eq. 78 (eq. 20 of [23] ) is concerned with each promolecule, not with each E-pair.
However, eq. 78 can be considered to be concerned with E-pairs, because the formal
description of the CI-CF(GCσ; $d, bd) in eq. 77 is equal to eq. 27. Because the two E-pairs
of each Type-V stereoisogram coalesce with each other to give a quadruplet under G,
the results of eq. 78 contain twice the number of such quadruplets of Type V. Let use
the superscript [IV/2V] in place of the one (IV/V) of the original notation [23] so as
to emphasize that the two RS-diastereomers (or E-pairs) of a Type-V stereoisogram are
counted separately. Thereby, we obtain:

CI-CF[IV/2V](G; $d) = CI-CF(IV/V)(GCσ; $d)

=
1

|GC |
∑

P∈σGC

$
ν1(P )
1 $

ν2(P )
2 · · · $νn(P )

n . (79)

As for the maximum point subgroup Td, the cycle structures appearing in the coset
σT are collected according to eq. 79 so as to give the following CI-CF:

CI-CF[IV/2V](Tdσ̃Î ; $d) = CI-CF(IV/V)(Td; $d)

=
1

12
(6a2

1c2 + 6c4)

=
1

2
(a2

1c2 + c4). (80)

One of the products of SIs (a2
1c2) in eq. 80 is related to pseudoasymmetric promolecules
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(Type V, e.g., 30 as well as to other achiral promolecules (Type IV). Hence, we should se-
lect a2

1a2 and a2c2 for counting Type IV-promolecules other than the Type-V promolecules.
The terms a2

1a2 and a2c2 contain a duplicated component represented by a2
2 so that the

product a2
1c2 is replaced by the combined term a2

1a2 + a2c2 − a2
2 in order to to exclude

contamination by pseudoasymmetry (Type-V promolecules). The other product of SIs
(c4) is not related to pseudoasymmetry. Hence, eq. 80 for this case takes the following
form:

CI-CF[IV](Tdσ̃Î ; $d) = CI-CF(IV)(Td; $d) =
1

2
(a2

1a2 + a2c2 − a2
2 + c4). (81)

This is the single CI-CF for counting Type-IV promolecules, which is the present target
to be pursued. Note that the number of Type-IV promolecules is equal to the number of
Type-IV quadruplets to be counted.

The subtraction of eq. 81 from eq. 80 gives the CI-CF for counting quadruplets of
Type V as follows:

CI-CF[V](Tdσ̃Î ; $d) =
1

2

{

CI-CF[IV/2V](Tdσ̃Î ; $d) − CI-CF[IV](Tdσ̃Î ; $d)
}

=
1

4
(a2

1c2 + c4) − 1

4
(a2

1a2 + a2c2 − a2
2 + c4)

=
1

4
(a2

1c2 − a2
1a2 − a2c2 + a2

2). (82)

Note that the number of Type-V promolecules is twice the number of Type-V quadruplets
to be counted.

4.2.2 CI-CFs of Other Types

By means of eqs. 48, 81 and 82, we obtain the CI-CF for counting quadruplets of Type I
as follows:

CI-CF[I](Tdσ̃Î ; $d, bd)

= CI-CF[I/IV/V](Tdσ̃Î ; $d, bd) − CI-CF[IV](Tdσ̃Î ; $d, bd) − CI-CF[V](Tdσ̃Î ; $d, bd)

=
1

24

(

a4
1 + 3c2

2 + 8a1a3 − 6a2
1a2 − 6a2c2 + 6a2

2 − 6c4

)

. (83)

The CI-CF for counting quadruplets of Type II is obtained by means of eqs. 61, 81
and 82 as follows:

CI-CF[II](Tdσ̃Î ; $d, bd)

= CI-CF[II/IV/V](Tdσ̃Î ; $d, bd) − CI-CF[IV](Tdσ̃Î ; $d, bd) − CI-CF[V](Tdσ̃Î ; $d, bd)

