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Abstract

A unified interpretation of the fundamental characteristics of organic molecules

(their composition, connectivity, and global configuration) as equivalence classes

of mappings from one finite set into another is proposed. The main properties of

three-, two-, and one-dimensional (3D, 2D, and 1D) point configurations are dis-

cussed, as well as the methods of their representation in computer memory. For

these configurations, an algebraic criterion of chirality is proposed; this criterion

consists in the equality of the “normal” and the “expanded” automorphism groups.

The equivalence classes of superpositions of two or three mappings (corresponding to

composition, connectivity, or point configuration) are shown to unambiguously char-

acterize the chemical structure and three kinds of configurations, i.e., the labeled,

graph, and molecular configurations. The corresponding constructive enumeration

problems — e.g., the generation of molecular formulas, structural formulas, and

stereo formulas — are formalized in terms of a “ladder of combinatorial objects.”
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1 Introductory Notes

Qualitative concepts concerning the hierarchy of levels in the description of organic

molecules are fairly often encountered in literature. For example, Hässelbarth [1] considers

the composition, structure, and stereochemistry (understood as the totality of qualitative

geometrical characteristics) of organic molecules as the first levels. Similar and also qual-

itative concepts were developed by Turro [2] and Maggiora and Johnson [3]. The main

aim of this paper is to substantiate the mathematical models that rigorously characterize

various levels in the description of organic molecules and to discuss the corresponding gen-

eration problems from a unified standpoint. Most attention is paid to the consideration of

qualitative characteristics describing the spatial arrangement of atoms in a molecule; the

concepts of point configurations and their equivalence classes (abstract configurations)

introduced here are somewhat similar to the concepts of multiplex and chirotope used by

Dreiding [4] and Dress [5].

In a sense, this paper is an attempt to consistently present the general methodology

of our configurational approach, which was applied to some specific problems, such as

the formalization of generation problems for structural isomers and stereoisomers [6, 7],

the classification of chirality in rigid molecular systems [8, 9], the development of con-

figurational and configuration–topological indices [7, 10] (which characterize the relative

positions of atoms in space or on a plane), as well as the analysis of partial configura-

tions formed by three-dimensional or planar chains and rings [10, 11, 12]. Although two

reviews summarizing our results have been published in Russian [7, 8], only one of them

has been translated into English so far [8]; that translation is hardly available now and

not completely adequate as far as mathematical terms are concerned. In fact, the present

review is an improved version of the aforementioned paper [8], supplemented with some

new ideas and results, especially those concerning the geometrical feasibility problem for

point configurations (see Section 7).

The paper is organized in the following way. Initially, the most important math-

ematical notions are briefly considered in Section 2; these notions are then applied to

the description of traditional molecular characteristics, i.e., molecular composition and

connectivity (Section 3). More original material starts with a discussion of point con-

figurations as qualitative characteristics of figures formed by systems of points in space

(Section 4). The symmetry and chirality properties, representations of point configura-

tions, and also geometrical feasibility problems for them are treated in Sections 5 to 7,

respectively. After discussing superpositions of the combinatorial characteristics of com-

position, connectivity, and (point) configuration (Section 8), an abstract mathematical

tool — the ladder of combinatorial objects — is introduced in Section 9. This tool makes

it possible to formalize various generation problems in organic chemistry: the correspond-

- 218 -



ing ladders of molecular objects (Section 10) together with dendral representations of

results thus obtained (Section 11) are finally presented.

2 Basic Mathematical Notions
The material below is largely based on concepts and methods of discrete mathematics.

Since detailed discussion of all the required notions from set theory, graph theory, and per-

mutation group theory lies beyond the scope of this paper, only a very brief explanation of

the necessary mathematical tools is presented below. Readers willing to get more detailed

information may refer, e.g., to monographs on graph theory [13], group theory [14], and

applied algebra [15]; many important chemical applications are thoroughly discussed, for

example, in textbooks [16, 17]. Probably the most complicated problem, that is, induced

actions of permutation groups on appropriate set-theoretical constructions, is considered

in detail in a special monograph [18].

The notion of a finite set is a fundamental notion of discrete mathematics. The

symbolic notation X = {x1, x2, . . . , xn} means that the set X consists of a finite number

of its elements xi; n = |X| is referred to as the cardinality of set X.

Among many binary relations defined on finite sets, the equivalence relations, denoted

by ∼, are most important for the problems discussed in this paper. An equivalence

relation is a binary relation on X that is reflexive (xi ∼ xi), symmetric (if xi ∼ xj then

xj ∼ xi), and transitive (if xi ∼ xj and xj ∼ xk then xi ∼ xk). Any equivalence relation

partitions the set X into disjoint subsets, which are referred to as equivalence classes.

Representatives of these classes are just the objects typically required for the solution

of many combinatorial problems; in the applications considered here, equivalence classes

appear owing to the actions of appropriate permutation groups (see below).

Another important notion is that of partial order, denoted by �. Partial orders of

X are binary relations on X that are reflexive (xi � xi), antisymmetric (if xi � xj and

xj � xi then xi = xj), and transitive (if xi � xj and xj � xk then xi � xk). The inclusion

relation is a partial order relation on the set of all subsets (denoted by 2X) of a given set

X; two subsets Y ∈ 2X and Z ∈ 2X satisfy the inclusion relation if Y ⊆ Z (i.e., if the set

Y is a subset of Z).

Set-theoretical constructions enable us to form a new set starting from one or several

predefined sets. The sets X{k} and X [k] formed by all k-subsets and ordered k-tuples of

X may serve as simple examples of such constructions. In the case of k = 2, these sets

consist of
(|X|

2

)

= |X|(|X| − 1)/2 unordered pairs {i, j}, i �= j and 2 · (|X|
2

)

= |X|(|X| − 1)

ordered pairs [i, j] of nonidentical elements from X, respectively.

The notion of a mapping plays the central role in this paper. If we associate with each

element xi of X a single element yj from a finite set Y , one says that a mapping or function
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f from X into Y has been specified; it is symbolically written as f : X → Y . Note that,

since the elements of X and of Y are supposed to be numbered to distinguish them from

each other, the elements xi can be replaced by their numbers i in the description of f .

Thus, notations f(xi) and f(i) are equivalent; similar replacements of elements in sets by

their numbers are used here in the notations of permutations (see below).

The sets X with elements xi and Y with elements yj are referred to as the domain

and the range of the function, respectively. The set F whose elements are all possible

mappings f : X → Y is written as F = Y X ; its cardinality |F | (i.e., the number of

mappings f) is determined by the cardinalities of sets X and Y : |F | = |Y ||X|. Note that

just mappings from one finite set into another are regarded in this paper as combinatorial

objects;1 this term can also be applied to equivalence classes of mappings.

Actually, any undirected graph or multigraph may be regarded as a mapping f from

the set X of all n(n− 1)/2 unordered pairs of numbered vertices (where n is the number

of vertices) into the set Y = {0, 1} (or Y = {0, 1, 2, . . .} in the case of multigraphs).

Note that, in the general case, graph vertices may be labeled (e.g., can bear symbols

of chemical elements), and hence one should distinguish between labels and numbers of

graph vertices; the latter ones are chosen arbitrarily. The overall number of undirected

graphs without multiple edges can easily be calculated as the total number of possible

mappings |Y ||X| = 2(n
2), but counting the number of equivalence classes for functions f

requires some group-theoretical concepts to be initialy introduced.

A set A = {a1, a2, . . . , a|A|} is said to form an abstract group of order |A| if a predefined

binary operation ( ◦ ) converts any ordered pair of its elements into some element of A:

ai ◦ aj = ak. Three axioms must be additionally fulfilled for groups: associativity of the

binary operation (ai ◦ (aj ◦ ak) = (ai ◦ aj) ◦ ak); the presence of a unity element e such

that e ◦ ai = ai ◦ e = ai; and the presence of inverse elements a−1
i such that a−1

i ◦ ai = e

and ai ◦ a−1
i = e; note that ai ◦ aj 6= aj ◦ ai in the general case.

In addition to point symmetry groups (formed by rotation and rotation–reflection

operations and well-known to chemists), the corresponding permutation groups are also

applied to many problems of molecular symmetry. Generally speaking, a permutation is a

bijective (one-to-one) mapping from some finite set X onto itself. Any permutation may

be written as the product of independent cycles: e.g., notation s = (1 3 5)(2 6)(4) means

that the permutation s converts element 1 of the six-element set X = {1, 2, 3, 4, 5, 6} into

3, 3 into 5, 5 into 1, 2 into 6, 6 into 2, and 4 into 4; the alternative two-line notation

is s =
(
1 2 3 4 5 6
3 6 5 4 1 2

)
. Permutations with an even number of cycles of even length are also

termed even; other permutations are referred to as odd.

1 The term “combinatorial object” can also be understood in a broader sense (as applied
to any object studied by the theory of finite sets, i.e., combinatorics). In the sense considered
here, it was used by Faradzhev [19], who formulated graph generation problems in terms of
constructive enumeration of combinatorial objects.
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The binary operation of multiplication for two permutations is defined as successive

application of these permutations; note that permutations are traditionally multiplied

from right to left. For example, the product s2 ◦ s1 of the first permutation s1 =
(
1 2 3
1 3 2

)

and the second permutation s2 =
(
1 2 3
2 3 1

)

can be written as
(
1 2 3
2 3 1

) · (1 2 3
1 3 2

)

=
(
1 2 3
2 1 3

)

. Since

all group axioms are fulfilled for multiplication of permutations, one can state that the

set of all permutations of elements from X, n = |X|, forms a group of degree n and order

n!. This group is known as the symmetric group Sn. The set of all even permutations

forms the group An (a subgroup of Sn), which is termed the alternating group; the order

of this group is n!/2.

Any arbitrary permutation group of degree n can evidently be regarded as a subgroup

of the symmetric group Sn. Another possibility of introducing permutation groups consists

in the formulation of some abstract group A and a set X on which it acts; symbolically,

the permutation group can be represented as the pair (A, X). For our purposes, it is

important that the action of A on some set X introduces an equivalence relation on this

set; two of its elements are equivalent (xi ∼ xj) if there exists a permutation a ∈ A such

that xi = a(xj). As a result, any equivalence class is formed by those elements of X that

are converted into each other by at least one permutation from A. These equivalence

classes are referred to as orbits of A on set X.

It is important that equivalence classes can also be formulated for set-theoretical con-

structions, such as (ordered or unordered) k-tuples or mappings from one set into another.

This means that the action of a group A on some finite set X lets one further define in-

duced actions of A on many other set-theoretical constructions which involve X. For

example, the action of group A on an n-element set X determines the induced action of

A on the set X [2], which consists of n(n−1) ordered pairs [xi, xj] of nonidentical elements

from X; the corresponding permutation group on X [2] is denoted by A[2]. Also, there is

the induced action of A on the set X{2}, which consists of n(n − 1)/2 unordered pairs

{xi, xj} of nonidentical elements from X; the induced permutation group is denoted by

A{2}.
Of special importance are the combined actions of two groups on some set-theoretical

constructions. For example, the combined action of group A on X and group B on Y

induces the power group Γ = BA acting on the set F = Y X of all possible mappings from

X into Y . The elements γ of this induced group, which was introduced by Harary and

Palmer [20], are ordered pairs of elements from groups A and B; that is, γ = (a, b). A

specific case of a power group is the group Γ = EA; in this case, one assumes that the

group acting on set Y is the identity group E consisting of a single (identity) permutation

e, which converts each element y from Y into itself.

The last topic to be considered here is associated with special groups characterizing

the symmetry of particular mappings (combinatorial objects) that represent orbits of
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induced groups Γ = EA. These groups are formed by permutations from A (i.e., those

whose induced action converts the mapping in question into itself) and hereafter referred

to as automorphism groups of combinatorial objects. It is interesting that the knowledge

of automorphism groups lets one easily count lengths of orbits, i.e., numbers of mappings

in any equivalence class of mappings f : X → Y . Thus, if the “starting” group A

acts on the set X, this number is equal to |A|/|Aut(f)|: this result follows from the

fact that, among |A| permutations of the group Γ = EA, exactly |Aut(f)| permutations

convert some mapping f into itself or into any other mapping of the same orbit. More

detailed description with examples of particular induced groups and the corresponding

automorphism groups can be found in the next sections.

3 Combinatorial Objects Characterizing the Compo-

sition and Connectivity of Organic Structures

Before introducing the new notion of an abstract configuration, let us demonstrate

how the composition and connectivity of a molecule can be unambiguously characterized

by mappings from one finite set into another. Let us first consider a finite set W formed by

|W | = p atoms. To distinguish the atoms of the set W from each other, they are assumed

to be numbered, i.e., W = {w1, . . . , wp}; note that these atoms are still unlabeled and,

for this reason, just the symmetric group Sp, consisting of p! permutations, acts on the

set W . Now let us introduce another set M1, i.e., a finite set of labels mi that uniquely

correspond to q1 symbols of preselected chemical elements. Note that chemical elements

with different valences (e.g., C(II) and C(IV )) or elements whose atoms are assumed to

be charged or bearing an unpaired electron (e.g., S+(I) or S·(I)) should also be assigned

separate labels. It is easily seen that the composition of the molecule (or, which is the

same, its molecular formula) in this case can be described as a mapping ϕ : W → M1

from the set W into M1.

The total number of such mappings is qp
1 (set Φ = {ϕ : W → M1} consists of |M1||W | =

qp
1 elements), and some of them are equivalent (with the only difference consisting in

atom numbers in the corresponding “expanded” molecular formulas). This means that

an unambiguous characterization of the molecular composition requires a consideration

of equivalence classes of mappings ϕ. In other words, any orbit of the induced group

Γ1 = ESp acting on the set Φ = MW
1 (here, E denotes the identity group acting on M1)

uniquely represents one of the possible molecular formulas.

As an illustrating example, Figs. 1b–1d and Figs. 1g–1i depict the expanded molecular

formulas, functional notations, and arrow schemes for two equivalent mappings ϕ1 and ϕ2

corresponding to different numberings of the 2-azabicyclobutane skeleton (Figs. 1a, 1f).

