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In this feasibility study we propose an approach to a unified generation of stereoiso-
mers including conformers of a molecular structure. The method is based on discrete
mathematics, it recognizes and varies the orientation of in principle each quadruple
of atoms. The method has potential to also generate stereoisomers that are not
describable in terms of stereocenters or single bond rotations. Fundamentals such
as the concept of a (partial) orientation function are discussed, and mathematical
tools such as Radon partitions and binary Grassmann-Pliicker relations are used to
construct tests for realizability of abstract orientation functions. Simple examples

are treated in detail.

1 Introduction

Stereoisomers are defined as “isomers of identical constitution but differing in the ar-
rangement of their atoms in space”.:? In contrast to this definition, organic chemists for
practical reasons often count as stereoisomers those different species of identical consti-
tution only that can be isolated or at least observed spectroscopically as distinct species.
Isomers that differ exclusively in torsion angles about single bonds usually cannot be
isolated, due to rapid interconversion, and therefore in this usage of the term are not

considered stereoisomers but conformers.
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Accordingly, attempts to automatically generate all stereoisomers of a given constitu-
tion traditionally neglected rotation about single bonds. The pioneering work of Nourse?
as well as Sasaki’s approach* concentrated on finding stereocenters (an ill-defined term®)
and systematically changing their orientations, under consideration of constitutional sym-
metry. Thus, these methods deal with configuration'? only. Atom coordinates for each
configurational isomer so obtained can be calculated by Elyashberg’s method.® Nourse’s
approach was implemented and further developed by Munk et al.,” by the Bayreuth
group,® by Jaritz,” and by Contreras et al.,}® without its principal limitation being over-
come.

On the other hand, generating all relevant conformers'-2!! for a given compound, that
is, accounting for single-bond rotations, was considered a task quite different from the first.
For that purpose several commercial computer programs were developed, the majority
of which systematically or stochastically change torsion angles about all single bonds
considered rotatable, coupled with force-field calculations, with or without simultaneous
relaxation of bond lengths and bond angles.!? Ring systems cause problems to such
methods, and therefore their conformations were often taken from a preformed library,
or rings were initially cut and finally re-closed.'® Recent alternative approaches based on

the distance geometry concept'*® or genetic algorithms!P

appear promising.

An approach combining stereocenter inversion and single bond rotation was proposed
by Mekenyan et al.'®

Any stereoisomers whose existence cannot formally be traced to the presence of stereo-
centers or to rotation about rotatable single bonds are missed by both kinds of programs.
Thus, e.g. for |2,2|paracyclophanecarboxylic acid A, for 1,12-dimethylbenzo|c|phenan-
threne B, for (E)-cyclooctene C, and for chiral fullerenes such as Cz the structures’
chirality and therefore the existence of enantiomers cannot be detected by any of the

current programs, due to their conceptual limitations.

In the present work we introduce a unified approach to the generation of stereoisomers
including conformational isomers. In contrast to existing approaches to conformations,
that are based on geometrical calculations, ours is completely discrete mathematics-based,

it does not depend on the artificial distinction between configuration and conformation,
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nor on concepts such as stereocenters or stereogenic elements. Our approach is based on
the idea of Dreiding and Dress to use chirotopes (strongly related to oriented matroids)
as a tool for describing conformations.’® The idea was pursued by Crippen and Havel in
chapter 2 of their book.'6 Similar considerations were put forward by Klin, Tratch and
Zefirov'” and by Kuz'min.'® The concepts and mathematics involved may be unfamil-
iar to chemists,'® short previews were given recently.?’ In particular in references 17c-f

generation of molecular conformations is discussed.

The idea is to treat a given conformation of a given molecule of N atoms as a collection
of (irregular) tetrahedra, each tetrahedron formed by a quadruple of atoms. Each of the
(IZ ) quadruples may be considered, or a selected subset only. Each tetrahedron’s volume
is described as a real number, easily calculated as the determinant of a matrix obtained
from the atom coordinates. The determinant is positive or negative if the three last
atoms, seen from the first, are arranged clockwise or anticlockwise, respectively, it is zero
if all four atoms lie in one plane. Correspondingly, a + or — or 0 sign attributed to the
tetrahedron is called the tetrahedron’s or the atom quadruple’s orientation. In a step of
abstraction the conformation can be characterized by a sequence of plus and minus signs
and zeros that describe the orientations of all quadruples considered.

By generating all possible such sequences and constructing for each a molecule-like ar-
rangement (if possible), primarily a set of conformations is obtained that covers large parts
of the total conformational space. In combination with force field energy minimization
conformers may be obtained.

The tasks covered by the existing two types of stereogeneration programs turn out to
be special cases of this approach:

e Configurational isomers only are generated by exclusively varying the orientations

of all tetrahedra formed by the immediate neighbors of a stereocenter.’ This is

equivalent to Nourse’s approach, and ours thus may be considered a generalization

thereof.

e Conformations of a particular configurational isomer are obtained by keeping con-

stant the orientations of these same tetrahedra while varying the others.

2 Methods

2.1 Orientations

Dreiding and Dress suggested to use orientations of quadruples of atoms for describing
steric and conformational information of a flexible molecular structure. Any quadruple

of distinct atoms forms an (irregular) tetrahedron. By the order of the four atoms, an
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orientation is associated to this tetrahedron (and thus to the quadruple of atoms), i.c. a
sign which is +, — or 0. The orientation of the quadruple of atoms ay, as, as, a, having
coordinates (Zq;, Ya;» 2a;)s ¢ = 1,2, 3,4, is determined by the sign of the determinant of a
4 x 4-matrix:

1 1 1 1
Tay Tay Taz Lay

Ya1  Yaz Yaz  Yay

Za

X(a1, az, az, as) = sign(det

1 Zaz Za3 ZCI4
The absolute value of this determinant divided by 6 provides the volume of the tetrahe-
dron. Clearly, this volume is zero if and only if the four atoms lie in a plane. Otherwise,
the volume is nonzero and the sign is either positive or negative.