=
1

4

(

b2
1b2 + b4 − a2

1a2 − a2c2 + a2
2 − c4

)

. (84)
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Finally, the subtraction of eq. 84 from eq. 49 gives the CI-CF for counting quadruplets
of Type III as follows:

CI-CF[III](Tdσ̃Î ; $d, bd)

= CI-CF[II/III](Tdσ̃Î ; $d, bd) − CI-CF[II](Tdσ̃Î ; $d, bd)

=
1

48

(

b4
1 + 3b2

2 + 8b1b3 − 6a2
1c2 + 6c4

− a4
1 − 3c2

2 − 8a1a3 − 6b2
1b2 − 6b4 + 12a2

1a2 + 12a2c2 − 12a2
2

)

. (85)

4.2.3 Generating Functions for Types I–V

The ligand inventories (eqs. 21–23) are introduced into the CI-CFs (eqs. 81–85). The
expansion of the resulting equations gives the corresponding generating functions for
counting quadruplets:

f [I] = ABXY + [ppqq + · · · ] (86)

f [II] =
1

2
[(A3p + A3p) + · · · ] +

1

2
[(A2Bp + A2Bp) + · · · ]

+
1

2
[(A2p2 + A2p2) + · · · ] +

1

2
[(A2pq + A2pq) + · · · ]

+
1

2
[(ABp2 + ABp2) + · · · ]

+
1

2
[(Ap2p + Ap2p) + · · · ] +

1

2
[(Ap3 + Ap3) + · · · ] +

1

2
[(Ap2q + Ap2q) + · · · ]

+
1

2
[(p4 + p4) + · · · ] +

1

2
[(p3p + p3p) + · · · ]

+
1

2
[(p3q + p3q) + · · · ] +

1

2
[(p2pq + p2pq) + · · · ]

+
1

2
[(p2q2 + p2q2) + · · · ] +

1

2
[(p2qq + p2qq) + · · · ]

+
1

2
[(p2qr + p2qr) + · · · ] (87)

f [III] =
1

2
[(ABXp + ABXp) + · · · ] +

1

2
[(ABpq + ABpq) + · · · ]

+
1

2
[(Appq + Appq) + · · · ] +

1

2
[(Apqr + Apqr) + · · · ]

+
1

2
[(ppqr + ppqr) + · · · ] +

1

2
[(pqrs + pqrs) + · · · ], (88)

f [IV] = [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ]. (89)

f [V] = [ABpp + · · · ]. (90)
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As we found easily, eqs. 86, 89, and 90 are identical with eqs. 68, 76, and 72, respec-
tively. Similarly, eqs. 87 and 88 can be examined to be identical with those derived by
the method described in the preceding subsection.

5 Discussions

It is worthwhile to show that cycle indices (CIs) based on Pólya’s Theorem can be derived
as special cases of the present approach. This approach also reveals an implicit basis of
the CIP-system.

5.1 Symmetries of the Tetrahedral Skeleton

In the present approach, the tetrahedral skeleton is considered to be governed by an RS-
stereoisomeric group Tdσ̃Î . On the other hand, Pólya’s theorem [35, 36] has adopted
the symmetric group of degree 4 (S [4]) in order to describe the symmetric nature of the
tetrahedral skeleton.

By putting rd = ad = bd = cd, the CI-CF(Tdσ̃Î ; $d, bd) (eq. 19) is converted into the
following CI:

CI-CF(Tdσ̃Î ; rd) =
1

24

(

r4
1 + 3r2

2 + 8r1r3 + 6r2
1r2 + 6r4

)

. (91)

This type of equation was first noted by Pólya [36, page 21] , where the direct action of
the symmetric group of degree 4 (S [4]) was used without taking account of the sphericity
concept. This means that Pólya’s theorem [35, 36] did not take chiral proligands into
consideration.