In the general case, one should take into account all atoms, including hydrogens, in the
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Figure 1: (b, g) Expanded molecular formulas, (c, h) functional notations, and (d,
i) arrow schemes for two mappings ϕ1 and ϕ2 corresponding to (a, f) different num-
berings of the same 2-azabicyclobutane skeleton; (e, j) the automorphism groups of
mappings ϕ1 and ϕ2.

constructed mappings ϕ, but hereafter only skeletal atoms with skipped valence values

are considered for brevity. It is easily seen that mappings ϕ1 and ϕ2 can be converted

into each other — e.g., by the permutation s = (1)(2)(3 4) acting on the set of atom

numbers W or by the corresponding permutation from the power group ES4 acting on

the set Φ = MW
1 . As a result, these mappings are equivalent. On the other hand, for

each mapping ϕ1 or ϕ2, there exists a permutation group (subgroup of S4) whose induced

action converts the mapping in question into itself. This group, denoted by Aut(ϕ),

consists of six permutations, which are explicitly listed in Figs. 1e, 1j. In the general case,

the automorphism group of the mapping ϕ characterizes the symmetry associated with a

particular (expanded) molecular formula and is written in the form:

Aut(ϕ) = {s ∈ Sp : ϕs−1 = ϕ}.

This short notation means that any permutation s ∈ Aut(ϕ) and any w from the set W

satisfy the equation ϕ(s−1(w)) = ϕ(w); here, s−1 is the permutation inverse to s, that is,

the permutation for which s · s−1 = e.

Since, in the general case, chemical bonding in a molecule is determined by a graph

with unlabeled vertices and edges of multiplicities 1, 2, and 3, the connectivity of a
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molecule is characterized by a mapping χ : W {2} → M2 from the set of p(p − 1)/2

unordered pairs of vertex numbers into the set M2 = {0, 1, 2, 3}, |M2| = q2 = 4. Note

that, to describe unlabeled graphs, it is also possible to consider symmetric mappings

χ : W [2] → M2 from the set of ordered pairs of vertex numbers [i, j] into the set {0, 1, 2, 3}.
The symmetry property means that χ([i, j]) = χ([j, i]) for any i �= j.

Furthermore, there are also equivalent mappings among all 4p(p−1)/2 possible mappings

χ that form the set X; evidently, such mappings correspond to the same graph but with

differently numbered vertices. Owing to the existence of equivalent mappings, unambigu-

ous description of molecular connectivity requires consideration of equivalence classes of

such mappings, i.e., orbits of power group Γ2 = ES
{2}
p acting on the set X = MW {2}

2 .

Here, S
{2}
p means the “intermediate” induced group acting on set W {2}; see explanations

in Section 2.

As an illustrating example, let us consider the unlabeled numbered graphs in Figs. 2b,

2g, as well as functional notations and arrow schemes (Figs. 2c, 2h and 2d, 2i), for

two equivalent mappings χ1 and χ2 corresponding to different numberings of the 2-

azabicyclobutane skeleton in Figs. 2a, 2f. Let us prove the equivalence of the mappings

χ1 and χ2. For the permutation s = (1)(2)(3 4) ∈ S4, there exists the corresponding

permutation s̃ in the pair group S
{2}
4 that acts on the set of unordered pairs W {2} and

converts the pair {1, 2} into itself, the pair {1, 3} into {1, 4}, the pair {1, 4} into {1, 3},
etc. Note that edge multiplicities for all pairs {i, j} and s̃({i, j}) necessarily coincide and

this results in the equivalence of mappings χ1 and χ2 with respect to the power group

ES
{2}
4 . To characterize the symmetry associated with molecular connectivity, one should

evidently use the automorphism groups of unlabeled graphs, or, which is the same, the

groups Aut(χ) = {s ∈ Sp : χs̃−1 = χ}; here s̃−1 is the inverse permutation for s̃. As an

example, Figs. 2e, 2j explicitly show the automorphism groups of mappings χ1 and χ2,

which consist of four permutations each.

Summarizing the above material, one can state that fundamental characteristics of

organic molecules — that is, their composition and connectivity — can be put in corre-

spondence with equivalence classes of mappings ϕ and χ, or, in other words, with orbits

of induced groups ESp and ES
{2}
p on sets MW

1 and MW {2}
2 . On the other hand, storage and

manipulation of information in computer memory requires the use of individual mappings

ϕ and χ associated with a certain numbering of atoms in a molecule. Hence, one must

choose some standard, or, as they are often termed, canonical numberings; each of them

represents the entire class of equivalent mappings ϕ and χ. The number of mappings

within each class can be easily calculated as p!/|Aut(ϕ)| or p!/|Aut(χ)| if the orders of

automorphism groups of mappings ϕ and χ are known.

A system of arbitrary or canonical representatives, or the transversal of orbits of group

ESp or ES
{2}
p , evidently consists of pairwise nonequivalent mappings ϕ or χ; at the same
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Figure 2: (b, g) Unlabeled graphs, (c, h) functional notations, and (d, i) arrow
schemes for two mappings χ1 and χ2 corresponding to (a, f) different numberings
of the same 2-azabicyclobutane skeleton; (e, j) automorphism groups of mappings
χ1 and χ2.

time, all other mappings ϕ from MW
1 or mappings χ from MW {2}

2 are equivalent to some

mapping among those forming the transversal. The choice of canonical numberings for

mappings ϕ and χ is based on the following reasoning. Let us assume that a rigorous

linear order is introduced on the sets of labels; this means that the elements of the sets

M1 and M2 are ordered according to their priority, e.g., C < H < Br < Cl < N < O

< P < S and 0 < 1 < 2 < 3 (here, symbols of organogenic elements are arranged in

the priority order generally used by organic chemists; elements of the set M2, i.e., edge

multiplicities, are arranged in the natural order). It is easily seen that any mapping ϕ

(or χ) is characterized by a single linear code, i.e., the sequence of labels corresponding

to the 1st, 2nd, . . . , p-th elements in W or, accordingly, to the 1st, 2nd, . . . , (p − 1)-th,

p-th, (p+1)-th, . . . , p(p−1)/2-th unordered pairs {1,2}, {1,3}, . . . , {1, p}, {2,3}, . . . , {2,

p}, . . . , {p − 1, p} that form the set W {2}. The term canonical numberings for mappings

ϕ and χ refers to numberings of elements of the set W that correspond to the smallest
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(or largest, depending on convention2) linear codes; such codes are also termed canonical.

As an illustration, let us consider codes (C, C, C, N) and (C, C, N, C) for the equivalent

mappings ϕ1 and ϕ2 in Fig. 1; the first of these codes, corresponding to the expanded

formula in Fig. 1b, is evidently the smallest and therefore canonical. On the contrary,

none of the codes (1, 1, 0, 1, 1, 1) and (1, 0, 1, 1, 1, 1) for mappings χ1 and χ2 and

the corresponding graphs in Fig. 2 is canonical; the canonical linear code (0, 1, 1, 1, 1,

1) corresponds to the numbered 2-azabicyclobutane skeleton graph containing no edge

between vertices 1 and 2.

The above reasoning implies that molecular formulas of organic compounds and any

graphs (including molecular graphs) are combinatorial objects. Such a concept of graphs,

especially familiar to specialists in generation of molecular graphs, was first formulated in

mathematical chemistry in 1975 by Kerber [21], who introduced the notion of “symmetry

types” of functions from one finite set into another. Nevertheless, some chemists (e.g.,

see [22, 23]) regard graphs as topological objects, especially when analyzing their realiza-

tions in space. This interpretation is based on the fact that graphs are “dimensionless,”

i.e., contain no information on metric characteristics: edge lengths, angles between ad-

jacent edges, areas, volumes, etc. Evidently, ignoring all metric characteristics, one can

present graphs in the 3D space or on a plane in an arbitrary manner, including the use

of curved, wavy, and any other (even entangled) lines regarded as elastic edges; angles

between adjacent edges in this case can also vary within wide limits. In such a represen-

tation, graphs indeed manifest themselves as topological objects, for which, accordingly,

any continuous deformations are permissible — that is, any displacements of vertices and

any shape variations of elastic edges are allowed but ruptures and subsequent restorations

of edges are forbidden.

However, a thorough analysis shows that the identification of graphs with the corre-

sponding topological objects is correct only for acyclic graphs. For example, Fig. 3a shows

that continuous deformations (unraveling of the tangle and subsequent straightening of

curved edges) indeed convert a strange-looking three-dimensional object into the tradi-

tional pictorial representation of a trigonal bipyramid, which corresponds, for example,

to the PF5 molecule. Hence, “coils of edges,” no matter how entangled they are, present

exactly the same information as acyclic graphs themselves: it is the information on vertex

connectivity and, accordingly, atom bonding. On the other hand, if graphs contain rings,

the corresponding topological objects may contain additional information besides vertex
2 Strictly speaking, there are many other possibilities to construct canonical codes of graphs

(and, accordingly, of mappings χ); these possibilities are associated with different ways of order-
ing p(p− 1)/2 supradiagonal elements or all p2 elements of the adjacency matrix. The problem
of finding canonical numberings of graph vertices is closely related to the problem of recognizing
graph isomorphism; for this reason, dozens of publications in the literature deal with various
heuristic and nonheuristic algorithms of graph canonization.
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connectivity. For example, the spatial objects in Fig. 3b (a two-ring catenane with n = 9

and two independent 16-membered rings) are certainly topologically different, because

they cannot be converted into each other by any continuous deformations in the three-

dimensional space. Nevertheless, the connectivity of vertices in these two objects is the

same; they can be characterized by the same adjacency matrix and, accordingly, represent

the same graph.

Figure 3: (a) Identical and (b) nonidentical topological objects corresponding to the
same (connected acyclic or disconnected cyclic) graph.

From our point of view, one should clearly distinguish graphs per se (combinatorial

objects presenting no geometrical information) and various levels of spatial realization of

graphs. No doubt, one of such levels is the topological level. The topological objects con-

sidered at this level, in addition to information on the adjacency of graph vertices (atom

bonding), contain only information on the relative arrangements3 of “elastic” edges but

still carry no information on any metric characteristics. Another evident level in the de-

scription of spatial realizations of graphs is the conformational level;4 on the contrary, it

3 In contrast to numbered graphs (which are unambiguously characterized by their adjacency
matrices), there are no commonly accepted tools of describing the relative arrangements of elastic
edges or edge chains. Hence, manipulation of topological objects is usually performed without
computer techniques but rather through general reasoning based on the analysis of all conceivable
continuous deformations (vertex displacements and changes in the shape of elastic edges or edge
chains). This fact was mentioned by Simon [24], who states that not only a specific algorithm
but even the general theory of calculating the proposed groups of topological automorphisms
(which characterize the symmetry of topological representations of graphs) is actually unknown.
On the contrary, conformational and geometrical representations can, in principle, be processed
using a computer; for this purpose, one must know the matrix of geometrical distances between
graph vertices and the values of the vertex coordinates, respectively.

4 In contemporary chemical literature, the term conformation is somewhat ambiguous; critical
revision of some of the proposed definitions is given in [25]. In this paper, in accordance with
recommendations from [25], the notion of conformation is used in the broadest sense, i.e., as the
spatial arrangement of atoms at a given moment. Thus, the conformational level is reduced to
the fixation of spatial “snapshots” of graphs or molecules.
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contains complete information on the relative distances between graph vertices (or atoms)

and also on angles, dihedral angles, areas, etc. (with allowance for signs ascribed to these

characteristics) but does not assume knowledge of any coordinate values. Finally, the

next level is the richest in information content; it is the geometrical level, where the coor-

dinates of all vertices (atoms) are also specified. It is easily seen that different geometrical

representations corresponding to the same conformational representation are necessarily

interconvertible through elementary geometrical transformations, such as translations, ro-

tations, and scaling. We should also mention that the series in question consists of a graph

as a combinatorial object and various levels in the description of its spatial realizations;

three possible levels have already been characterized. It is essential that each member

of this series preserves all characteristics specified for the previous members and also ac-

quires some additional features: relative arrangement of elastic edges and edge chains,

angles and (relative) distance characteristics, and precise coordinates of graph vertices,

respectively.

4 Point Configurations and Their Equivalence Classes

One important feature of our approach is that an additional level, termed configura-

tional,5 is introduced between the topological and conformational levels in the description

of spatial realizations of graphs. As an explanatory example, let us consider four spatial

representations of the graph corresponding to the PF5 molecule: all these representations

(Figs. 4a–4d) are identical from the topological standpoint but should be regarded as

four different spatial realizations of the same graph from the conformational standpoint

(and from the geometrical standpoint, which is very close to conformational for a chemist).

However, it is evident that Figs. 4a, 4b are pictorial representations of trigonal bipyramids,

whereas Figs. 4c, 4d are representations of tetragonal pyramids (cf. Figs. 4a–4d and the

representations of six-point figures in Figs. 4e–4h). Note that the numbers and/or shapes

of polyhedral figures formed by quadruples (4-tuples) and quintuples (5-tuples) of graph

vertices are also different for Figs. 4a, 4b, on the one hand, and Figs. 4c, 4d, on the other

hand. For example, analyzing Figs. 4a, 4b, one can easily see 4 planar and 11 tetrahedral

5 The use of the terms configuration and stereochemical configuration is discussed in [25].
For this paper, it is important to distinguish the local configuration, which describes the posi-
tions of ligands around some fixed fragment in a molecule, and the global configuration, which
qualitatively characterizes the relative arrangement of all atoms constituting the molecule in
space or on a plane. Local configurations are widely used for differentiation of stereoisomers
(cis/trans and syn/anti isomers in the case of a double bond, cis/trans and exo/endo isomers
in cyclic systems, etc.) and form the basis of contemporary stereochemical nomenclature (the
Cahn–Ingold–Prelog system [26]). On the contrary, in this paper we are interested in global
configurations of molecules (e.g., of PF5 in Figs. 4a–4d) taken as a whole.
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vertex quadruples, as well as one quintuple 2, 3, 4, 5, 6 forming a trigonal bipyramid, two

quintuples 1, 2, 3, 4, 5 and 1, 2, 3, 4, 6 forming face-centered tetrahedra, and three quintu-

ples 1, 2, 3, 5, 6; 1, 2, 4, 5, 6; and 1, 3, 4, 5, 6 forming disphenoids. Similarly, Figs. 4c, 4d

contain 3 planar and 12 tetrahedral quadruples, as well as 2 tetragonal-pyramidal and 4

face-centered tetrahedral quintuples each. As follows from this example, it is appropriate

to associate global spatial configurations just with the types of polyhedral figures formed

by graph vertices or atoms in space. In the planar case, evidently, it is appropriate to

consider polygonal figures formed by all or some graph vertices (accordingly, atoms) on a

plane.