As a visualization, in a right-handed coordinate system,?! the orientation of four atoms
ai, as, as, and a4, not all lying in one plane, may be determined manually by the “right
hand rule™ Identifying atom a; with the back of the right hand, the orientation is positive
if and only if it is possible to point with thumb, index and middlefinger in direction to
atoms as, az, and ay4, respectively. Equivalently, looking from atom a; to the plane
containing as, ag and a4, the latter three atoms are arranged clockwise.

For practical reasons, we provide a tolerance for zero orientations: Quadruples of
atoms with a corresponding tetrahedron volume less than or equal to a given tolerance
value are assigned orientation 0. This allows, for example, nearly planar rings or nearly
eclipsed bonds to be recognized as planar or eclipsed, respectively.??

202.b grientations with plus and minus signs only were considered

In previous articles
(i.e. no zero orientations). It was argued that small deformations of a planar arrangement
of four atoms will result in very similar conformations having no zero orientations. How-
ever, this leads to difficulties when considering symmetry: For an achiral conformation,
there may exist enantiomorphic chiral deformations. In order to avoid this breaking of
the chiral/achiral property, we decided to allow zero orientations explicitly and even to

allow a relatively large tolerance therefore.

2.2 The orientation function of a conformation

In the following, we consider a molecule made of N atoms in a given conformation. Atom
numbers 1,2, ..., N are arbitrary but fixed. (In section 2.3 we will discuss the influence
of a renumbering of the atoms on the orientations.)

The function y mapping each quadruple of atom labels to the orientation of the corre-
sponding atoms is called the orientation function of the given conformation. One crucial
point of describing conformational information by an orientation function is that we obtain

a classification of all conformations into a discrete set of possible orientation functions.
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Thus by identifying conformations with the same orientation function, we reduce an infi-
nite set of conformations to a finite set of distinct orientation functions.

We could write down the orientation function by listing the function values for all
quadruples. However, the number N* of all quadruples is huge already for medium-sized

N and thus this seems impractical. We will show the following:

1. It is not necessary to write down the orientation of each quadruple explicitly, as the

orientations are interdependent. Some are easily obtained from others.

2. Not all orientations of quadruples are of equal relevance. We may restrict our
investigations to a selection of most relevant orientations, and by so doing we may

describe a conformation on various levels of accuracy.

Note that the reduction of explicitly stored information according to item 1 is without
loss of information, in contrast to that according to item 2.

Because of determinant rules, permutation of two atoms in the quadruple (ay, as, as, as)
will reverse the sign of its orientation. This corresponds to the reversal of configuration on
exchange of two ligands at a stereocenter. In mathematical terms, mappings fulfilling this
property are called alternating mappings. Once we know x(ai, as, as, as), we also know

the following orientations:

x(a1, az, as, as) = x(ay, a3, as, a2) = x(a1, aq, a2, ag) =
a2, 1, a4, CLS) = X(a27a’37a17a4) = X(a27a47a’37a1) =
ar) = x(as, a1, az, as) = x(as, as, a1, as) =

) =

ay, ag, Gz, a1) = X(as, a1, a3,a3) = x(ag, az, a1, as) .

as, 4z, g,

The twelve remaining permutations of (aj,az,as,as) all have the opposite orientation
—x(a1, as, a3, aq). Thus it suffices to write down the orientation of quadruple (ay, as, as, as)
of increasing atom numbers a; < as < az < ay.

For formal reasons we below will need to consider quadruples (aq, as, ag, as) where one
of the atoms occurs multiply. However, as the determinant of a matrix having two identical
columns is zero, x(ai,as,as,as) = 0 in such a case. This corresponds to flattening a
tetrahedron into a triangle by identifying two of its vertices, thereby nullifying its volume.

Thus, instead of N* orientations of all quadruples, we only need to specify

(N) _ NON-1)(N-2)(N-3)
4 2

orientations of increasing quadruples of distinct atoms, in order to specify an orientation
function without loss of information. For example, for N = 10, we have 10* = 10000 and
('}) = 210.
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Figure 1: Example conformations

Listing the quadruples of atom indices in lexicographic order,?® we specify the mapping
X by writing down the orientations of quadruples (ai, as, as, as) with a1 < as < ag < aq.
Thus, the orientation function is described by a sequence of length (1:{ ) that consists of

plus and minus signs and zeros.

Example. Let us consider the conformations shown in Figure 1. The orientation func-
tions are:

Before discussing further ideas to reduce the amount of necessary explicit information for
representing steric and conformational properties, we will consider the influence of the

chosen atom numbering on the orientation function.

2.3 Symmetry, the orientational automorphism group

Renumbering atoms of a molecule, without affecting configuration and conformation, may

lead to an orientation function different from the initial one. For example, exchanging the
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numbers of atoms 1 and 2 in the conformation shown in Figure 1a, compare 1a’, results

in the modified orientation function

O RNANNARNAY
D an > ad sl
Xy =+—+++

la
Note that there is no 1:1 correspondence between orientation and Cahn-Ingold-Prelog
(CIP) designation. The orientation of a particular quadruple depends on the numbering of
atoms, not on their nature. Thus, exchanging atom numbers 4 and 5 in conformation 1a,
compare 1la", will result in orientation X (2,3,4,5) = — instead of Xla(2’3" 4,5) = +,
while the configuration of stereocenter atom 1 remains R, of course.

The orientation function may change under a renumbering even if the molecular graph
remains the same, i.e. even if the renumbering is a graph automorphism. For example,
if we change the labels of the cyclohexane conformation 1b in a cyclic manner (1 — 2,
2—3,3—4,4—5,5—6,6—1) as shown in 1b’, the molecular graph remains the same:
renumbered atoms 1 and 2 are still bonded, there is still no bond between atoms 1 and
3, etc., i.e. the cyclic renumbering is a graph automorphism. However, after renumbering
we obtain the orientation function

NN
Xppy === 0=+ 0——F+0——,

which is exactly the negative of the original orientation function. Orientation functions
obtained from each other by a graph automorphic renumbering are called isomorphic.