According to the warehouse for methane derivatives (eq. 20) which contains achiral
proligands as well as chiral ones, we adopt the following ligand inventory:

rd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd, (92)

where two proligands of an enantiomeric pair are presumed to participate separately. The
ligand inventory (eq. 92) is introduced into the CI (eq. 91) to give the following generating
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function:

g[T] = ABXY + [ppqq + · · · ]
+ [ABpp + · · · ]
+ [(ABXp + ABXp) + · · · ] + [(ABpq + ABpq) + · · · ]
+ [(Appq + Appq) + · · · ] + [(Apqr + Apqr) + · · · ]
+ [(ppqr + ppqr) + · · · ] + [(pqrs + pqrs) + · · · ]
+ [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ].
+ [(A3p + A3p) + · · · ] + [(A2Bp + A2Bp) + · · · ]
+ [(A2p2 + A2p2) + · · · ] + [(A2pq + A2pq) + · · · ]
+ [(ABp2 + ABp2) + · · · ]
+ [(Ap2p + Ap2p) + · · · ] + [(Ap3 + Ap3) + · · · ] + [(Ap2q + Ap2q) + · · · ]
+ [(p4 + p4) + · · · ] + [(p3p + p3p) + · · · ]
+ [(p3q + p3q) + · · · ] + [(p2pq + p2pq) + · · · ]
+ [(p2q2 + p2q2) + · · · ] + [(p2qq + p2qq) + · · · ]
+ [(p2qr + p2qr) + · · · ]. (93)

In eq. 93, such a term as (ABXp and ABXp) represents a quadruplet of a stereoisogram.
This result can be sophisticated by considering the itemization represented by eqs. 81–85,
as shown in the next subsection.

5.2 Implication of the CIP-System

By putting rd = ad = bd = cd, the CI-CFs (eqs. 81–85) for the present itemized enumera-
tion are converted into the following CIs:

CI-CF[I](Tdσ̃Î ; rd) =
1

24

(

r4
1 + 3r2

2 + 8r1r3 − 6r2
1r2 − 6r4

)

(94)

CI-CF[II](Tdσ̃Î ; rd) = 0 (95)

CI-CF[III](Tdσ̃Î ; rd) = 0 (96)

CI-CF[IV](Tdσ̃Î ; rd) =
1

2
(r2

1r2 + r4) (97)

CI-CF[V](Tdσ̃Î ; rd) = 0 (98)

Among them, CI-CF[II](Tdσ̃Î ; rd), CI-CF[III](Tdσ̃Î ; rd), and CI-CF[V](Tdσ̃Î ; rd) vanish to
zero. The non-zero equations were first noted by Pólya [36] , although he took an alter-
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native approach. Thus, eq. 94 corresponds to the CI derived by Pólya [36, page 24] , who
used the symmetric group of degree 4 (S [4]) and the alternating group of degree 4 (A[4])
in the form of A[4] − S [4]; and eq. 97 corresponds to the CI which he derived by putting
2S [4] −A[4] [36, page 24] .

The zero values of CI-CF[III](Tdσ̃Î ; rd) (eq. 96) and CI-CF[V](Tdσ̃Î ; rd) (eq. 98) are
interpreted well by considering that they coalesce with the non-zero CI-CF[I](Tdσ̃Î ; rd).
On the other hand, the fact that the CI-CF[II](Tdσ̃Î ; rd) (eq. 95) vanishes to zero indicates
that it coalesces with the non-zero CI-CF[IV](Tdσ̃Î ; rd). It should be noted that Types I,
III, and V are RS-stereogenic, while Types II and IV are RS-astereogenic (cf. Fig. 3).