Figure 4: Polyhedral figures corresponding to the PF5 molecule: trigonal bipyra-
mids with (a, e) equilateral and (b, f) isosceles triangles as their bases; tetragonal
pyramids with (c, g) square and (d, h) rectangular bases.

Note that the currently considered configurational level in the description of spatial

representations of molecules was first mentioned in a publication by Drozd et al. [25].

These authors defined the molecular topological form (MTF) as “a geometrical figure in the

topological sense” (in terms of this paper, as the type of a polyhedral or polygonal figure)

that characterizes the relative arrangement of all atoms, including atoms corresponding

to singular points localized inside the polyhedron or polygon. Evidently, the definition

of MTF introduced in [25] adequately describes the global configurations of molecules

and can easily be applied to spatial realizations of nonchemical graphs as well; for the

latter purpose, the notion of topological form was proposed in [25]. Nevertheless, using

the purely qualitative concept of MTF, one cannot input information on a particular

configuration of a graph or molecule into a computer or unambiguously describe the

position of singular points, e.g., point 1 in Figs. 4a–4d.
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To solve the aforementioned problems, the following step is necessary: to make the

concept of configuration algebraic, i.e., to associate the polyhedral and polygonal figures

with certain combinatorial objects, similar to the aforementioned mappings ϕ and χ.

This step was made in [6], where the composition, connectivity, and global configuration

were interpreted from a common standpoint, namely, as equivalence classes of mappings

from one finite set into another. In the major part of this paper, we formally describe

mappings ψ corresponding to such configurations, construct their equivalence classes,

and discuss some key properties of these configurations. In conclusion, we briefly analyze

superpositions of mappings ϕ, χ, ψ and demonstrate how the concept of the ladder of

combinatorial objects can be applied to formalization of some molecular design problems.

Since the composition and connectivity of a molecule, as considered separately, are

equivalence classes of mappings constituting definite finite sets Φ and X, it is reasonable

to similarly describe the relative positions of atoms in space or on a plane. For that

purpose, one must disregard the molecular structure (i.e., regard a molecule as a collection

of p points in space) and define a set of mappings so that all mappings converted into

each other by renumbering of points would form one equivalence class. It is clear that

one cannot characterize the exact molecular geometry in this way, because the number of

arrangements for a set of p points or atoms in space is infinite, just as, accordingly, the

number of the corresponding mappings and their equivalence classes. On the other hand,

the number of qualitatively different types of polyhedral or polygonal figures formed

by all points (i.e., with positions of internal points also taken into account) is always

finite. So, it is reasonable to associate equivalence classes of mappings characterizing the

configurational level with such types of figures, each type collecting an infinite number of

“snapshots” taken for these (slightly different from each other) p-point figures.

For mappings that unambiguously characterize qualitatively different positions of p-

point systems, we use the term point configurations (PCs); also, equivalence classes of PCs,

which consist of mappings converted into each other by renumbering of points, are termed

abstract point configurations. Note that, if we know the point configuration of a molecule,

this does not mean that we have information on any metric characteristics (interatomic

distances, valence angles, dihedral angles, etc.) or composition and connectivity of this

molecule. In this sense, each PC itself is the equivalence class for an infinite set of spatial,

planar, or linear p-point (p-atomic) systems that have different geometrical characteristics

and correspond to different conformations of the molecule in question.

Mappings ψ can correspond to PCs in the three- (3D), two- (2D), and one-dimensional

(1D) spaces. That is why 3D, 2D, and 1D PCs may be used for describing nonplanar,

planar, and linear molecules, respectively. In the first case, a mapping ϕ : W [d+1] → M3

is constructed for all p(p− 1)(p− 2)(p− 3) ordered quadruples of different points (d = 3);

in the second case, for all p(p − 1)(p − 2) ordered triples of different points (d = 2); in
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Figure 5: Possible arrangements of (a–c) four points in space, (d–f) three points on
a plane, and (g–i) two points on a line. The corresponding values of function ψ are
shown.

the third case, for all p(p − 1) ordered pairs of different points (d = 1). In the three-

dimensional case, an integer is put in correspondence with each quadruple [i, j, k, l] with

arbitrary point numbers i, j, k, and l: +1 (or −1) if the point l is in front of (behind)

the plane where the remaining three points i, j, and k are arranged in the clockwise

direction; ψ([i, j, k, l]) = 0 if all four points are localized in one plane (Figs. 5a–5c).

Similarly, for 2D configurations, we obtain ψ([i, j, k]) = +1 if point k is located to the

right of vector
−→
ij (Fig. 5d); ψ([i, j, k]) = −1 if the point k is to the left of

−→
ij (Fig. 5e);

and ψ([i, j, k]) = 0 if the point lies on the same straight line (Fig. 5f). Finally, in the

case of a linear arrangement of points, the ψ value for ordered pair [i, j] is +1(−1) if the

point j is located to the right (left) of i (Figs. 5g, 5h) and zero if the two points coincide

(Fig. 5i).

Although the values of ψ are determined in this paper on the basis of geometrical

reasoning, several other methods of their calculation are also possible. For example, in

the case when the x, y and z coordinates of points are known, the values ψ([i, j, k, l]) can

be found analytically as well: ψ([i, j, k, l]) = −sgn(Dijkl). That is, each value is equal to

+1, 0, or −1 if the determinant
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Dijkl =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1

xi xj xk xl

yi yj yk yl

zi zj zk zl

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

is negative, zero, or positive, respectively. It is interesting that Dijkl is numerically equal

to the sixfold volume of the tetrahedron formed by the four points. Another way of

specifying a 3D PC is based on the use of the scalar triple product: the value ψ([i, j, k, l])

is equal to 0 (−1 or +1) if the scalar triple product of vectors
−→
ij ,

−→
jk, and

−→
kl assumes a

zero (positive or negative) value. And finally, ψ([i, j, k, l]) may be associated with the sign

of sin(θ), where θ is the dihedral angle formed by two intersecting planes containing points

i, j, k and j, k, l, respectively. This characterictic was named “handedness” by Johnson

et al. [27], who introduced it together with another similar geometrical characteristic,

defined by the sign of cos(θ) and referred to as “clinicity.”

As is seen from the above explanations, the set of labels M3 for 3D, 2D, and 1D PCs

consists of three elements: M3 = {−1, 0, +1}, |M3| = q3 = 3. Such point configurations

are termed ternary. In addition to ternary 3D, 2D, and 1D PCs, sometimes it is necessary

to consider binary configurations, for which M3 = {−1, +1}, |M3| = q3 = 2. It is evident

that binary PCs do not allow location of any four points on a plane (in the 3D case), three

points on a line (in the 2D case), or the superimposition of two points (in the 1D case).

In chemistry, it is obviously appropriate to use only binary 1D PCs, since two atoms

can never overlap. Note that this paper pays only minor attention to 1D configurations,

mainly because any location of points on a line can be described in a much simpler manner,

i.e., by specifying the sequence of the point numbers.

Thorough inspection of Fig. 5 shows that the values of ψ for particular quadruples

(triples, pairs) of points depend not only on the relative arrangement of points forming the

unordered quadruple (triple or pair) but also on the order of point numbers in the notation

of the mapping. For example, as is easily seen from Figs. 5a, 5d, and 5g, ψ([j, i, k, l]) = −1,

ψ([j, i, k]) = −1, and ψ([j, i]) = −1, respectively. The general rule is as follows: any even

permutation (of 4, 3, or 2 vertex numbers) preserves the sign of the mapping, whereas any

odd permutation reverses it. For 2D PCs, six notations ψ([i, j, k]) = z, ψ([j, k, i]) = z,

ψ([k, i, j]) = z, ψ([j, i, k]) = −z, ψ([k, j, i]) = −z, and ψ([i, k, j]) = −z (where z = 0,±1)

correspond to the same arrangement of three points on a plane. In the 3D and 1D cases,

there are 4! = 24 and 2! = 2 such notations, respectively.

Mappings ψ : W [d+1] → M3 with the sign depending on the parity of the argument

permutations and with the arguments being the numbers at the points forming an ordered

(d + 1)-tuple should be called alternating. Hence, 3D, 2D, and 1D PCs are alternating

mappings ψ from sets W [d+1] (d = 3, 2, 1) into sets M3 = {−1, 0, +1} for ternary and
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M3 = {−1, +1} for binary configurations. The sets of all possible alternating mappings

Ψ (subsets of MW [d+1]

3 ) evidently consist of q
( p

d+1)
3 elements.

Before discussing abstract point configurations (i.e., equivalence classes of configu-

rations corresponding to different numberings of points), it is necessary to note that a

configuration can be specified by setting the values of ψ for only one of the (d + 1)! pos-

sible ordered (d + 1)-tuples — i.e., quadruples, triples, or pairs of points. It is natural to

consider the quadruples of points for which i < j < k < l, triples for which i < j < k,

and pairs for which i < j as the standard ones; just the standard quadruples and triples

are used throughout this paper in functional notations and arrow schemes of all mappings

ψ. As an example, see functional notations and arrow schemes shown in Figs. 6a–6f for

three simplest, four-point systems; the values of ψ1, ψ2, and ψ3 for the remaining 23

nonstandard ordered quadruples of points are evidently determined by the alternation of

standard ψ values. Actually, mappings of set W [d+1], d = 3, 2, 1 (consisting of
(

p
d+1

)

(d+1)!

elements) into set M3 are considered only because permutations corresponding to point

renumberings can convert standard quadruples, triples, or pairs of points into nonstan-

dard ones. The situation is somewhat similar to the one described above for mappings χ:

unlabeled graphs may be interpreted both as mappings from the set W {2} of unordered

pairs and symmetric mappings from the set W [2] of ordered pairs of nonidentical vertices

into set M2.

Since there are always equivalent configurations (differing only in the point number-

ings) among q
( p

d+1)
3 3D, 2D, or 1D PCs, the notion of abstract configuration can be intro-

duced only if one considers the equivalence classes of mappings ψ, i.e., orbits of the doubly

induced group ES
[d+1]
p acting on the set Ψ; here, S

[d+1]
p is the intermediate (induced) group

acting on W [d+1]. Let us discuss the simplest example for four-point (p = 4) ternary 3D

configurations. In this case, the set Ψ consists of three (|Ψ| = 34·3·2·1/24 = 3) configurations

ψ1, ψ2, and ψ3, whose arrow schemes are shown in Figs. 6d–6f. Two of these mappings,

ψ1 and ψ2, evidently belong to the same orbit of group ES
[4]
4 . To prove this, it is sufficient

to note that the exchange of numbers between two vertices 2 and 3 in Fig. 6a results

in Fig. 6b; from the formal standpoint, due to alternation, ψ1([1, 3, 2, 4]) = −1 implies

ψ1([1, 2, 3, 4]) = +1, which is equal to the ψ2 value for the ordered quadruple [1, 2, 3, 4].

On the contrary, the mapping ψ3 in Fig. 6f (corresponding not only to the centered tri-

angle in Fig. 6c but also to any other arrangement of four points in one plane) cannot be

obtained from the mapping ψ1 or from ψ2 through any renumbering of points, and hence

it forms separate equivalence class. Orbits of the induced group ES
[d+1]
p , d = 3, 2, 1, which

have just been considered, determine abstract configurations of the first kind. Below,

we consider a specific example showing that abstract configurations of the second kind,

determined by orbits of power group S
S

[d+1]
p

2 , are also of value.

Now let us compare the actual spatial positions of atoms in the 2-azabicyclobutane

skeleton (Figs. 6g, 6h) with the ideal geometry in Fig. 6a. Obviously, the distances ρij,
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Figure 6: (a–c) Functional notations and (d–f) arrow schemes for three possible
four-point 3D configurations; (g) actual spatial arrangement of 2-azabicyclobutane
skeletal atoms and (h) the corresponding distorted tetrahedron.

i, j ∈ {1, 2, 3, 4}, between skeletal atoms of azabicyclobutane are not equal to each other

(ρ14 > ρ12 = ρ13 > ρ24 = ρ34 > ρ23); for this reason, the tetrahedra in Figs. 6g, 6h

are irregular. Hence, it is natural to associate a mapping ψ1, which does not contain

any information on distances, angles, etc., with the regular tetrahedron in Fig. 6a. Since

the rotation group and the rotation–reflection group of a regular tetrahedron (T and Td,

respectively) are supergroups of the rotation and rotation–reflection groups of the tetra-

hedra in Figs. 6g, 6h (C1 and Cs, respectively), it is reasonable to conclude that the

point configuration implicitly contains information on the highest symmetry characteriz-

ing some ideal arrangement of points: i.e., the one with equalized distances between the

points and also averaged angles, dihedral angles, and other geometrical characteristics.