It is worth remarking that here is a nice test for chirality: A conformation is achiral if
and only if its orientation function is isomorphic to its negative.'?»16:17f Thus, the fact
that the orientation function of the cyclohexane conformer is isomorphic to its negative
indicates the achirality of the conformer.

Note that achirality does not imply a balanced relation between plus and minus signs
in an orientation function. Note further that also the exchange of atom numbers 4 and
5 in chiral conformations 1la and 1a" above results in the negative orientation function.
However, this renumbering is not a graph automorphism.

A graph automorphism that does not change the orientation function is called an
orientational automorphism. The set of all orientational automorphisms is called the
orientational automorphism group. It is a subgroup of the graph automorphism group?*.

Isomorphic orientation functions differ only due to the chosen atom numbering, they
belong to essentially equivalent conformations. Thus, when generating conformations, we
would like to generate exactly one representative from each class of isomorphic orientation
functions. This is achieved by defining canonic orientation functions. Within each class of
isomorphic orientation functions, we declare one as canonic. There should be an efficient

test to recognize whether a given orientation function is canonic or not.
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A simple choice is to declare the lexicographically minimal one within a class of iso-
morphic orientation functions as canonic. However, the particular choice is not essential.
Essential is the ability to test for canonicity efficiently: Minimality can be tested by cal-
culating and comparing the orientation functions of all graph automorphic renumberings.
For small graph automorphism groups this is practicable.

For a large graph automorphism group, a more sophisticated algorithm is available:?®
One of the authors developed a general algorithm for a canonicity test and thus for testing
isomorphism of mappings such as orientation functions with respect to a prescribed group
of possible relabellings (the graph automorphism group). The canonic form used with this
algorithm has the advantage to be compatible with the orderly generation®® algorithm for
such mappings implemented in the same work. This generation algorithm is used below

for generating partial orientation functions and thus conformers of chemical structures.

2.4 Partial orientation functions (POFs)

As already obvious in example structure 1c, the full orientation function is overly complex
for larger molecules. So we generally restrict our considerations to a few relevant orienta-
tions by selecting a subset S of atom quadruples. The partial orientation function (POF)
with respect to S of a conformation is the orientation function y of the conformation
restricted to the subset S. Thus, a POF x is an alternating mapping x: S — {+, —,0}.

We request S to be closed under permutations of the quadruples and under application
of graph automorphisms of the molecule. In other words, if (a1, as, as,as) € S, then each
permutation of this quadruple should be contained in S, and for each graph automorphism
7 (a renumbering of the atoms) the renumbered quadruple should also be in S. This way,
applying a graph automorphism 7 to a POF with respect to S will result in a POF with
respect to the same selection S. We can introduce canonic forms for POFs with respect
to S, and generate canonic representatives only, avoiding the generation of isomorphic
conformations.

We suggest to select for various purposes various types of quadruples, and further

selections are of course possible.

i) Quadruples consisting of the four (immediate) neighbors of a stereocenter. These

will distinguish classical stereocenter-based stereoisomers.

ii) Quadruples of four atoms linked in a row with a single bond as the central bond.

These will distinguish conformations that arise by rotation about single bonds.
iii) Further quadruples are required to distinguish stereoisomers in examples A-C.

In example B, we could add the quadruple consisting of the two methyl carbon atoms

together with their immediate neighbors. In fact, the atoms of a quadruple not at all
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need to be bonded to each other (those in type i quadruples are not, either). Thus, the
methyl carbon atoms together with any two atoms in the aromatic system could serve as
well. To detect stereoisomerism that is not describable in terms of stereocenters or butane

fragments, it even seems advisable to select quadruples of atoms far apart.

Example. Selecting quadruples of type i and ii, we obtain the following POFs for the

conformations shown in Figure 1:

#°
Xla =+
X, = T+

The amount of stored information is reduced drastically compared to the full orienta-
tion function. Still, different conformations are distinguished, as we will see in the next
sections.

A POF may still be highly redundant. In example 1c, there are nine strongly interde-
pendent quadruples describing the torsion about the rotatable central bond. Along with
the stereocenter quadruples (1,6,7,8) and (2,3,4,5), even a single orientation such as that
of (1,2,3,6) is sufficient to completely describe a particular conformer of lc. However,
the chosen quadruples as an automatically computer-generated selection S are practical,

since this set is certainly closed under graph automorphisms.

2.5 Generation of abstract POFs

So far, we considered a way of describing steric information of a given conformation using
POFs, i.e. sequences of plus and minus signs and zeros. By writing down all possible
such sequences, referred to as abstract (partial) orientation functions, we can therefore
generate quite a lot of conformations. Each abstract POF is a candidate for the POF of

a conformation. We call the following approach

Dreiding’s approach for stereoisomer generation. We obtain conformers and ste-
reoisomers of a molecule by constructing all abstract POFs with respect to a suitable set S
of atom quadruples, i.e. by considering the set of alternating mappings x: S — {+, —, 0},
and selecting those that are realizable in 3D space using reasonable bond lengths, bond

angles and dihedral angles.
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Thus the generation is split into two steps:

1. Combinatorial level:
Generate all abstract POFs that are eligible (by means of simple combinatorial tests)

for a chemical conformation.

2. Geometrical level:

For each of these candidates, try to find a conformer as realization.

Note that there may exist no realization for an abstract POF even if the function fulfills
all tested criteria of step 1. We distinguish three kinds of abstract POFs:

e Y is not realizable:
There is no embedding of the atoms in space such that x is the POF of this embed-

ding.

e Y is geometrically realizable:
There exists an embedding of the atoms into 3D space having y as POF. However,
bond lengths, bond angles and torsion angles are not considered, i.e. the molecule

is assumed to have unlimited flexibility.

e  is chemically realizable.

There is (at least) one conformer! having y as POF.