These features are confirmed by introducing the ligand inventory (eq. 92) into the
CI-CFs (eqs. 94 and 97). The expansion of the resulting equations give the corresponding
generating functions for counting promolecules:

g[I] = ABXY + [ppqq + · · · ]
+ [ABpp + · · · ]
+ [(ABXp + ABXp) + · · · ] + [(ABpq + ABpq) + · · · ]
+ [(Appq + Appq) + · · · ] + [(Apqr + Apqr) + · · · ]
+ [(ppqr + ppqr) + · · · ] + [(pqrs + pqrs) + · · · ] (99)

g[IV] = [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ]
+ [A2BX + · · · ] + [A2pp + · · · ] + [p2p2 + · · · ].
+ [(A3p + A3p) + · · · ] + [(A2Bp + A2Bp) + · · · ]
+ [(A2p2 + A2p2) + · · · ] + [(A2pq + A2pq) + · · · ]
+ [(ABp2 + ABp2) + · · · ]
+ [(Ap2p + Ap2p) + · · · ] + [(Ap3 + Ap3) + · · · ] + [(Ap2q + Ap2q) + · · · ]
+ [(p4 + p4) + · · · ] + [(p3p + p3p) + · · · ]
+ [(p3q + p3q) + · · · ] + [(p2pq + p2pq) + · · · ]
+ [(p2q2 + p2q2) + · · · ] + [(p2qq + p2qq) + · · · ]
+ [(p2qr + p2qr) + · · · ]. (100)

It is interesting that each term contained in g[I] (eq. 99) corresponds to an object to
be assigned to an R- or S-descriptor (or r- or s-descriptor) of the CIP-system. The terms
ABXY and [ppqq+ · · · ] correspond to Type I; the terms [ABpp+ · · · ] correspond to Type
V; and the remaining terms ([(ABXp + ABXp) + · · · ] etc.) correspond to Type III. This
fact suggests that the CIP-system is implicitly based on the process in which the ligand
inventory (eq. 92) is introduced into the CI-CFs (eqs. 94 and 97). Because Types I, III,
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and V are RS-stereogenic, the enumeration result (eq. 99) reinforces the conclusion that
RS-stereogenicity (not chirality) is concerned with the CIP-system [19, 20] .

5.3 Pólya’s Theorem as a Special Case

The generating functions shown in eqs. 93, 99, and 100 presume that each chiral proligand
(e.g., p) is discriminated from its enantiomeric proligand (e.g., p). In contrast, Póya’s
theorem does not take account of such inner structures, where each object is regarded as
a graph. Hence, in order to get access to Póya’s theorem, each chiral proligand (e.g., p)
is equalized to its enantiomeric proligand (e.g., p). By putting P = p = p, Q = q = q,
R = r = r, and S = s = s and by avoiding the resulting duplication, eq. 92 is converted
into another ligand inventory:

rd = Ad + Bd + Xd + Yd + Pd + Qd + Rd + Sd. (101)

Strictly speaking, we put Pd = pd + pd etc. in eq. 92 so as to obtain eq. 101.
The ligand inventory (eq. 101) is introduced into the CI-CFs (eqs. 94 and 97). The ex-

pansion of the resulting equations give the corresponding generating functions for counting
graphs:

g′[I] = ABXY

+ [ABXP + · · · ] + [ABPQ + · · · ]
+ [APQR + · · · ] + [PQRS + · · · ] (102)

g′[IV] = [A4 + · · · ] + [A3B + · · · ] + [A2B2 + · · · ] + [A2BX + · · · ]
+ [A3P + · · · ] + [A2BP + · · · ]
+ [A2P2 + · · · ] + [A2PQ + · · · ] + [ABP2 + · · · ]
+ [AP3 + · · · ] + [AP2Q + · · · ]
+ [P4 + · · · ] + [P3Q + · · · ]
+ [P2Q2 + · · · ] + [P2QR + · · · ] (103)

Note that the terms [ppqq+· · · ] (Type I), [ABpp+· · · ] (Type V), [(Appq+Appq)+· · · ]
(Type III), and [(ppqr + ppqr) + · · · ] (Type III) contained in eq. 99 have disappeared in
eq. 102. Among them, in particular, the term [ABpp + · · · ] (Type V) corresponds to
pseudoasymmetry.