5 Automorphism Groups and Chirality of Combina-

torial Objects Representing Point Configurations

Now we turn to consideration of automorphism groups of point configurations. It

seems natural that permutations from these groups can be put in correspondence with

symmetry operations from rotation and rotation–reflection groups of ideal figures such
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as the tetrahedra in Figs. 6a, 6b. Let us use the designation ψ for the antipode of a

mapping ψ, i.e., for the mapping with the signs of all labels from set M3 replaced by the

opposite ones; as an example of antipodes, one can consider just the mappings ψ1 and

ψ2 in Figs. 6a, 6b. Note that in the case of 3D configurations corresponding to planar

figures, the ψ([i, j, k, l]) values for all quadruples of points are zero; hence, in these (and

only these) cases the mapping ψ coincides with its antipode ψ. As an example, see the

3D configuration ψ3 = ψ3 in Fig. 6c. A similar situation is observed for linear 2D PCs: if

the values ψ([i, j, k]) are zero for all triples of points, then ψ = ψ.

The “normal” automorphism group Aut(ψ) of the configuration ψ is defined to consist

of those permutations from the symmetric group Sp whose doubly induced action converts

the mapping ψ into itself:6 Aut(ψ) = {s ∈ Sp : ψs̃−1 = ψ} (s̃ is a permutation acting

on the set of ordered quadruples, triples, or pairs of points). Permutations from Aut(ψ)

are hereafter referred to as (+)-automorphisms. The second, “expanded” automorphism

group, denoted Aut[ψ], consists of those permutations from Sp whose doubly induced

action converts ψ into itself (that is, of all (+)-automorphisms) and also of permutations

whose doubly induced action converts mapping ψ into its antipode ψ: Aut[ψ] = {s ∈
Sp : ψs̃−1 = ψ or ψs̃−1 = ψ}. Permutations s belonging to Aut[ψ] but not to Aut(ψ) are

termed (−)-automorphisms. For the example in question (Figs. 6a, 6b, 6d, 6e), one can

easily see that the groups Aut(ψ1) and Aut(ψ2) consist of the 12 even permutations from

S4 (since only even permutations of point numbers within ordered quadruples [i, j, k, l] do

not change the sign of ψ). Similarly, one can see that Aut[ψ1] = Aut[ψ2] = S4.

On the other hand, it is well known that all even permutations constituting alternating

group A4 can be put in one-to-one correspondence with operations from the tetrahedron

rotation group T . At the same time, all permutations from S4 can be associated with

operations from the rotation–reflection group Td of a regular tetrahedron. On the basis

of the relationship between symmetry groups of ideal figures and automorphism groups

of mappings ψ, one can draw a more general conclusion: ideal arrangements of points

are such arrangements where all ordered quadruples, triples, or pairs of points converted

into each other by automorphisms from the groups Aut(ψ) and Aut[ψ] are characterized

by equal absolute values of geometrical characteristics (distances, angles, and dihedral

6 The short notation given in the text means that group Aut(ψ) consists of those permutations
s whose corresponding permutations s̃ from the induced group S

[4]
p , S

[3]
p , or S

[2]
p satisfy one of

the following equalities

ψ(s̃−1(w[4])) = ψ(w[4]),
ψ(s̃−1(w[3])) = ψ(w[3]),
ψ(s̃−1(w[2])) = ψ(w[2])

for all ordered quadruples, triples, or pairs of points (denoted w[4], w[3], or w[2]), respectively.
The short notation for permutations constituting the expanded automorphism group Aut[ψ]
should be understood similarly.
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angles). In other words, ideal polyhedral or polygonal figures must be as regular as

it is necessary for the representation of the corresponding automorphisms of the point

configuration in question. In the general case, there is an infinite number of such figures;

one of the reasons stems from the fact that scaling (simultaneous increase or decrease

in distances between all points by the same factor) changes neither the symmetry of the

figure nor the point configuration ψ. Since it is ideal figures formed by collections of

points that make it possible to calculate all ψ values and, in addition, enable one to

visually determine groups Aut(ψ) and Aut[ψ], pictorial representations of such figures are

often used below.

Comparison of the groups Aut(ψ) and Aut[ψ] enables one to draw important con-

clusions on the chirality of spatial, planar, or linear figures formed by collections of

points. Naturally, in the planar or linear case, one can speak of two-dimensional or

one-dimensional chirality, which appears due to the impossibility of superimposition be-

tween a point system and its reflection in the one-dimensional or zero-dimensional mirror,

respectively. Note that comparison of normal and expanded automorphism groups with

each other is meaningful for all mappings ψ corresponding to 3D or 2D PCs except for

mappings that assume zero values for all quadruples or triples of points, respectively. In

the latter two cases, mappings ψ and ψ and, accordingly, both normal and expanded

groups of these mappings are isomorphic to Sp and hence coincide; however, this does

not mean chirality of the corresponding planar 3D PCs or linear 2D PCs. As to 1D PCs,

analysis of mappings ψ corresponding to possible positions of points on a line shows that

all binary 1D point configurations are necessarily achiral; at the same time, ternary 1D

PCs, which allow superimposition of points (and therefore are of no interest for chemists),

can be either achiral or chiral.

Now let us pay attention to the specific role of (−)-automorphisms, i.e., permuta-

tions that belong to the group Aut[ψ] but not to Aut(ψ). It is easily seen that (−)-

automorphisms always correspond to rotation–reflection operations (including reflections

in mirror planes and inversion center) from the point symmetry group of the correspond-

ing ideal figure, since these are just the operations not contained in the rotation group.

A direct consequence of this fact is that ideal arrangements of points corresponding to

2D and 3D PCs for which |Aut(ψ)| < |Aut[ψ]| are always achiral (less symmetric, non-

ideal positions of points can certainly be either achiral or chiral). On the contrary, if

the groups Aut(ψ) and Aut[ψ] coincide for a nonplanar 3D or nonlinear 2D PC, which

means the absence of (−)-automorphisms in Aut[ψ], this implies that any arrangement

of points corresponding to mapping ψ is always chiral. Therefore, point configurations

with coinciding normal and expanded automorphism groups are configurationally chiral.

Note that the equality Aut(ψ) = Aut[ψ] is not associated with the use of information on

the geometrical properties of the collection of points and therefore may be regarded as
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the algebraic criterion of PC chirality.7 On the basis of this and similar criteria (used for

labeled, graph, and molecular configurations, see below), a new principle for classification

of chiral molecular objects has been proposed [9].

Figure 7: (a, b) Enantiomorphic eight-point 3D configurations and the corresponding
“ideal” spatial figures.

As an example of configurationally chiral 3D PCs, Figs. 7a, 7b show the ψ values for

some quadruples of points corresponding to antipodal mappings (ψ4 and ψ5 = ψ4), as

well as the images of the respective regular tetrahedral figures; the dashed lines indicate

that the points 5 and 6 are located in the middles of opposite edges and the points 7

and 8 are the centers of equilateral triangles forming two faces of the regular tetrahedron.

Analysis of Figs. 7a, 7b shows that these eight-point spatial figures with point group C2

are mirror images of each other; also, the only nonidentity symmetry element of both

figures (the rotation axis passing through the middles of tetrahedron edges 1–2 and 3–

4) corresponds to the only nonidentity permutation (1 2)(3 4)(5 6)(7 8) contained in

Aut(ψ4) = Aut[ψ4] = Aut(ψ5) = Aut[ψ5].

7 It is interesting to note the formal analogy between the algebraic criterion of PC chirality
and the classical geometrical criterion of chirality. The analogy becomes evident if one formulates
the classical criterion as follows: a spatial object is chiral if its rotation group coincides with its
rotation–reflection group, or, in other words, with the point symmetry group.
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Note that there is an essential difference between the antipodal mappings in Figs. 6a,

6b and in Figs. 7a, 7b. Achiral 3D PCs in Figs. 6a, 6b can be converted into each

other via certain point renumberings or via induced action of the corresponding (−)-

automorphisms from groups Aut[ψ], as was demonstrated above for the odd permutation

(1)(2 3)(4). Accordingly, they belong to the same equivalence class, that is, to the same

orbit of group ES
[4]
p . At the same time, no such point renumberings exist for chiral 3D

PCs ψ4 and ψ5 in Figs. 7a, 7b, since their expanded groups coincide with the normal ones

and do not contain any (−)-automorphisms. Hence, the mappings ψ4 and ψ5 belong to

enantiomorphic equivalence classes, i.e., two different orbits of group ES
[4]
p , with each of

these orbits consisting only of point configurations that are converted into each other via

point renumbering.

Since, in the case of chiral 3D PCs, each mapping ψ from one equivalence class always

has a corresponding antipodal mapping ψ from the other class, both enantiomorphic

classes may be joined together. For this purpose, one should consider the action of

another power group (different from the group ES
[4]
p ) on the set Ψ. Elements of this new

group, S
S

[4]
p

2 , are ordered pairs of permutations, where the first permutation in each pair

(from group S
[4]
p ), just as earlier, acts on the set of ordered point quadruples, triples, or

pairs, whereas the second permutation (from a group isomorphic to S2) acts on the set of

labels M3 = {−1, 0, +1}. The group isomorphic to S2 consists of two permutations: one

of them is the identity permutation and the second one converts labels −1 and +1 into

each other and label 0 into itself; evidently, it is the action of the second permutation that

reverses the sign of mappings, it i.e., converts an arbitrary mapping ψ into its antipode ψ.

Orbits of the doubly induced group S
S

[4]
p

2 , which consists of 2 · p! permutations, determine

abstract 3D point configurations of the second kind; each of the corresponding equivalence

classes consists either only of achiral configurations (in this case, orbits of groups ES
[4]
p

and S
S

[4]
p

2 coincide) or of pairs of enantiomorphic configurations (e.g., such as ψ4 and ψ5

in Figs. 7a, 7b). Abstract 2D and 1D PCs of the second kind are defined in just the same

way: these abstract configurations are orbits of groups S
S

[d+1]
p

2 , d = 2, 1.

We should specially mention the important difference between mappings ψ, which

describe 3D, 2D, and 1D point configurations, and mappings χ discussed in Section 3,

which describe the connectivity of a molecule. The fact is, two arbitrary mappings χ

and χ ′ corresponding to graphs with numbered vertices can be identical (if χ({i, j}) =

χ ′({i, j}) for all unordered pairs {i, j} of graph vertices); isomorphic (if χ({i, j}) values

can be unequal but mappings χ and χ ′ belong to the same orbit of group ES
{2}
p ); or

nonisomorphic (if χ and χ ′ belong to different orbits of ES
{2}
p ). In the case of point

configurations, arbitrary mappings ψ and ψ ′ can be identical (if the ψ and ψ ′ values

coincide for all quadruples, triples, or pairs of points), isomorphic (if ψ and ψ ′ belong to

the same orbit of the group ES
[d+1]
p , d = 3, 2, 1), enantiomorphic (if ψ and ψ ′ belong to
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different orbits of ES
[d+1]
p but to the same orbit of S

S
[d+1]
p

2 ), or nonisomorphic (if ψ and ψ ′

belong to different orbits of group S
S

[d+1]
p

2 , d = 3, 2, 1).

6 Several Possible Representations of Planar Point

Configurations

Similarly to graphs, which can be represented (e.g., in computer memory) in many

possible ways, representation problems exist for point configurations as well. For simplic-

ity, several possibilities are exemplified here for only one achiral and one chiral binary

point 2D configurations. Let us initially consider ψ6, a four-point 2D configuration whose

ideal geometry is shown in Fig. 8a. Since the number of standard ordered triples always

coincides with the number of unordered triples in W {3}, there are |W {3}| =
(
4
3

)

= 4

values of ψ; the list of these values and the arrow scheme are also shown in Fig. 8a.

Another, the most compact way of representing the 2D PC in question is its linear code

(−1,−1,−1,−1), i.e., the sequence of values of ψ6 on all standard triples [1, 2, 3], [1, 2, 4],

[1, 3, 4], and [2, 3, 4] with point numbers arranged in increasing order. It is notable that

the choice of canonical point numberings and, accordingly, the construction of canonical

codes may be performed according to the same rules as for graphs. For 2D PC ψ6, the

code has the smallest possible value; hence, both the numbering of the “square” 2D PC

in Fig. 8a and the code itself are canonical. If, according to convention, the largest codes

are preferable, then the canonical numbering is the one in Fig. 8c and the canonical code

is (+1, +1, +1, +1).

One more notation for a 2D PC, the least compact one but ensuring direct access to

ψ6 values for all ordered triples of the set W [3], is the p × p × p matrix of the PC, where

the ijk-th entry (i.e., the entry located in the i-th layer, j-th row, and k-th column) is

equal to ψ6([i, j, k]). Note that the matrix entries for which i = j, i = k, or j = k can

be equal to arbitrary numbers, e.g., zeros (see the four-layer matrix in Fig. 8b). It is

important that all ways of representing 2D PCs considered here (and their analogs for

3D and 1D PCs) do not enable one to visualize the symmetry of configurations, which is

determined by their automorphism groups. The last representation of PCs [28] is free of

this drawback; however, it is applicable only to 2D PCs.

Here we apply the term digraph of a 2D PC8 to the complete directed graph with p

vertices and p(p − 1) edges. The label lij for the ij-th arc in this graph is equal to the

number of points located to the right of the vector
−→
ij . In other words, lij is determined

8 The graph-theoretical interpretation of 2D configurations has been developed mostly by the
initiative of Klin [29], who, in addition to digraphs discussed here, proposed a more complicated
construction, i.e., clique-cyclic orientations of graphs L(Kp), which can also adequately describe
binary 2D point configurations and their symmetry.
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Figure 8: (a, c) Functional notations and arrow schemes for two mappings ψ6 and ψ6

corresponding to achiral four-point 2D configurations; (b) matrix representation of
2D PC ψ6; and (d, e) digraphs of 2D PCs ψ6 and ψ6 together with their adjacency
matrices.

by the cardinality of the set {k ∈ W : ψ([i, j, k]) = +1}. As an example, see the diagram

of the digraph for the 2D PC in Fig. 8a and the corresponding adjacency matrix, i.e., the

p × p matrix with zero diagonal entries and off-diagonal entries equal to lij (Fig. 8d). It

is easily seen that the adjacency matrix of a digraph is asymmetric in the general case;

in addition, the sum of off-diagonal entries corresponding to lij and lji is always equal

to p − 2 for binary 2D PCs. Another specific feature of the digraphs in question is that

they are isomorphic if the corresponding geometrically feasible 2D configurations belong

to the same orbit of group ES
[3]
p (as was proved by Klin [28]). For example, the mappings

ψ6 and ψ6 (Figs. 8a, 8c) are isomorphic, as is easily seen if one compares the digraphs in

Figs. 8d and 8e or their adjacency matrices. In the case of matrices, it is sufficient to note

that swapping of the first and second column and the third and fourth ones (together

with swapping of the corresponding rows) converts one of the matrices into the other.