It is crucial to provide a set of combinatorial tests on level 1 to exclude as many as possible
non-realizable and not chemically realizable abstract POFs. We distinguish two kinds of

tests:

e Tests excluding non-realizable abstract POFs only may be used without any concern.

Their validity can be proven in the mathematical sense.

e Tests excluding geometrically realizable but not chemically realizable abstract POFs
have to be justified chemically. Depending on the problem given, a particular rule

may or may not be acceptable.

The computer program origen, a generator of alternating functions, was developed by

1. This program accepts as input among other

one of the authors for solving step
parameters a set of tuples as relevant function domain (i.e. the set S), a group of possi-
ble relabellings (the automorphism group of the molecular graph), and possibly further
restrictions (allowing a variety of tests for geometrical and chemical realizability). It gen-
erates all non-isomorphic partially defined alternating functions, i.e. all non-isomorphic

abstract POFs.
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Figure 2: Stereoisomers generated for structure la.

For step 2, a sophisticated solution does not yet exist. Nevertheless we are able to
demonstrate the conformer generation according to the proposed strategy for very simple
examples. For this purpose we used a constrained optimization algorithm?’ to optimize a
random arrangement of atoms via a simple energy function similar to MM2,2® restricting
the allowed conformations by the prescribed orientations. Note that, unfortunately, such

an optimization procedure may fail to find a conformer though it exists.

Example. In the following we consider the numbers of abstract POFs for the structures
(constitutions) from Figure 1. As set S, we select again the quadruples of type i and
ii. For a first run, we will not consider any combinatorial tests reducing the number of

candidates on level 1.

la: This example is trivial: The graph automorphism group is trivial, i.e. there are no
graph-automorphisms except the identity. All possible (partially defined) alternat-

ing mappings are:

#°
X1 =+
X2 =—
x3=0

POFs x; and x2 correspond to the two enantiomers shown in Figure 2. POF 3
is not chemically realizable. However, it is geometrically realizable: Any planar

placement of the five atoms has x3 as its POF.

1b: There are 3% = 729 abstract POFs for structure 1b (each of the 6 selected increasing
quadruples can independently be chosen to have orientation plus, minus, or zero).
However, cyclohexane has 12 graph automorphisms. Considering relabellings ac-
cording to these permutations, some of the abstract POFs are isomorphic. Using
origen, we obtain 92 non-isomorphic candidates. Using constrained conformation

optimization, we found chemical realizations for exactly three of these:
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Figure 3: Conformers generated for structure 1b.
X1 =++++—+
Xz =+++—+—
X3 =++————

These correspond to the chair and the two enantiomorphic twist conformers, see
Figure 3. Further examination shows that among the 92 generated abstract POFs,

there is also

corresponding to the boat conformation. However, as the boat is not a conformer,
this is not a chemical realization.

The example cyclohexane was presented in more detail in earlier articles.2°»P In
these, however, zero orientations were not considered. This led to 13 abstract POFs
containing positive and negative orientations only,2 the three chemically realizable
ones among them. If we assume that in saturated rings of size > 6 there are no
conformers with four adjacent atoms in one plane, we can use this as a criterion for
chemical realizability: We restrict the number of 92 non-isomorphic abstract POFs

to 13 abstract POFs without any zero orientation.

Structure 1c has a nontrivial graph automorphism: (1,2)(3,6)(4,7)5,8). From the
311 = 177147 abstract POFs, 89667 non-isomorphic candidates remain. In the next
sections, we will discuss combinatorial tests to reduce this number to a manageable

size.
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2.6 Tests for chemical realizability

In example structure 1c, we have to handle 89667 abstract POFs. In this section we
provide criteria allowing to exclude most of these from further examination. A first
criterion is that the four neighbors of a carbon atom certainly should not be placed in

one plane, see Figure 4a. Thus we apply

Test 1. If (a1, az, a3, aq) are four immediate neighbors of a carbon atom, then we accept

an abstract POF as candidate only if x(a1,as, as, a4) is not zero.

This test excludes the only chemically non-realizable POF of example 1a. It has no effect
on example 1b, since there are no such atom quadruples explicitly considered in 1b. (We
do not care about the hydrogen atoms in this example.) For example 1c, we postulate
x(1,6,7,8) # 0 and x(2, 3,4,5) # 0, whereby the number of generated candidates reduces
to 40095.

The following tests are without influence on examples 1a or 1b. However, they allow to
further reduce the number of candidates for example 1c. We can restrict the orientations
around a rotatable single bond. Consider the situation shown in Figure 4b. The following

should be commonly accepted:

Test 2a. Suppose as and a3 are carbon atoms connected by a single bond, @, is a neighbor
of ay, and ag has another three neighbors. Among the neighbors of as, there is at

most one atom a4 with x(a1, as, as, as) = 0.

Using this rule on example 1c we postulate that e.g. among x(1,2,3,6), x(1,2,3,7), and
x(1,2,3,8), there is at most one function value zero. Using tests 1 and 2a for generation
of abstract POFs, the number of generated candidates for example 1c reduces to 11368.
A stronger version of this test is to enforce that in realizations of candidates, there is at
least one atom on the one side of the plane defined by atoms ay, as, and as, and there is

at least one atom on the other side.
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Test 2b. Suppose ay and ag are carbon atoms connected by a single bond, a; is a neighbor
of ag, and a3 has another three neighbors ay4, o}, and aj. Among (a1, az,as, as),
x (a1, as,a3,a}), and x(ay,az,as,al), there occurs at least one plus and at least one

minus sign.

Note that test 2b implies test 2a. Using tests 1 and 2b on example 1lc, we obtain 956
candidates. Finally, as an even more restrictive variant of this test, we could use the
following one allowing as realizations of candidates only fully staggered and fully eclipsed
conformations at Cgp3-Csps single bonds, with a given tolerance for the zero orientation.

Tolerance was discussed above at the end of section 2.1.