It should be emphasized that the ligand inventory shown in eq. 101 essentially takes
account of only achiral (pro)ligands by substituting achiral counterparts (P etc.) for
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chiral (pro)ligands (p/p etc.). This condition restricts Pólya’s theorem within graph
enumeration, where the sphericities of cycles represented by the sphericity indices (ad,
cd and bd) are unnecessary to be taking into consideration, as pointed out by a previous
article [37] .

5.4 Historical Comments

It is worthwhile to compare the enumeration results from a historical point of view. Let
us align the three sets of generating functions for itemized enumeration reversely, i.e.,
g′[I]/g′[IV] (eq. 102/eq. 103) =⇒ g[I]/g[IV] (eq. 99/eq. 100) =⇒ f [I]–f [V] (eqs. 86–90). The
difference among the three sets stems from the selection of ligand inventories, i.e., eq. 101
=⇒ eq. 92 =⇒ eqs. 21–23. The alignment corresponds to the steps of development in the
history of stereochemical terminology and chemical combinatorics.

By referring to Fig. 3, we find that the quadruplets 30 (ABpp, Type V) and 12 (ABp2,
Type II) coalesce to give the term ABP2 in the generating function g′[IV] (eq. 103); and
that the quadruplets 29 (A2pp, Type IV) and 8 (A2p2, Type II) coalesce to give the term
A2P2. In other words, the pair of RS-stereogenicity/RS-astereogenicity and the pair of
chirality/achirality are both mixed up. We can safely say that this step corresponds to
the era before van’t Hoff in the stereochemical terminology and to Pólya’s theorem in the
chemical combinatorics.

Each term contained in g[I] (eq. 99) is concerned with an RS-stereogenic quadruplet
(Types I, III, or V) by referring to Fig. 3, while g[IV] (eq. 100) is concerned with an RS-
astereogenic quadruplet (Types II or IV). The quadruplets corresponding to g[I] (eq. 99)
can be assigned to R- or S-descriptors (r- or s-descriptors) of the CIP-system, although
chirality was mixed up with stereogenicity. This step corresponds to the era after the CIP-
system, when the difference between stereogenicity and chirality was not fully investigated.

The present results summarized by f [I]–f [V] (eqs. 86–90) clarify the importance of the
five RS-stereoisomeric types shown in Fig. 3. Most parts of the connotation of the con-
ventional term “stereogenicity” are replaced by the present terms RS-stereogenicity/RS-
astereogenicity.

6 Conclusions

A quadruplet of promolecules appearing in a stereoisogram is considered to be an entity
to be counted just once by using the corresponding RS-stereoisomeric group G (e.g.,
Tdσ̃Î for a quadruplet of tetrahedral promolecules). Such a quadruplet consists of two
E-pairs, each of which is defined as a pair of enantiomers (chiral promolecules) or a pair
of self-enantiomers (an achiral promolecule). The two E-pairs of each quadruplet are
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considered to construct an equivalence class of G and also an equivalence class of the
maximum point subgroup GCσ (e.g., Td for a quadruplet of tetrahedral promolecules).
Thereby, such equivalence classes are enumerated under G and GCσ to give partially
itemized generating functions. The quadruplet is considered to consist of two D-pairs,
each of which is defined as a pair of RS-diastereomers (RS-stereogenic promolecules) or a
pair of self-RS-diastereomers (an RS-astereogenic promolecule). Thereby, quadruplets as
equivalence classes for D-pairs are enumerated under G and its maximum RS-permutation
group GCσ̃ (e.g., Tσ̃ for a quadruplet of tetrahedral promolecules). The quadruplet is
considered to consist of two H-pairs, each of which is defined as a pair of holantimers
(scleral promolecules) or a pair of self-holantimers (an ascleral promolecule). Thereby,
quadruplets as equivalence classes for H-pairs are enumerated under G and its maximum
ligand-inversion group GCÎ (e.g., TÎ for a quadruplet of tetrahedral promolecules). The
results of the enumerations concerning E-pairs, D-pairs, and H-pairs are combined to
accomplish itemized enumeration with respect to Types I–V. Pólya’s theorem is discussed
as a special case of the present approach.
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