For a visual determination of PC automorphism groups, only the pictorial representa-

tions with ideal geometries (such as those in Figs. 8a, 8c) and digraph diagrams (e.g.,
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Figs. 8d, 8e) are applicable. Within the example in question, it is easily seen that

the groups Aut(ψ6) and Aut(ψ6) consist of four permutations: (1)(2)(3)(4), (1 2 3 4),

(1 3)(2 4), and (1 4 3 2); evidently, the groups Aut[ψ6] and Aut[ψ6] contain also the per-

mutations (1)(2 4)(3), (1 2)(3 4), (1 3)(2)(4), and (1 4)(2 3). Since the expanded groups

contain (−)-automorphisms, the 2D PCs in Figs. 8a and 8c are achiral and therefore iso-

morphic; they belong to the same orbit of group ES
[3]
p . The latter conclusion follows from

the fact that each (−)-automorphism converts the mapping ψ6 into ψ6.

Arrangements of points on a plane corresponding to antipodes ψ7 and ψ7 of a chiral

seven-point 2D configuration are shown in Figs. 9a, 9c. Since the number of unordered

triples for a seven-point system is 35 (
(
7
3

)

= 7 · 6 · 5/6 = 35), only one representation of

the mappings ψ7 and ψ7 is considered here: the adjacency matrices of the corresponding

digraphs can be found in Figs. 9b and 9d. Due to asymmetric arrangement of points on

the plane, one can easily conclude that the rotation groups of the pentagonal figures in

Figs. 9a, 9c and, accordingly, the groups Aut(ψ7) and Aut(ψ7) are identity groups E. It is

somewhat more difficult to visually reveal the absence of symmetry planes for the figures

in Figs. 9a, 9c. The absence of such planes implies that (i) groups Aut[ψ7] and Aut[ψ7]

contain no (−)-automorphisms; (ii) configurations ψ7 and ψ7 are enantiomorphic (belong

to different orbits of group ES
[3]
p but to the same orbit of group S

S
[3]
p

2 ); and (iii) the chirality

criterion is fulfilled for both mappings ψ7 and ψ7, since the equalities Aut(ψ7) = Aut[ψ7]

and Aut(ψ7) = Aut[ψ7] are satisfied.

Figure 9: (a, c) Enantiomorphic seven-point 2D configurations and (b, d) adjacency
matrices of the corresponding digraphs.

To rigorously prove the chirality of these 2D PCs, it is sufficient to show that the

corresponding digraphs are nonisomorphic. Nonisomorphism of the digraphs, in turn, is

easily seen if one compares their adjacency matrices in Figs. 9b, 9d, which are converted

into each other by transposition. Indeed, comparison of rows and columns for matrices

in Figs. 9b and 9d shows that, if the digraphs were isomorphic, vertices 6 and 7 of one

digraph would necessarily correspond to vertices with the same numbers in the second

digraph (since the sets of numbers in the 6th and 7th rows of the both matrices are

identical and do not coincide with the sets of numbers in all other rows). On the other

- 241 -



hand, the matrix entries located at the intersection of the 6th column and 7th row in both

matrices do not coincide, thus proving nonisomorphism of the graphs and therefore the

chirality of the 2D configurations in question.

7 Geometrical Feasibility Problem for Point Config-

urations

Another important property of point configurations is their geometrical feasibility. It

is quite evident that any spatial arrangement of p numbered points in space, on a plane,

or on a line is characterized by a unique 3D, 2D, or 1D configuration, respectively. How-

ever, this fact does not imply that any mapping ψ must necessarily correspond to some

actual arrangement of points in the 3D, 2D, or 1D space. If this requirement is fulfilled,

the configuration ψ is called geometrically feasible. The simplest example of an infeasible

3D configuration is the five-point configuration ψ8 with the code (+1,−1, +1,−1, +1).

To prove the infeasibility of 3D PC ψ8, let us place point 4 above plane 123 (since

ψ8([1, 2, 3, 4]) = +1; see Fig. 10a). Then the value ψ8([1, 2, 3, 5]) = −1 implies that

point 5 must be located below plane 123, that is, in the part of space denoted by A,

whereas the values ψ8([1, 2, 4, 5]) = +1, ψ8([1, 3, 4, 5]) = −1, and ψ8([2, 3, 4, 5]) = +1 im-

ply that this point must be located in the part of space denoted by B. Since A and B have

no common points, there is no place for point 5, and therefore 3D PC ψ8 is geometrically

infeasible.

Using just the same procedure, one can also prove the geometrical infeasibility of the

four-point 2D configuration ψ9 with the code (−1, +1,−1, +1); an analysis of ψ9 values

(Fig. 10b) shows that the parts A and B of the plane do not have any points in common

and, accordingly, there is no place for point 4. Note that there are only three equivalence

classes of binary 2D configurations, i.e., three abstract configurations (of the first and

second kinds) for planar four-point systems. Two of these configurations, represented

by the square in Fig. 8a and the centered triangle in Fig. 6a, are feasible, and one of

them, represented by the aforementioned mapping ψ9, is geometrically infeasible. It is

interesting that the numbers of infeasible configurations increase with increasing p much

faster than the numbers of feasible configurations. For example, according to Faradzhev’s

technique [30], the percentages of geometrically feasible five-, six-, seven-, and eight-

point abstract configurations of the first kind are 25%, 1.3%, 0.0035%, and 0.00000036%,

respectively; see [29]. Evidently, feasibility problems for 2D configurations are not very

interesting for chemical purposes, and this is the reason why only examples related to 3D

PCs are considered below.

Finding the necessary and sufficient criteria of feasibility for arbitrary 3D PCs seems to

be a difficult problem. Nevertheless, some necessary conditions of feasibility can easily be
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Figure 10: Geometrically infeasible (a) 3D and (b) 2D point configurations; pictorial
representations of (c) seven-point 3D configuration and (d–h) its five subconfigura-
tions. Point sets forming each subconfiguration are also listed.
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found. To describe them, here we introduce the notion of point subconfiguration. Let us

use the designation W̃ for any improper subset of set W (W̃ ⊂ W ; p̃ = |W̃ | < p). Then,

an arbitrary mapping ψ : W̃ [d+1] → M3 from the set of
(

p̃
4

)

standard quadruples of points

from W̃ into set M3 = {−1, 0, +1} determines a p̃-point 3D subconfiguration. It is evident

that the notion of subconfiguration closely matches the notion of (induced) subgraph.

As an example, let us consider two (out of 7) 6-point and three (out of 21) 5-point

subconfigurations of the 7-point configuration corresponding to the centered octahedron

in Fig. 10c. These subconfigurations are represented by polyhedral figures in Figs. 10d,

10e and Figs. 10f–10h, respectively; they are apparently obtained by deleting one or two

points from the centered octahedron in Fig. 10c. It is easily seen that
(

p̃
4

)

values of function

ψ (p̃ = 6 or 5) must be calculated to represent these subconfigurations. For the tetragonal

pyramid in Fig. 10h (formed by the 5-subset of points 2, 3, 4, 5, and 6), these values are

as follows: ψ[2, 3, 4, 5] = −1, ψ[2, 3, 4, 6] = −1, ψ[2, 3, 5, 6] = −1, ψ[2, 4, 5, 6] = −1, and

ψ[3, 4, 5, 6] = 0.

It is evident that geometrical infeasibility of at least one subconfiguration inevitably

leads to infeasibility of the point configuration as a whole. For example, any 3D con-

figuration ψ containing a subconfiguration isomorphic to the aforementioned infeasible

3D configuration ψ8 (Fig. 10a) is also geometrically infeasible. Hence, a given p-point

configuration ψ can be feasible only if all its 5-point, 6-point, . . . , (p−1)-point subconfig-

urations are feasible. Unfortunately, however, feasibility of all subconfigurations does not

necessarily imply geometrical feasibility of the p-point configuration itself; for example,

all four-point subconfigurations of any 5-point configuration are always feasible, whereas

a 5-point configuration itself can be infeasible (see Fig. 10a). Therefore, it seems that the

final solution to the feasibility problem may require special, possibly heuristic, algorithms.

Although at present we have no actual procedures for efficient solution of the feasibility

problem, one interesting idea associated with convex hulls of 3D PCs has been mentioned

in [12]. To explain it, let us consider the convex hull formed by the 8 faces of the centered

octahedron in Fig. 10c; these faces are determined by the subsets of points {2, 3, 4},
{2, 3, 6}, . . . , {3, 6, 7}, {5, 6, 7}. Intersections of faces evidently enable one to determine

12 edges (characterized by point subsets {2, 3}, {2, 4}, . . . , {5, 7}, {6, 7}); 6 vertices of the

octahedron (i.e., those numbered from 2 to 7); and one “interior” point (1), which does

not belong to the convex hull. In just the same way, the faces, edges, and vertices can

be found for all polyhedral figures corresponding to subconfigurations, see Figs. 10d–10h.

Note that, in the general case, the “non-vertex” points can also be located on a face (e.g.,

the “face-interior” point 1 in Fig. 10d) or on an edge (e.g., the “edge-interior” point 1 in

Fig. 10f).

For our discussion, it is important that faces of convex hulls (and then edges, vertices,

and interior points of all kinds) can also be found starting not only from polyhedral
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figures but from functional notations of 3D point configurations as well. To recognize

the faces, one should analyze the values ψ[i, j, k, l] for some preselected triple [i, j, k]

and all possible points l; three points i, j, k belong to some face if and only if all these

values are either nonnegative or nonpositive. Thus, the values ψ[2, 3, 4, 1] = ψ[2, 3, 4, 5] =

ψ[2, 3, 4, 6] = ψ[2, 3, 4, 7] = −1 (see Fig. 10c) show that points 2, 3, and 4 are associated

with one (trigonal) face of the centered octahedron, whereas the values ψ[1, 3, 4, 2] = +1

and ψ[1, 3, 4, 7] = −1 demonstrate that there are no faces corresponding to points 1, 3,

and 4 in Fig. 10c. Further analysis enables one to recognize, for any feasible 3D PC, its

edges (formed by points belonging to two faces) and vertices (formed by points belonging

to three or more edges); the “interior” points of three kinds may also be found analytically

without difficulties.

Evidently, for any geometrically feasible 3D PC (and also for each of its subcon-

figurations), the convex hull must necessarily exist. This is not the case, however, for

geometrically infeasible point configurations. To make sure, let us refer to Fig. 10a and

consider the following values of ψ:

ψ[1, 2, 3, 4] = +1 and ψ[1, 2, 3, 5] = −1,

ψ[1, 2, 4, 3] = −1 and ψ[1, 2, 4, 5] = +1,

ψ[1, 2, 5, 3] = +1 and ψ[1, 2, 5, 4] = −1.

These values indicate that the triples {1, 2, 3}, {1, 2, 4}, and {1, 2, 5} cannot form

faces of a convex hull. Consideration of seven other ordered quadruples [i, j, k, l] (for

which i < j < k but l does not necessarily exceed k) shows that no convex hull, in

principle, can be constructed for the infeasible 3D PC in Fig. 10a. This fact enables

us to suppose that, for any geometrically infeasible point configuration with an existing

convex hull, at least one subconfiguration without a convex hull must be found. As a

result, the following heuristic (but not yet rigorously proved) feasibility criterion can be

formulated: any 3D PC is geometrically feasible if convex hulls can actually be constructed

for this configuration and all its subconfigurations. Surely, a similar geometrical feasibility

criterion may be formulated for point 2D configurations; in this case, convex hulls are

formed by edges and vertices of polygonal figures and only two kinds of “interior” points

are possible.

It is interesting that a more rigorous solution of the feasibility problem has been

found by means of a completely different mathematical tools, i.e., Radon partitions and

Grassmann-Plücker relations. More specifically, generation programs for chirotopes and

oriented matroids (these notions, corresponding to our point configurations, have been

introduced earlier [4, 5]) were elaborated by Gugisch [31]. The principles and chemical

applications of this extremely powerful approach are discussed in another paper [32] within

this issue.
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Figure 11: (a–e) Canonical numberings, functional notations, and automorphism
groups of mappings corresponding to geometrically feasible five-point 3D configu-
rations; (f) example of a “nonideal” trigonal bipyramid. Different types of dashed,
dotted, and dash-and-dot lines indicate pairs of points that are converted into each
other by permutations from the induced groups Aut(ψ10) to Aut(ψ14) and the corre-
sponding operations from the rotation groups of “ideal” polyhedral figures.

At the end of this section, we explicitly present the complete set of geometrically

feasible ternary five-point 3D configurations. In this case, evidently, the set Ψ consists

of 3(5
4) = 35 = 243 alternating mappings ψ, which correspond to numbered 3D PCs.

The induced action of the power group ES
[4]
5 (and also power group S

S
[4]
5

2 ) partitions

this set into 12 equivalence classes, among which 6 classes, consisting9 of 20, 30, 40,

60, and 10 nonplanar and 1 planar mappings ψ, are geometrically feasible. Canonical

— i.e., lexicographically smallest — representatives of the orbits of both groups, which

correspond to five nonplanar geometrically feasible 3D PCs, are represented in Figs. 11a–

11e by the corresponding ideal polyhedral figures and the lists of values for mappings from

ψ10 to ψ14.