Test 2c. Suppose as and ag are carbon atoms connected by a single bond, a, is a neighbor
of ay, and az has another three neighbors a4, a}, and af. Then x(a1,az,as, as),

x (a1, as,a3,a}), and x(ay, az,as,a) are pairwise not equal.

By test 2c, it follows that among x(a1, az, as, a4), x(a1, a2, as, a}), and x(ay, az, as, aj) all
three possible values 4+, — and 0 occur. Using tests 1 and 2c on example 1c, we retain
no more than 30 abstract POFs. Among these, there are nine chemically realizable ones,
i.e. nine that describe fully staggered conformers. A deeper analysis shows that among the
30 candidates, there are another nine POFs corresponding to fully eclipsed conformations.

If we want to restrict generation to fully staggered conformations of C-C single bonds,

we can provide a further rule that excludes the eclipsed ones.

Test 3. Suppose ay and ag are carbon atoms connected by a single bond, a, is a neighbor
of ag, and a3 has another three neighbors. If a4 and a} are two of these neighbors

and x(a1,as, as,aq) = 0, then x(ay, as, az, ay) = —x(a4, az, az, a}).

Note that x (a1, as, a3, a}y) is necessarily nonzero by either of the tests 2a, 2b or 2c. The
postulated property of test 3 is true for POFs of staggered conformations, as in this case,
atoms a; and ay4 lie on different sides of the plane through as, a3, and a), see Figure 4b.
In an eclipsed conformation, see Figure 4b’, atoms a; and a4 lie on the same side of that
plane, thus for the corresponding POF we have x(ay, as, as, a}) = x(a4, az, as, a}) and the
test fails.

However, with the proposed selection S, this test is not directly applicable: We did
not select the quadruple (aq, as, as, ay). By using the fact that a carbon atom is within the
tetrahedron formed by its four neighbors,*® the required information on the orientation of
(a4, as,as,a}) can be derived from (ag, ay,a},a}). This latter quadruple consists of four
neighbors of a central atom and thus is selected. As atoms a3 and @ lie on the same side
of the plane through afj, ay, and ay, the orientations y (a4, as, as, a}) and x (a4, as, aj, ay) =
X(ag, ag, aj, ay) are identical. Thus we can replace the postulated property in test 3 by

x(ai, ag, as, ay) = x(as, as, aly, aj), which can be evaluated for the abstract POFs.
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Figure 5: Stereoisomers and conformers generated for structure 1c.

Example. Using tests 1, 2¢, and 3 on example 1c, we retain exactly 9 candidate POFs:

SR e
N2NENEN

xX1=+—0-0+04+———
Xo=—+0+0—0—+++
Xs=+0——+00—++—
X4 =—0++—-00+——+
X5 =—0+0+—+-0——
Yo =+0—0—+—+0++
Xr=0+—+-0-0+——
Xs=0—+—+0+0—++
Xo=0—++0——+0+—
All of these are chemically realizable. The realizations turn out to correspond to exactly

three staggered conformers for each of the three stereoisomers, as shown in Figure 5.

These correspond to the orientation functions as indicated by the numbers.
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It should be an easy exercise for the reader to verify that POFs x1, x2, and x4 — xs
describe conformers 1, 2, and 4 — 8. For POFs x5 and xg recall that a conformer may be
correctly described by more than one orientation function, depending on which automor-
phic numbering was chosen (le and x b in sections 2.2 and 2.3). Consider conformer
3’, which is identical to 3 except for the numbering. The numbering of 3’ is obtained
from that of 3 by application of the graph automorphism (1,2)(3,6)(4,7)5,8). POF x3
describes conformer 3’; and thus conformer 3 (since atoms in real molecules do not bear
numbers).?!

Similarly, POF xg describes conformer 9’, which is the mirror image of 9. Since 9
is achiral, mirror image 9’ is identical with original 9, except for the numbering. Again,
numbering of 9’ is obtained from that of 9 by application of the graph automorphism.

Note that of the nine conformers, the first eight form four pairs of enantiomorphic
conformers, as indicated by thin lines in Figure 5. The last conformer is achiral. In
this example enantiomorphic conformers are easily recognized from the abstract POFs,
in that for them all + and — signs are reversed (e.g. in x; and x2). However, due to
automorphisms and canonization rules, this is not generally the case. Thus, in example
1b (section 2.5), abstract POFs x2 and x3 describe enantiomorphic conformers.

Note also that within the first row and within the second row of Figure 5 the orienta-
tions of (2,3,4,5) and (1,6,7,8) are constant. This is necessarily so since (2, 3,4,5) and
(1,6,7,8) are just the quadruples describing the stereocenters. Within the last row, there

is always one + and one — for these orientations.

2.7 Advanced concept I: Radon Partitions

In the following we formalize the considerations used above to make test 3 applicable. A

2 is a pair {A, B} of disjoint subsets of atoms, such that their convex

Radon partition®
hulls intersect. The convex hull of a point is the point itself, the convex hull of two points
is the line between them, the convex hull of three points is the triangle formed by them
and the convex hull of four points is a tetrahedron.??

For example, in Figure 6a the convex hulls of A = {a,c,d}, a triangle, and of B =

{b, e}, aline, do intersect, thus {{a, ¢, d}, {b,e}} is a Radon partition. A similar situation
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Figure 6: Radon partitions; thin lines clarify geometrical relations, while thick lines (in d)
represent chemical bonds.

is shown in 6b, where the intersection point lies on an edge of the triangle. In example 6c,
the convex hull of the three points a, ¢, and d intersects with the one of point b. Finally,
a chemical example of a Radon partition is a central carbon atom on the one hand and
its four neighbors on the other, as shown in Figure 6d. As the central atom is inside the
tetrahedron of its four neighbors, the convex hulls intersect.

We call a Radon partition {A, B} minimal iff it is not possible to remove an atom
from either set A or B without destroying the Radon partition property. In other words,
the Radon partition {A, B} is minimal iff there is no Radon partition {A’, B’} # {A, B}
with A’ C A and B’ C B.