9 Each equivalence class consists of p!/|Aut(ψ)| numbered 3D PCs (|A| = |Sp| = p!, cf. formula
in the last paragraph of Section 2); the |Aut(ψ)| values are equal to the orders of the rotation
groups D3, C4, C3, C2, and T , respectively) for five ideal polyhedral figures in Figs. 11a–11e.
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As is easily seen from Figs. 11a–11e, 3D PCs from ψ10 to ψ14 are invariant with

respect to geometrical distortions of ideal five-point systems that preserve both the type

of the polyhedral figure itself (trigonal bipyramid in Fig. 11a, tetragonal pyramid in

Fig. 11b, face-centered tetrahedron in Fig. 11c, disphenoid in Fig. 11d, and centered

tetrahedron in Fig. 11e) and the types and arrangements of subfigures corresponding to

four-point subconfigurations. An example of a nonideal spatial realization corresponding

to 3D PC ψ15 = ψ10 is given in Fig. 11f. Although the irregular trigonal bipyramid in

Fig. 11f belongs to the point group Cs, both of its automorphism groups, which express

the highest, “combinatorial” symmetry of this five-point figure, are still isomorphic to

the point groups D3 and D3h. Finally, note that nonidentity of normal and expanded

automorphism groups for all polyhedral figures in Figs. 11a–11e directly implies that

none of these figures is configurationally chiral.

8 Superposed Combinatorial Objects as Characteri-

stics of Labeled, Graph, and Molecular Configura-

tions

Until now, the mappings ϕ, χ, and ψ have been considered separately from each

other. The simplest way to demonstrate their combined application consists in repre-

sentation of molecular structure by superposition of two mappings ϕ and χ, which are

associated with molecular composition and connectivity, respectively. More specifically,

superposition of mappings ϕ and χ (hereafter denoted by κ; symbolically, κ = (ϕ, χ))

characterizes a numbered vertex-labeled multigraph, or, equivalently, a structural formula

with numbered atoms. As an example, see the superposition κ1 of mappings ϕ1, χ1 and

the corresponding 2-azabicyclobutane skeleton graph (Fig. 12a) and compare it with the

expanded molecular formula in Fig. 1b and the unlabeled graph in Fig. 2b. It is easily

seen that the symmetry associated with the chemical structure of organic compounds is

determined by the automorphism groups of labeled multigraphs, which consist, in turn,

of those permutations in the symmetric group Sp that convert both mappings ϕ and χ

into themselves. Hence, the automorphism group of the superposition κ is the intersec-

tion10 of groups Aut(ϕ) and Aut(χ). In the example in Fig. 12a, this group consists of all

permutations that are simultaneously contained in Aut(ϕ1) (of order 6, see Fig. 1e) and

in Aut(χ1) (of order 4, see Fig. 2e).

In just the same way, we introduce the notions of labeled configuration λ = (ϕ, ψ),

which represents the composition and point configuration of a certain molecule; graph

10 It is well known that intersection of two or more permutation groups acting on the same set
is also a group; elements of this group are the permutations that belong to all the intersecting
groups.
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Figure 12: Description of (a) chemical structure and also (b) labeled, (c) graph,
and (d) molecular configurations by means of superpositions of mappings ϕ1, χ1,
and ψ1. Symmetry of the 2-azabicyclobutane skeleton graph and the corresponding
3D LC, 3D GC, and 3D MC are characterized by the automorphism groups of
superpositions κ1, λ1, μ1, and ν1.
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configuration μ = (χ, ψ), which represents the connectivity and the point configuration

of a molecule; and also the molecular configuration ν = (ϕ, χ, ψ), which simultaneously

expresses the composition, connectivity, and the point configuration.11 Pictorial represen-

tations of superpositions λ1, μ1, and ν1 (and also the corresponding automorphism groups)

are given in Figs. 12b–12d. Note that superpositions λ, μ, and ν, just as 3D, 2D, and 1D

point configurations, do not carry any information on the geometrical characteristics of

the figure formed by labeled points (Fig. 12b), vertices of an unlabeled graph (Fig. 12c),

or atoms of a particular molecule (Fig. 12d). As to permutation groups expressing the

symmetry of labeled (LCs), graph (GCs), and molecular (MCs) configurations, it is rea-

sonable, just as in the case of point configurations, to consider both normal and expanded

automorphism groups. More explicitly:

Aut(λ) = Aut(ϕ)∩Aut(ψ), Aut(μ) = Aut(χ)∩Aut(ψ), Aut(ν) = Aut(ϕ)∩Aut(χ)∩Aut(ψ)

and

Aut[λ] = Aut(ϕ)∩Aut[ψ], Aut[μ] = Aut(χ)∩Aut[ψ], Aut[ν] = Aut(ϕ)∩Aut(χ)∩Aut[ψ].

These groups consist of only those permutations from Sp that are present in the “con-

stituent” groups Aut(ϕ), Aut(χ), and Aut(ψ) or Aut[ψ], respectively; this means that

superpositions are never more symmetrical than the constituent mappings ϕ, χ, and/or

ψ. As an example, all permutations from the normal and expanded automorphism groups

of mappings λ1, μ1, and ν1 are explicitly listed in Figs. 12b–12d. Evidently, these permu-

tations unambiguously correspond to symmetry operations from rotation groups (C3, C2,

and C1, respectively) and rotation–reflection groups (C3v, C2v, and Cs, respectively) of the

tetrahedral figures in Figs. 12b–12d. It is notable that, in this example, groups Aut[λ1],

Aut[μ1], and Aut[ν1] coincide with groups Aut(ϕ1), Aut(χ1), and Aut(κ1), respectively.

This is easily explained by the fact that the expanded group of mapping ψ1 (Fig. 6a)

consists of all the 24 permutations in the symmetric group S4.

Note that normal and expanded automorphism groups of point, labeled, graph, and

molecular configurations are essentially different from other groups used in stereochem-

istry. The main difference stems from the fact that automorphism groups are defined

from a purely combinatorial standpoint and therefore represent the qualitative features

of spatial arrangements of points (graph vertices or atoms) even in the absence of infor-

mation on the geometrical characteristics and coordinate values, which may vary within

wide ranges in the general case. Unlike these groups, Nourse’s well-known configura-

tion symmetry groups [33] completely ignore the qualitative geometrical characteristics

11 Note that a molecular configuration can be alternatively defined as a superposition of two
constituents, among which one is a superposition itself: ν = (ϕ, μ) (composition + graph config-
uration), ν = (χ, λ) (connectivity + labeled configuration), or ν = (ψ, κ) (point configuration +
chemical structure). In accordance with this, the normal and expanded automorphism groups of
mappings ν can be written as Aut(ν) = Aut(ϕ)∩Aut(μ) = Aut(χ)∩Aut(λ) = Aut(ψ)∩Aut(κ)
and Aut[ν] = Aut(ϕ) ∩ Aut[μ] = Aut(χ) ∩ Aut[λ] = Aut[ψ] ∩ Aut(κ).
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of molecules, whereas Pople’s framework groups [34], on the contrary, are based on more

detailed consideration of such characteristics owing to the specification of atom positions

on symmetry elements of a molecule.

Most notions introduced above for point configurations are applicable to LCs, GCs,

and MCs and also determined by mappings ψ, which are actually present as constituents

in the superpositions λ, μ, and ν, respectively. For example, labeled configurations,

graph configurations, and molecular configurations can be classified into three-, two-, and

one-dimensional (3D, 2D, and 1D); binary and ternary; chiral and achiral; geometrically

feasible and infeasible; the notion of subconfiguration can also be applied to superposi-

tions λ, μ, and ν. Note that it is reasonable to consider not only geometrical feasibility

(depending on mappings ψ) for 3D and 2D MCs but also their graphical and chemical

feasibility, which are associated, respectively, with intersections of graph edges and with

forbidden distance and angle values for conceivable arrangements of atoms. An example

of a graphically and chemically infeasible 3D configuration is given below, in Fig. 16d.

Let us pay special attention to abstract LCs, GCs, and MCs, which are also classified

into abstract configurations of the first and second kind. First of all, sets Λ = {λ1, . . .},
M = {μ1, . . .}, and N = {ν1, . . .} of all labeled, graph, and molecular configurations

(consisting of |Φ|·|Ψ|, |X|·|Ψ|, and |Φ|·|X|·|Ψ| superpositions, respectively) are partitioned

into equivalence classes with each class containing only the superpositions λi, μi, and

νi such that all their constituents (ϕ, χ, and/or ψ) are converted into each other by

renumbering of points, graph vertices, or atoms in a molecule. It is such equivalence

classes that are termed abstract labeled, graph, or molecular configurations of the first

kind; the number of elements in each class is determined as p!/|Aut(λ)|, p!/|Aut(μ)|,
or p!/|Aut(ν)| (cf. Section 2). For example, knowing the orders of normal automorphism

groups |Aut(λ)|, |Aut(μ)|, and |Aut(ν)| for superpositions in Figs. 12b–12d, one can easily

calculate that classes corresponding to the abstract LC, GC, and MC of the first kind

consist of 4!/3 = 8, 4!/2 = 12, and 4!/1 = 24 superpositions, respectively.

As to abstract configurations of the second kind, they either coincide with abstract

configurations of the first kind (if any pair of the antipodal superpositions λ = (ϕ, ψ)

and λ = (ϕ, ψ), μ = (χ, ψ) and μ = (χ, ψ), or ν = (ϕ, χ, ψ) and ν = (ϕ, χ, ψ) can

be interconverted by induced actions of some permutations in Sp) or are determined by

the union of two enantiomeric12 classes. In the latter case, any interconversion between

12 Two classes that determine LCs, GCs, or MCs of the first kind and are united into a single
class corresponding to a LC, GC, or MC of the second kind are termed here enantiomeric rather
than enantiomorphic in accordance with the chemical tradition. Evidently, the term enantiomers
can also be applied to individual superpositions λ and λ′ if λ is isomorphic to λ′; μ and μ′ if
μ is isomorphic to μ′; or ν and ν ′ if ν is isomorphic to ν ′. However, the use of a similar term
diastereomers for individual LCs, GCs, or MCs and the corresponding equivalence classes is
correct only for LCs of the same composition, GCs of the same connectivity, and MCs of the
same chemical structure.
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superpositions of different classes needs the sign of ψ for all quadruples, triples, or pairs

of points to be reversed.

The aforementioned algebraic chirality criterion for point configurations is naturally

applied to LCs, GCs, and MCs: any superposition λ, μ, and ν is chiral if one of the

following equalities holds:

Aut(λ) = Aut[λ],

Aut(μ) = Aut[μ],

Aut(ν) = Aut[ν],

i.e., if the normal automorphism group of some superposition coincides with its expanded

automorphism group. Note that LCs, GCs, and MCs often turn out to be chiral in cases

where the corresponding point configurations are achiral. The reason for the appearance

of chirality in such cases consists in the absence of all (−)-automorphisms from groups

Aut[ψ], owing to the fact that the corresponding permutations do not belong to the groups

Aut(ϕ), Aut(χ), or Aut(κ) = Aut(ϕ)∩Aut(χ). As a characteristic example (and the one

most important for practical purposes), let us discuss the chirality of compounds Cabde

with an asymmetric carbon atom.

From the classical standpoint, compounds with four different achiral substituents at a

tetrahedral carbon atom are chiral due to disappearance of six symmetry planes and six

rotation–reflection axes of order 4 from point group Td of a regular tetrahedron. However,

this point of view has been criticized, since the actual geometry of a Cabde molecule

is, in principle, different from that of a regular tetrahedron due to differences in bond

lengths and valence angles. For example, Ugi and coauthors emphasize ([16], p.46) that,

“although asymmetric carbon atoms behave as if they had an idealized Td skeleton, they

in fact never have that idealized Td skeletal symmetry.” On the other hand, the symmetry

associated with the type of the polyhedral figure (centered tetrahedron in this case) does

not depend on distortions due to different bond lengths and valence angles. Thus, it is

the reduction of “combinatorial” symmetry for the centered tetrahedral figure due to the

presence of four nonidentical substituents a, b, d, and e that should be regarded as the

actual reason for chirality of tetrasubstituted methanes Cabde.

In order to explain the chirality of compounds with a tetrahedral carbon atom within

our configurational approach, one should analyze the automorphism groups for superpo-

sitions of mappings ϕ3, χ3, and ψ16; the individual mappings are represented by arrow

schemes in Fig. 13a. Evidently, these mappings separately describe the composition,

connectivity, and configuration of the Cabde molecule; at the same time, the point 3D

configuration ψ16 is what unambiguously determines the type of the polyhedral figure:

it is a centered tetrahedron. Figure 13b shows the construction of four possible super-
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Figure 13: (a) Arrow schemes for mappings ϕ3, χ3, and ψ16, which describe the
composition, connectivity, and 3D configuration of a Cabde molecule; (b) super-
positions κ2 = (ϕ3, χ3), λ2 = (ϕ3, ψ16), μ2 = (χ3, ψ16), and ν2 = (ϕ3, χ3, ψ16) and their
automorphism groups, which enable one to recognize chiral configurations.
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positions κ2, λ2, μ2, and ν2 visualized by their pictorial representations and also three

relevant automorphism groups isomorphic to the identity group E, the alternating group

A4, and the symmetric group S4.

Application of the algebraic chirality criterion to superpositions λ2, μ2, and ν2 shows

that the 3D GC μ2 is achiral, whereas the 3D LC λ2 and the 3D MC ν2 are chiral. Fur-

thermore, the automorphism groups indicated in Fig. 13b clearly show that the chirality

of the 3D labeled configuration λ2 and molecular configuration ν2 are explained by the

absence of (−)-automorphisms from the group Aut[ψ16] in the expanded groups Aut[λ2]

and Aut[ν2]. More specifically, the chirality of Cabde molecules does not depend on the

connectivity (compare the groups Aut(μ2) = Aut(χ3) ∩ Aut(ψ16) = S4 ∩ A4 = A4 and

Aut[μ2] = Aut(χ3) ∩ Aut[ψ16] = S4 ∩ S4 = S4) or on the exact geometry of the centered

tetrahedron; on the contrary, it is determined by a purely combinatorial reason: the ab-

sence of (−)-automorphisms in the intersection Aut(ϕ3) ∩ Aut[ψ16] = E. It is the actual

reason for the coincidence of the two groups Aut(ν2) = Aut(ϕ3)∩Aut(μ2) = E ∩A4 = E

and Aut[ν2] = Aut(ϕ3) ∩ Aut[μ2] = E ∩ S4 = E that, in turn, enables one to classify this

kind of chirality as comPositional or P-chirality, see [9].

9 Hierarchy of Molecular Characteristics and the

Ladder of Combinatorial Objects

Now we proceed to a formalization of more complicated constructive enumeration

problems, namely, the generation of nonequivalent superpositions of mappings ϕ, χ, and

ψ. It is quite evident that the trivial way to solve these problems (which includes a

construction of all possible superpositions and subsequent search for those converted into

each other by induced action of permutations from group Sp) is totally inefficient, due to

the enormous volume of computer memory required for the storage of numerous superpo-

sitions. To substantiate a more relevant methodology, it is reasonable to set a hierarchy

of molecular characteristics in question: e.g., composition — connectivity — configura-

tion. Then, at each generation stage, one can construct only elementary mappings (ϕ,

χ, or ψ), which constitute nonequivalent superpositions (κ, λ, μ, or ν) in combination

with mappings generated at the previous stage or stages. For this purpose, an algebraic-

combinatorial construction termed the ladder of molecular objects was introduced [6]. A

fundamental ladder is defined as a ladder where mappings f (1) ≡ ϕ (“composition”) are

constructed at the first stage; mappings f (2) ≡ χ (“connectivity,” forming superposition

κ = (ϕ, χ) in combination with fixed ϕ) at the second stage; and f (3) ≡ ψ (point config-

uration, determining superposition ν = (ϕ, χ, ψ) in combination with fixed ϕ and χ) at

the third stage.
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At first, let us consider the general construction, termed the ladder of combinato-

rial objects (LCO).13 It may consist of any number of steps not associated with prop-

erties of molecules. We specify the initial set W of cardinality p and the symmetric

group Sp = Aut(f (0)) acting on this set. Note that Sp is regarded as the automor-

phism group of the zero step in the ladder (the zero step is fictitious, since no com-

binatorial objects are constructed at this step). The base set for the (n + 1)-th lad-

der step W (n+1) (n = 0, 1, 2, . . .) is defined as the set of ordered or unordered (ln+1)-

tuples of different elements from W ; thus, W (n+1) = W [ln+1] or W (n+1) = W {ln+1}. Note

that the numbers ln+1 are not directly associated with the values of n + 1 and should

be specified independently for each ladder step. Now let us assume that the action

of permutation group G(n+1) induced by the automorphism group of the n-th ladder

step Aut(f (n)) is specified for each base set W (n+1). Furthermore, each step is char-

acterized by its own label set M (n+1), permutation group H(n+1) acting on it,14 and

also predicates, i.e., conditions P (n+1) = {P (n+1)
1 , P

(n+1)
2 , . . . , P

(n+1)
t }. Acting on the set

F (n+1) = {f (n+1) : W (n+1) → M (n+1)}, these predicates enable one to select a definite

subset F̃ (n+1) = {f (n+1) ∈ F (n+1) : P (n+1)(f (n+1))}, which consists of those mappings

f (n+1) (combinatorial objects of the (n + 1)-th step) for which all the predicates are true.

To construct equivalence classes of combinatorial objects f (n+1), a power group Γ(n+1) =

H(n+1)G(n+1)

is specified; |Γ(n+1)| = |G(n+1)| · |H(n+1)|. Elements γ(n+1) of this power

group are ordered pairs (g(n+1), h(n+1)), g(n+1) ∈ G(n+1), h(n+1) ∈ H(n+1), which convert

mappings f (n+1) into equivalent mappings f ′(n+1) = h(n+1)f (n+1)(g(n+1))−1. This nota-

tion means that the value of f ′(n+1)(w(n+1)) is equal to h(n+1)(f (n+1)((g(n+1))−1(w(n+1)))).

The action of Γ(n+1) determines an equivalence relation on the set F (n+1) — and on the

set F̃ (n+1) if all predicates P (n+1) are invariant with respect to Γ(n+1). The constructive

enumeration of representatives of equivalence classes, or, in other words, transversals of

orbits of Γ(n+1) on F (n+1) or F̃ (n+1) is just what constitutes the problem of generation of

combinatorial objects at the (n + 1)-th step of the ladder.

Finally, for each fixed combinatorial object f (n+1), its stabilizer St(f (n+1)) and auto-

morphism group Aut(f (n+1)) are defined as subgroups of groups Sp and Aut(f (n)), re-

spectively; these subgroups produce subgroups of the (ln+1)-ary symmetric group and

induced group G(n+1) that, in turn, ensure conversions of mappings f (n+1) into them-

13 The idea of a ladder of combinatorial objects and the term ladder itself go back to a
publication by Kaluzhnin et al. [35], where the properties of a similar algebraic construction
(Bourbaki’s ladder or scale) was formulated in terms of k-ary relations.

14 In the case of H(n+1) �= E, the groups Aut(f (n+1)) (see below) are expanded automorphism
groups. Although all such groups may, in principle, be used for construction of the next ladder
steps, this situation seems to be of no interest for chemical applications.
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selves. In the symbolic notation,15 St(f (n+1)) = {s ∈ Sp : h(n+1)f (n+1)s̃−1 = f (n+1)} and

Aut(f (n+1)) = {s ∈ Aut(f (n))) : h(n+1)f (n+1)s̃−1 = f (n+1)}; here, h(n+1) ∈ H(n+1) and s̃

denotes the induced action of the permutation s on W (n+1).

It is evident that St(f (n+1)) is independent of Aut(f (n)) and determined solely by

the mapping f (n+1) : W (n+1) → M (n+1); at the same time, Aut(f (n+1)) is a sub-

group of Aut(f (n)) that consists of the permutations belonging to the group St(f (n+1)):

Aut(f (n+1)) = Aut(f (n)) ∩ St(f (n+1)). A direct corollary of this property is that

the groups Aut(f (1)), Aut(f (2)), . . . form a chain of embedded subgroups of group

Sp: Sp ⊇ Aut(f (1)) ⊇ Aut(f (2)) ⊇ . . .; at the same time, each group Aut(f (n+1)),

n = 0, 1, 2, . . . is the intersection of all stabilizers up to the (n + 1)-th step inclusive:

Aut(f (n+1)) = St(f (1)) ∩ St(f (2)) ∩ . . . ∩ St(f (n+1)).

Note that the LCO is a combinatorial construction where some elements are not

uniquely formulated. More specifically, the numbers ln+1, the sets M (n+1) and P (n+1),

as well as the groups H(n+1), are selected in accordance with the nature of the specific

problem irrespective of the previous steps in the LCO. Actually, the relation between the

n-th and (n + 1)-th steps of the ladder exists only due to the action of automorphism

group Aut(f (n)), which induces groups G(n+1) and Γ(n+1) and, in turn, generates group

Aut(f (n+1)) = Aut(f (n)) ∩ St(f (n+1)) for each mapping f (n+1); furthermore, the group

Aut(f (n+1)) is used in the generation of objects at the next step of the ladder. A direct

consequence of the minor dependence between LCO steps is the possibility of construct-

ing various types of ladders, where some adjacent steps may be united (if ln = ln+1) or

interchanged. Just these properties ensure the versatility of the construction and make it

possible to use this ladder for describing many multistep structural problems in chemistry.

10 Ladders of Molecular Objects as Tools for Unam-

biguous Formulation of Generation Problems

Now let us successively characterize three steps of the fundamental ladder of molecular

objects (LMO); this ladder corresponds to the natural hierarchy of molecular characteris-

tics, i.e., composition — connectivity — configuration. We assume that the base set of the

first step W (1) coincides with set W (hence, l1 = 1) and consists of p unnumbered atoms,

whereas the set M (1) consists of symbols of possible organogenic elements: M (1) ≡ M1,

see Section 3. In this case, the mappings f (1) : W (1) → M (1) and the mappings ϕ con-

sidered above (and characterizing the molecular composition) evidently coincide. Hence,

15 Since the action of group G(n+1) on W (n+1) is induced by the action of a certain group
(often the group Sp) on set W , all permutations g(n+1) from G(n+1) can be written in the form
s̃; the tilde is used in this context to emphasize the relationship between arbitrary permutation
s and its induced action s̃ on the set W (n+1).
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F (1) = Φ. As predicates P (1) (extracting subsets F̃ (1) from F (1)), one can consider any

conditions whose violation results in meaningless molecular formulas. Furthermore, it is

evident that G(1) = Aut(f (0)) = Sp, H(1) = E, and Γ(1) = ESp . Therefore, the orbits

of the group Γ(1) on the set F (1) coincide with the equivalence classes of mappings ϕ

considered in Section 3. Note that the stabilizer and the automorphism group coincide

for a fixed mapping f (1): St(f (1)) = Aut(f (1)).

Let us provide an example for the case W = {w1, w2, w3, w4, w5}, p = |W | = 5,

and M (1) = {C, H, N, O−}. Here we imply standard valences of carbon, hydrogen, and

nitrogen atoms; naturally, negatively charged oxygen atoms are assumed to be univa-

lent. The expanded molecular formulas and the smallest linear codes corresponding to

canonical representatives of four orbits of group Γ(1) = ES5 on the set of mappings F (1),

|F (1)| = 45 = 1024, are shown in Figs. 14a–14d; the corresponding mappings f (1) deter-

mine the molecular formulas of five-atom species CH3N, CH2N2, CH2NO−, and H3NO−.

The use of predicates P (1) (or, in other words, the search for orbits of the group Γ(1) on

F̃ (1)) evidently reduces the number of the resulting molecular formulas. For example, the

molecular formula H3NO− fails to satisfy two conditions necessary for chemically mean-

ingful formulas: (i) the sum of valences of chemical elements Z =
∑i=p

i=1 ρ(f (1)(wi)), where

ρ(f (1)(wi)) is the valence of the label from M (1) that corresponds to the i-th atom, must

be an even number (predicate P
(1)
1 ) and (ii) the Z value must be greater than or equal

to 2p − 2; otherwise, the “molecular formula” describes the summarized composition of

two or more molecular species (predicate P
(1)
2 ). Since, for the example in Fig. 14d, it is

easily seen that Z = 1 + 1 + 1 + 3 + 1 = 7 (that is, Z is an odd number smaller than

2 · 5 − 2 = 8), the corresponding mapping f (1) does not belong to the set F̃ (1) and must

be discarded.

Figure 14: Expanded molecular formulas (a) CH3N, (b) CH2N2, (c) CH2NO−, and
(d) H3NO−. The smallest linear codes of the corresponding mappings f (1) are also
shown.

For the second step of the fundamental LMO, we assume W (2) = W {2}, |W (2)| =

p(p − 1)/2 (thus, l2 = 2), and M (2) = {0, 1, 2, 3}, |M (2)| = 4 (thus, M (2) coincides

with the set M2 used in the construction of mappings χ, see Section 3). It is evident

that the molecular objects of the second ladder step f (2) : W (2) → M (2) coincide with the

mappings χ, which characterize molecular connectivity: F (2) = X, |F (2)| = |X| = 4p(p−1)/2.

Nevertheless, since objects of the second ladder step are constructed for a fixed mapping
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f (1) of the first step (for which group Aut(f (1)) and its induced group G(2) that acts

on W (2) are already known), the equivalence classes of mappings f (2) do not coincide

with the equivalence classes of mappings χ, that is, with orbits of group ES
{2}
p on set

X = MW {2}
2 , see above. In other words, although the mappings f (2) themselves describe

unlabeled multigraphs, their equivalence classes correspond to labeled multigraphs with

the vertex labels being determined by the fixed mapping f (1). From the formal standpoint,

Γ(2) = H(2)G(2)

= EG(2)
since the identity group H(2) = E acts on the set M (2) and

the orbits of the group Γ(2) on F (2) determine the equivalence classes of superpositions

κ = (ϕ, χ) for a fixed ϕ. Hence, the construction of orbit representatives for the groups

Γ(2) on the set F (2) ensures the construction of structural formulas where the symbols

of organogenic elements are determined by mappings f (1) and the chemical bonds are

specified by mappings f (2). Finally, note that the predicates P (2) should be formulated

for the generation of chemically meaningful structural formulas only; these predicates

extract subsets F̃ (2) = {f (2) ∈ F (2) : P (2)(f (2))} from F (2), and the orbits of groups Γ(2)

on the sets F̃ (2) correspond to equivalence classes of such mappings f (2) for which all

predicates P (2) are true. As to the stabilizer and the automorphism group of a fixed

second-step molecular object, they do not coincide in the general case, in contrast to the

corresponding groups for the first-step object f (1). More explicitly, the groups St(f (2)) and

Aut(f (2)) express the symmetry of the unlabeled and labeled multigraphs, respectively:

St(f (2)) = Aut(χ) but Aut(f (2)) = Aut(κ).

As examples, let us discuss molecular objects of the second step corre-

sponding to mapping f (1) in Fig. 14b (molecular formula CH2N2). The au-

tomorphism group of this mapping consists of four permutations: Aut(f (1)) =

{(1)(2)(3)(4)(5), (1)(2)(3)(4 5), (1)(2 3)(4)(5), (1)(2 3)(4 5)}. This group induces

the group G(2) of order 4 acting on the set W (2) of 10 unordered atom pairs

({1, 2}, {1, 3}, . . . , {4, 5}) and the group Γ(2) acting on set F (2) of 410 = 1, 046, 576 map-

pings f (2) : W (2) → M (2). Figures 15a–15d show the vertex-labeled multigraphs — or,

in other words, structural formulas — corresponding to canonical (i.e., those with the

smallest linear codes of mappings f (2)) representatives of four orbits of the group Γ(2) on

the set F (2). If the predicates P (2) are to be considered (i.e., if we search for orbits of

groups Γ(2) on F̃ (2)), the multigraph in Fig. 15d should be discarded. Firstly, this multi-

graph is disconnected (predicate P
(2)
1 ), and secondly, the degree of its vertex 1, equal to

2, does not agree with the standard valence value 4 associated with the carbon atom in

accordance with mapping f (1) (predicate P
(2)
2 ).