All Radon partitions shown in Figure 6 are minimal except 6b. A minimal Radon
partition in Figure 6b is {{a,d}, {b,e}}. Note that a minimal Radon partition contains
at most five atoms. Radon’s theorem®? states that any 5-set of atoms can be partitioned
into a Radon partition. Furthermore, each 5-set of atoms that are not all in one plane
contains exactly one minimal Radon partition.

One fascinating and very useful feature of minimal Radon partitions is that they can
be obtained from the orientation function, i.e. on a purely combinatorial level, without
considering coordinates. For this purpose we introduce abstract minimal Radon partitions
for an abstract orientation function. It will turn out that a pair {A, B} is a minimal Radon
partition of a conformation if and only if it is an abstract minimal Radon partition of the
corresponding orientation function. Before giving a formal definition of abstract minimal

Radon partition, we first consider an example:

Example. Consider the following abstract full orientation function as a candidate for

structure 1b:
N ACAT AN

© .66,
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For each quintuple (a1, ..., as) of atoms the following procedure will result in an abstract

minimal Radon partition. Consider e.g. the quintuple (a1, ...,a5) = (1,3,4,5,6). For the



-134 -

i-th atom a;, we compare the sign x(a1, ..., ai_1,@i+1, .. .,as) with the sign 3; which is +

if 7 is odd, and — if 7 is even:

atom a; | x(ai,...,a-1,0i11,...,05) | G
a =1 x(3,4,5,6) = + +
as =3 x(1,4,5,6) = + -
as = 4 X(1,3,5,6) = — +
ay=>5 x(1,3,4,6) = + -
as =6 x(1,3,4,5) = + +

We obtain an abstract minimal Radon partition as the pair {A, B} of sets of atoms where
set A consists of all atoms a; whose two signs agree, and set B consists of all atoms with
opposite signs. In the example, we have

{A,B} = {{1,6},{3,4,5}}.

This result will be resumed in section 2.9.

Definition. An abstract minimal Radon partition of an abstract orientation function x
over atoms {1,..., N} is a pair {4, B} of disjoint subsets of the set of atoms, such that

there is a quintuple (a1, ag, ag, as, as) with AU B C {ay, as, a3, aq,a5} € {1,..., N}, and

a; €A = x(ay,... 01, 041,...,05) = [
@ €B <= xla,...,6i1,041,...,05) = [,
+ if i is odd,
where 3, = '
Pi {— if 7 is even.
Note that if x(ay,...,a;i—1,ai41,...,a5) = 0, then a; is neither in A nor in B, i.e. an

abstract minimal Radon partition {4, B} may contain fewer than five atoms. Still, as
for non-abstract minimal Radon partitions, to each 5-set of atoms is assigned exactly one
abstract minimal Radon partition. Now, considering a conformation and its orientation
function (which is, for sure, also an abstract orientation function), we can formulate the

following theorem:

Theorem 1. A pair {A, B} of disjoint subsets of the set of atoms {1, ..., N} is a minimal
Radon partition of a conformation if and only if it is an abstract minimal Radon partition

of its orientation function.3%-36

This theorem can be applied to deduce unknown orientations from known ones of an
abstract POF.

Example. We already mentioned that a central carbon atom on the one hand and its
four neighbors on the other form a minimal Radon partition. We have such a situation in
example 1c. Thus, {4, B} = {{1},{2,3,4,5}} is a minimal Radon partition of conforma-
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tion 1c. According to the theorem, {4, B} is also an abstract minimal Radon partition of
its orientation function. Knowing only the partial orientation function shown in section

2.4, we have the following situation, corresponding to the quintuple (1,2,3,4,5):

atom a; | x(a,...,ai-1,0i11,...,05) | G
a =1 x(2,3,4,5) =+ +
as =2 x(1,3,4,5) = 7 —
as =3 x(1,2,4,5) = 7 +
as =4 x(1,2,3,5) =7 —
as =5 Y(1,2,3,4) = ? +

As we know that the minimal Radon partition separates a; from the remaining four atoms,
and as the signs in the table corresponding to a; are equal, it follows that the signs for

atoms ay — as need to be opposite in the table. Thus we conclude:

X(1737475) :+7 X(1‘27475) = _7 X(1727375):+7 X(1727374) =
Similarly, by knowing x(1,6,7,8) = — the following values ensue by the minimal Radon
partition {A, B} = {{2},{1,6,7,8}}:

X(27677a8):_7 X(17277>8) = X(172~6,8) =+, X(172767) =

This result is not surprising, since above, using chemical intuition, we classified as impor-
tant no more than one out of five such function values. On the other hand, this allows to
replace in tests orientations of non-selected quadruples by those of selected ones, as done

in test 3 above.

2.8 Advanced concept II: Binary Grassmann-Pliicker Relations

From the orientations being signs of determinants it follows that the orientation function
of any conformation fulfills the binary Grassmann-Plicker-Relations:3"

Binary Grassmann-Pliicker Relation. If two quadruples of atoms (ay, ..., as) and
(b1, ...,bs) have the same nonzero orientation, then there is at least one atom b; in the
second quadruple such that quadruples (b;,as,as,as) and (by,...a,...,bs), arising by

exchange of a; and b;, have the same nonzero orientation.3

The “same orientation of the first-mentioned two quadruples may or may not differ from
the “same orientation” of the second two quadruples. In formal terms:
X(a1, az, a3, as) = x(b1,ba, b3, bs) # 0 =
Jie{l,...,4} : x(bi,az,a3,a4) = x(b1, ..., 0a1,...,bs) #0.
1

ith position
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Example. Consider the constitution of 1c and the set of its abstract POFs. The binary
Grassmann-Pliicker relation corresponding to atom quadruples (4,3,1,2) and (6,7,2,1)

is as follows:

x(4,3,1,2) = x(6,7,2,1) 7éo —
(i=1): x(6,3,1,2) = x(4,7,2,1) #0 or
(i=2): x(7, 3,172) x(6,4,2,1)#0 or
(i=3): x(2,3,1,2) =x(6,7.4,1) #0 or
(i=4): x(1,3,1,2) = x(6,7,2,4) #

The last two possibilities are false for any orientation function x, as (2,3,1,2) and
(1,3,1,2) both contain one atom twice, thus these orientations are zero. We reformu-

late the condition by bringing each quadruple in increasing order:

(=x(1,2,3,4)) = (—x(1,2,6,7)) #0 =
(—x(1,2,3,6)) = (—x(1,2,4,7)) #0 or
(=x(1,2,3,7)) = (+x(1,2,4,6)) #0
or equivalently,
x(1,2,3,4) = x(1,2,6,7) #0 =
x(1,2,3,6) = x(1,2,4,7) #0 or
—x(1,2,3,7) = x(1,2,4,6) # 0

We can use minimal Radon partitions to replace non-selected quadruples by selected ones:
Any conformer of constitution 1c has the minimal Radon partitions {{1},{2,3,4,5}}
and {{2},{1,6,7,8}}. Thus, as argued in the example at the end of the previous sec-
tion, x(1,2,3,4) = —x(2,3,4,5) and x(1,2,6,7) = x(1,6,7,8). The condition may be
reformulated as follows:

—x(2,3,4,5) = x(1,6,7,8) #0 =

x(1,2,3,6) = v(1,2,4,7) #0 or
—x(1,2,3,7) = x(1,2,4,6) # 0

This condition is true for the POF of any conformer of 1c. We may check it for the POF
of the one shown in Figure 1.

The orientations x(2,3,4,5) = + and x(1,6,7,8) = — fulfill the premise: They are
antipodal and nonzero. As x(1,2,3,6) = 0, the first possibility of the conclusion is false.
Thus the only remaining possibility must be true, i.e. x(1,2,3,7) and x(1,2,4,6) must
be antipodal and nonzero. Indeed, we can see x(1,2,3,7) = + and x(1,2,4,6) = —
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Note that different binary Grassmann-Pliicker relations may lead to the same condition.
E.g., the one corresponding to (3,4,1,2) and (7,6,2, 1) leads to the same condition as the
one discussed above. Test 4 checks all such criteria obtained by binary Grassmann-Pliicker

relations:

Test 4. Whenever two quadruples (a1, az, as, as) and (b, by, bg, by) and all derived quadru-
ples occurring in a binary Grassmann-Pliicker relation are either selected directly,
or may be derived from a selected quadruple by known minimal Radon partitions
as demonstrated above, then ensure that the binary Grassmann-Pliicker relation is
fulfilled.

In example 1c we can check altogether 30 relations of this kind. Though the formulation
is quite complicated for humans, the test itself is very efficient in a computer and reduces
the number of eligible abstract POFs remarkably. Test 4 in combination with tests 1-3

reduces the number of candidates generated as follows:

e Using tests 1 and 4, we obtain 528 non-isomorphic candidates for orientation func-
tions (instead of 40095 using test 1 alone).

e Using tests 1, 2a, and 4 we still obtain 528 candidates. This means that test 2a used
in combination with test 4 did not sharpen the restrictions on realizable POFs.

e Using tests 1, 2b, and 4 we still obtain 528, thus even test 2b does not add any
stronger restriction.

e Using tests 1, 2¢, and 4 we obtain 18 candidates, i.e the 12 non-realizable candi-
dates from the run with solely tests 1 and 2c¢ were successfully suppressed by the
Grassmann-Pliicker test 4.

e Using tests 1, 2¢, 3, and 4 we obtain again the 9 candidates corresponding to 9
staggered conformers. Here, as expected, the additional test 4 did not change the

result.

2.9 Further tests based on minimal Radon Partitions

A conformation cannot have a minimal Radon partition of the form {A, @}, as the convex
hull of the empty set is empty, and thus, trivially, its intersection with the convex hull of
A cannot by nonempty. However, abstract POFs may have abstract minimal Radon par-
titions of the form {A, @}. Such abstract POFs are not realizable because of theorem 1.%°

Thus we can restrict our candidate abstract POFs by the following test:

Test 5. Ensure that x has no abstract minimal Radon partition of the form {4,0}.
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Ha, b, e}, {d, e}} Ha,b,c.d}, {e}}
a b

Figure 7: Two chemically forbidden minimal Radon partitions; full lines represent chem-
ical bonds, while broken lines clarify geometrical relations.

Example. Consider the following abstract full orientation function for example la:

This candidate passes tests 1 to 4: Test 1: x(2,3,4,5) # 0. Tests 2a, 2b, 2c and 3 are
trivial, as there is no relevant quadruple. Test 4 is passed, as any two quadruples must
have at least 3 atoms in common (there are only five atoms in the structure) and it is
easily shown that the binary Grassmann-Pliicker relations belonging to two quadruples
(a1, as,as3,a4) and (b1, by, bs, by) with at least three atoms in common are trivial, as the
premise occurs among the four possibilities of the conclusion.

However, we will show that x has an abstract minimal Radon partition of the form
{A,0}. Consider quintuple (a1, az, as, a4, as) = (1,2, 3,4,5):

atom a; | x(ay,...,a;- 1,ai+17.‘.,a5) B;
a =1 X(2,3,4,5) = n
ag =2 x(1,3,4,5) = —
az =3 x(1,2,4,5) = +
a =4 X(1,2,3 5) -
as =5 X(1,2,3,4) +

Comparing the signs in the table, we obtain the abstract minimal Radon partition

{{1,2,3,4,5},0}. Thus the orientation function x is not realizable.