Note that the generation of nonequivalent objects of the second ladder step (that is,

structural formulas) corresponding to a given molecular object of the first LMO step is

necessary for the solution of an important practical problem, i.e., for structure elucidation

of a novel organic compound on the basis of information on its molecular formula and
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Figure 15: Vertex-labeled multigraphs corresponding to (a) cyanamide, (b) 1H-
diazirine, (c) carbodiimide, and (d) disconnected system consisting of methylene
and molecular nitrogen. The smallest linear codes of the corresponding mappings
f (2) are also shown.

additional (typically, spectroscopic) data. Many structure-generating computer programs

developed by now construct molecular graphs that satisfy a set of given constraints: most

of these constraints are usually formulated in the form of lists of forbidden and required

structural fragments (BADLIST and GOODLIST, respectively). As examples, here we

mention only the pioneering computer implementations by the Stanford group [36, 37],

the most mathematically involved programs of the Bayreuth group [38, 39], and the most

chemically versatile tools elaborated by Moscow scientists [40, 41]. Some other approaches

to structure generation problems can be found in a special issue of this Journal (vol. 27,

1992) and in an extensive review [42].

Now let us consider a pair of fixed mappings f (1) and f (2); hence, the group Aut(f (2)),

which expresses the symmetry of the labeled graph (molecular graph or structural formula

of an organic compound), is regarded as known. During the construction of molecular

objects at the third step of the LMO, it is appropriate to specify the set W (3) for the 2D or

3D space: W (3) = W [3] or W (3) = W [4], respectively. In these two cases, the solution of the

problem consists in the generation of 2D or 3D configurations, which describe the planar

and spatial representations of molecular graphs, respectively. If M (3) = {−1, 0, +1}, then

the alternating mappings f (3) : W (3) → M (3) coincide with the mappings ψ : W [d+1] →
M3, d = 2, 3, which were used in Section 4 for characterization of ternary (2D or 3D) point

configurations. Nevertheless, the equivalence classes of mappings f (3) are not identical

to abstract PCs of the first kind, i.e., to orbits of group ES
[d+1]
p on set Ψ, because their

construction is performed in accordance with the symmetries of labeled graphs determined

by groups Aut(f (2)).

More specifically, the groups Aut(f (2)) induce groups G(3) (acting on W (3)) and then

power groups Γ(3) = H(3)G(3)

= EG(3)
acting on the set F (3) of alternating mappings

f (3). Note that, due to alternation of the mappings in question, the set F (3) consists of

3( p
d+1) (d = 2, 3) mappings. The orbits of the group Γ(3) on F (3) evidently coincide with

equivalence classes of superpositions ν = (ϕ, χ, ψ), which determine abstract molecular
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configurations of the first kind, i.e., planar or spatial stereo formulas. In these formulas,

the distribution of symbols of chemical elements is characterized by mappings f (1), the

atom bonding is described by mappings f (2), and the arrangement of atoms on a plane

or in space is represented by mappings f (3). Note that the generation of abstract molec-

ular configurations of the second kind requires modification of the problem conditions.

If the group H(3) consists of the identity permutation and also other permutation that

interconverts labels −1 and +1 (H(3) is isomorphic to the group S2), then, during the

construction of orbit representatives for the group Γ(3) = SG(3)

2 on the set F (3), a single

mapping f (3) is generated for each pair of antipodal configurations, including those be-

longing to enantiomeric abstract configurations of the first kind. Finally, note that the

generation of chemically meaningful molecular configurations requires the construction of

orbits of the group Γ(3) on the set F̃ (3) = {f (3) ∈ F (3) : P (3)(f (3))}. The set of predicates

P (3) must necessarily contain the predicate of geometrical feasibility (P
(3)
1 , see above) and

also predicates whose violation is forbidden for chemically meaningful stereo formulas. As

an example of predicates characterizing the graphical feasibility, we can mention predi-

cate P
(3)
2 , which discards all embeddings of graphs with intersecting edges. In addition,

some predicates of chemical feasibility should also be taken into account. For example,

predicate P
(3)
3 may be associated with the requirement of planarity for certain four-atom

fragments, consisting, e.g., of double-bonded atoms C=C, C=N, or C=O and α-atoms of

at least two substituents attached to them.

Let us finally discuss the construction of molecular objects of the third ladder

step, corresponding to stereoisomers of 1H-diazirine. The automorphism group of the

corresponding labeled graph in Fig. 15b consists of a single (identity) permutation:

Aut(f (2)) = {(1)(2)(3)(4)(5)}. This group induces a one-element group G(3) acting on

the set W (3) of 5 · 4! = 120 atom quadruples and, finally, also the one-element group

Γ(3) = EG(3)
acting on the set F (3) of 35 = 243 alternating mappings f (3) : W (3) → M (3).

Since the group Γ(3) is the identity group, each mapping f (3) is the canonical representa-

tive of its one-element orbit. Pictorial representations of one planar and three nonplanar

isomers of 1H-diazirine, corresponding to representatives of four selected orbits of group

Γ(3) = EG(3)
on the set F (3), are shown in Figs. 16a–16d. Evidently, these stereoisomers

can be unambiguously described using superpositions ν = (ϕ, χ, ψ); hence, it is easily seen

that mappings ϕ, χ, and ψ correspond to molecular objects f (1), f (2), and f (3) of the first,

second, and third ladder steps, respectively. If predicates of graphical and chemical feasi-

bility P
(3)
2 and P

(3)
3 are taken into account, the “stereoisomer” in Fig. 16d with intersecting

bonds and nonplanar arrangement of atoms in the four-atom fragments (C1H2N4N5 and

C1H3N4N5) should be discarded: the corresponding mapping f (3) does not belong to the

set F̃ (3). Note that the antipodal configurations in Figs. 16b and 16c (mirror images of

each other), which are nonequivalent with respect to the EG(3)
group, become equiva-
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lent with respect to Γ(3) = SG(3)

2 . Hence, the enantiomer of chiral 1H-diazirine with a

larger linear code (i.e., that of Fig. 16c) must not be generated during the construction

of molecular configurations of the second kind.

Figure 16: Graphically and chemically (a–c) feasible and (d) infeasible stereoisomers
of 1H-diazirine. The smallest linear codes of the corresponding mappings f (3) are
also shown.

Note that the generation of molecular objects at the third step of the LMO (i.e.,

stereoisomers) for specific objects of the first and second step (i.e., for a given structural

formula) has not drawn much attention among specialists in mathematical chemistry.

Nevertheless, some computer programs for the construction of molecular graphs, like

CHEMICS by Sasaki [43], contain modules for stereoisomer generation. The best known

“stereo generators” are based on the use of Nourse’s configuration symmetry groups [33];

as examples, we can mention a program elaborated by the Stanford group [44] and also

some research by Zlatina and Elyashberg [45] and by Wieland [46].

11 Dendral Representations of Generation Results

Now let us demonstrate how the results of the constructive enumeration for all steps

of the fundamental LMO can be represented in a compact form. For this purpose, one can

construct rooted trees Tp, which are referred to as dendral representations of the LMO.

The root (zero-level node) of any such tree is labeled with the number |W | = p, i.e., the

number of atoms in the molecular objects in question. Moreover, the results obtained by

the solution of the generation problem for the n-th step of the LMO (n = 1, 2, 3) are drawn

as nodes of the n-th tree level; each of these nodes is connected by a line with the node in

the (n− 1)-th level corresponding to the relevant molecular object of the previous ladder

step. As an example, see Fig. 17, which presents a fragment of the dendral representation

for p = 5, containing the aforementioned molecular formulas (cf. expanded notations in

Figs. 14a–14c), structural formulas (Figs. 15a–15c), and stereo formulas (Figs. 16a–16c).

Now let us assume that solution of generation problems for various values p equal to

2, 3, . . . , N (where N is a finite but fairly large number) has resulted in the construction

of the corresponding dendral representations Tp. The disconnected graph thus obtained,
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Figure 17: Dendral representation (fragment) of the fundamental ladder of molecular
objects: composition — connectivity — configuration.

or the forest of molecular objects, can evidently be used to describe the universal set U(N)

of all conceivable chemical species containing no more than N atoms.

Now we should say a few words about some specific features of the dendral repre-

sentations of the LMO. First of all, a certain subset of U(N) can be associated with an

arbitrary node of each tree Tp, p = 2, 3, . . . , N . For example, the zero-level node corre-

sponds to the set of all p-atomic chemical species, a first-level node corresponds to the set

of species that have the same composition (constitutional isomers), a second-level node

corresponds to the set of species that have the same chemical structure (stereoisomers in

the broadest sense of this word), and, finally, a third-level node corresponds to the set

of species that differ only in their geometrical characteristics (conformations of organic

molecules). Further, it is easy to introduce a partial order relation on the node set of

each tree Tp if we note that the set corresponding to a node at the n-th level of tree Tp

is included in the set corresponding to the “parent” node at the (n − 1)-th level of this

tree (the node that is connected with the node in question by a line). Indeed, the set of

chemical species that have the same structure is a subset of a similar set but formed of

species that have the same composition but possibly different structures, etc. Hence, the

set of all subsets of U(N) is partially ordered by inclusion.

As was mentioned above, the construction of ladders of combinatorial objects may

involve the union of adjacent steps (if ln and ln+1 are equal) or the interchange of steps.

Let us illustrate the second possibility by the example of a nonfundamental LMO, where
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Figure 18: Dendral representation (fragment) of a nonfundamental ladder of molec-
ular objects: connectivity — composition — configuration.

the first step describes the connectivity and the second step describes the composition

of the molecule; the third step, just as before, is associated with point configurations.

In this case, the first step of the LMO is characterized by W (1) = W {2} (thus, l1 = 2),

M (1) = {0, 1, 2, 3}, and the mappings f (1) : W (1) → M (1) coincide with the mappings χ.

Since Aut(f (0)) = Sp and H(1) = E, the groups G(1) and Γ(1) are represented by S
{2}
p

and ES
{2}
p , respectively. In this case, orbits of group Γ(1) on the set F (1) = {f (1)} and

on F̃ (1) = {f (1) ∈ F (1) : P (1)(f (1))} characterize unlabeled abstract p-vertex graphs with

edges of multiplicities 1, 2, and 3. Similarly, for the second step we have W (2) = W (thus,

l2 = 1), M (2) is the set of organogenic elements, and the mappings f (2) : W (2) → M (2)

correspond to the mappings ϕ. Since the groups Aut(f (1)) are known (the automorphism

groups of unlabeled graphs) and H(2) = E, set F (2) = {f (2)} and its subset F̃ (2) = {f (2) ∈
F (2) : P (2)(f (2))} are subject to the action of the group Γ(2) = H(2) G(2)

= EAut(f (1)), and

the orbits of this group characterize the equivalence classes of superpositions κ = (ϕ, χ)

(vertex-labeled graphs and the corresponding structural formulas). As an illustration

of this nonfundamental ladder, a fragment of the corresponding tree T5 containing the

same structural formulas as in Fig. 17 is shown in Fig. 18. Note that the third level has

the same form for the fragments of both trees. This is a trivial consequence of the fact

that the formulation of the third-step generation problem has remained unchanged in the

nonfundamental ladder discussed here.
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12 Concluding Remarks

Summarizing the above results, we can claim that the main mathematical tools con-

sidered in this paper can be successfully applied to other constructive problems of organic

chemistry. Thus, the ladder of combinatorial objects may readily be used for description

of such multistep procedures as transformations of graphs with no vertices of degree 1

and 2 into their “homologs” (i.e., graphs with no acyclic appendages), then into possible

multigraphs containing edges of multiplicity 2 and 3 (corresponding to unsaturated skele-

tons), then into vertex-labeled graphs (corresponding to possible skeleton hetero analogs),

etc. Many of such formal procedures have been mentioned in the literature, and some are

actually useful for solution of molecular design problems (e.g., within the Stanford group

approach [36] to structure elucidation).

Another application of the LCO is associated with our reaction design programs aimed

at systematical search for new types of organic reactions. For example, the recently de-

veloped software ARGENT–1 [47, 48] enables one to successfully construct graphs rep-

resenting signed topologies of bond redistribution, then symbolic equations, and, finally,

reaction equations from a given unsigned topology graph. The last two levels of the

corresponding ladder of reaction objects may reveal unprecedented types and structural

analogs of known organic reactions, respectively.

Our final comment is that the above notion of a combinatorial object is not limited to

the description of hierarchy levels associated with molecular structures. Another direction

in its application stems from the fact that organic chemists traditionally regard molecules

as consisting of some parent (typically, symmetric) skeleton and substituents of various

kinds. Accordingly, there are numerous classification, representation, generation, and

enumeration problems associated with the assignment of labels (i.e., substituents) to

particular positions (sites) of a given skeleton. Many problems of this sort are actually

discussed in papers presented in this issue, and some of them may be formalized by

means of the notion of a combinatorial object. In particular, the application of power

group techniques to the enumeration of some combinatorial objects resulted in generalized

formulas that make it possible to directly count substituted derivatives with chiral as well

as achiral substituents. The derivation and application of these formulas is planned to be

discussed in our further papers in this Journal.
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[39] A. Kerber, R. Laue, T. Grüner, M. Meringer. MATCH Commun. Math. Comput.

Chem., 1990, vol. 37, p. 205–208.

[40] M.S. Molchanova, V.V. Shcherbukhin, N.S. Zefirov. J. Chem. Inf. Comput. Sci.,

1996, vol. 36, p. 888–899.

[41] M.S. Molchanova, N.S. Zefirov. J. Chem. Inf. Comput. Sci., 1998, vol. 38, p. 8–22.

[42] R. Gugisch, A. Kerber, R. Laue, R. Meringer, C. Rücker. MATCH Commun. Math.
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