A further test is based on chemical experience: We can exclude some kinds of abstract
minimal Radon partitions that would result in conformations of high steric energy. Ex-
amples of such “forbidden minimal Radon partitions” are shown in Figure 7. Figure 7a
illustrates the rule that a bond (de) must not cross the triangle formed by two consecu-
tive bonds (bac). Thus we can exclude any abstract POF containing an abstract minimal
Radon partition {A, B} = {{a,b,c}, {d, e}} with this bond pattern. Figure 7b illustrates
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Figure 8: A non-chemical arrangement of atoms for structure 1b.

the rule that the space inside a tripod formed by three bonds emanating from one atom
(ab, ac, ad) must not be occupied by another atom (e). Thus we can exclude any abstract
POF containing an abstract minimal Radon partition {A, B} = {{a,b,c,d},{e}} with
this bond pattern.

Test 6. Ensure that in abstract POFs no abstract minimal Radon partition of the forms

shown in Figure 7 will occur.

Example. Consider the abstract full orientation function x of constitution 1b

© 1066 O
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X =t+++++—t++—t++++++

that was already examined in the first example of section 2.7. There we demonstrated
that x has the abstract minimal Radon partition {{1,6},{3,4,5}}. In Figure 8 an ar-
rangement of six atoms having this orientation function is shown. Thus this function is
realizable. However, since in 1b there are chemical bonds 3-4, 4-5, and 1-6, this arrange-
ment contains the chemically forbidden minimal Radon partition drawn in Figure 7a,
whence this realization of y is not a chemical realization. Moreover, as any realization
of the abstract POF has the minimal Radon partition {{1,6},{3,4,5}} according to the-
orem 1, any realization has a forbidden minimal Radon partition and thus the abstract

POF is not chemically realizable.

‘We here applied the test to an abstract full orientation function and successfully excluded a
non-chemically realizable one. The test is applicable only in situations where five quadru-
ples (a,b,¢,d), (a,b,c,e), (a,b,d,e), (a,c,d,e) and (b, ¢,d, e) are all either selected or their
function values can be obtained by known minimal Radon partitions. Only in such a case
can we determine the abstract Radon partition corresponding to the 5-set {a,b, ¢, d, e}
and decide whether or not it is a forbidden one. However, if we select quadruples of type
i and ii, then as a rule no such cluster of five quadruples is available, and test 5 and test 6

do not exclude any candidate abstract POF.



- 140 -

3 Discussion

Organic chemists traditionally distinguish stereoisomers and conformers, where the former
are fully characterized by their configuration, the latter by their conformation. Since this
distinction is artificial, mathematics should be able to treat stereoisomerism in a unified
manner. A step in this direction is presented here.

There are (JZ ) quadruples of atoms in a molecule. This number scales with N* and
thus seems to render the approach impractical. However, by selection of only few relevant
quadruples the complexity of algorithms could be kept within manageable limits. Selection
of neighbors of stereocenters only would result in an analogon to Nourse’s algorithm which
has proven to be efficient even for large molecules. By selecting further quadruples, we
have the possibility to generate conformers and (nonclassical) stereoisomers in addition
to classical stereoisomers. By the number of selected quadruples, we may generate sets of
conformations that cover the conformational space more or less thoroughly.

Stereogenic double bonds are expected not to cause major problems to our approach,
since a double bond was shown by Nourse already to be treatable as a special kind
of stereocenter.®> The suggested selection of quadruples of types i and ii is not able to
distinguish 60° and 90° torsion angles. An open question is whether these are distinguished
by selecting another few quadruples.

Generation of all possible patterns of orientations, i.e. of abstract partial orientation
functions (POFs), has been demonstrated here for small examples and is effective also for
larger molecules, as long as the amount of selected quadruples remains moderate. By using
various combinatorial tests, the number of generated abstract POFs is kept manageable.
As a demonstration, we present the number of abstract POFs generated for cyclohexane
through cyclotetradecane when selecting all quadruples of type ii, both all abstract POFs

and abstract POFs without zero function values.

structure CeHio C7Hia CgHis CoHig CioHao CizHzo CiaHag CisHas CigHog
abstract POFs 92 198 498 1219 3210 8418 22913 62415 173088
without zeros 13 18 30 46 78 126 224 380 687

The computation times (sec) on a Dual Core AMD Opteron Processor 265 were as follows:

structure CeHiz C7His CgHis CoHig CioHao CizHzo CioHaa CisHae CisHog
abstract POFs Os 0Os Os 0.2s 0.4s 1s 4s 16s 74s
without zeros Os Os Os 0Os 0Os Os 0.2s 0.4s 0.5s

Note that for the cycloalkane examples, tests 1-6 do not exclude any candidate abstract
POFs. By developing further combinatorial tests, it should be possible to reduce the

number of candidates generated in this case also.



-141-

The main missing part necessary for investigations on larger examples is an efficient
tool for constructing reasonable embeddings of atoms in space for a given abstract POF.
For the small examples treated here we used as a workaround constrained conformation
optimization of random atom placements. More sophisticated methods are desirable. As

41

a starting point the work of Richter-Gebert*® and Shor*! could serve. Also the Grobner

base approach by Hazebroek and Oosterhoff*? could be combined with the orientation

functions approach, as suggested in an earlier paper.2°®

The question has often been raised how completely a particular conformer generation
algorithm covers the total conformational space.!?* The exhaustiveness of our method is
controlled by the selection of quadruples. When selecting all quadruples, we expect that
in principle no conformer sufficiently different in structure from others will be missed.
However, complexity increases heavily with increasing number of selected quadruples.
We demonstrated for small examples that a small selection of quadruples can suffice to
provide an exhaustive overview over the conformation space.

We cannot exclude the possibility that there might be distinct conformers not differing
in the orientation of any quadruple. Thus even selecting all quadruples does not guarantee
to find each conformer. One would expect such hypothetical unresolved twin conformers
to be of very similar structure, whence missing one would not be too bad. However, the
situation is worse, since it turned out that the realization spaces of orientation functions
could be arbitrarily complicated, as Mnév pointed out.*3 Thus, theoretically, there could
even exist two conformers not differing in any quadruple orientation, but having consider-
ably different geometric structures. Still, the hope is that such orientation functions with

“strange” realization space will not be of chemical relevance.
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