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Abstract. The trend of Kekulé valence structures number (K) of some twisted families of 
polyhex tubes (Tu(6,3)HHt[c,n]) is presented. The polyhex tubes with thin diameter are 
more strained and have the largest K value. An analytical formula for calculating the K 
value of Tu(6,3)H[c,n] tubes is presented. Numerical calculations of strain energy and K 
for families of Tu(6,3)H[c,n] tubes are also given. 

 

INTRODUCTION 

 A polyhex tube can be designed from a tetragonal (4,4) net embedded1 on the cylinder. 

Next, the (4,4) pattern is modified (using cutting operations) to give a hexagonal (6,3) net.2-6 

 By deleting each second horizontal edge and alternating edges and cuts in each second 

row it results in a standard (6,3)H/Z pattern (Figure 1,a). A vertical action of the above algorithm 

leads to a standard (6,3)V/A  pattern (Figure 1,b). The specifications Z (zigzag) and A (armchair) 

come from the shape of the tube cross-section. 

 The tubes thus generated are named by a string specifying the tiling and dimensions of the 

net: Tu(6,3)[c,n]), with the (integer) parameters in the tetragonal brackets being the number of 

atoms in the tube cross-section (c) and the number of cross-sections along the tube (n). 

Twisted, chiral, tubes can be generated by horizontal twisting of a row of connections 

(Figure 2,a). Edge cutting is further needed to change squares into hexagons (Figure 2,b); an even 

number of layers is needed to be twisted to obtain a hexagonal net.2,6 
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(a) (6,3)H/Z pattern (b) (6,3)V/A pattern 

 

 

 

 

Figure 1: The (6,3) covering by H- (a) and V- (b) cutting of the (4,4) net. 

  

 (a) (4,4) net (a) (6,3) net 

  

Figure 2: Twisted (4,4) pattern (a) and its (6,3) derivative (b). 

  

In the name of tubes, Tu(6,3)HHt[c,n], the first H denotes the twisting, the second gives 

the type of cut and t denotes the number of twisted layers. The number of atoms on the c-

dimension increases as t increases, concomitant with the shortening of n-dimension (in general, 

non-integer values, having a statistical meaning).7 The twisting preserves the type of net (Z, in 

this case) and the total number of hexagons as well (e.g., (c/2) × (n-1)), the same as in the non-

twisted tube. Correspondingly, the number of “zigzags” (i.e., the number of end-hexagons) 

increases, from c/2 up to twice the initial value (Figure 3). The final object will be 

Tu(6,3)HHc[c,n] = Tu(6,3)H/Z[2c,n/2]. Note that diameter doubling of single walled nanotubes 

has been observed experimentally 8,9 and termed “tube coalescence”.  
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Tu(6,3)H/Z[12,12] Tu(6,3)V/A[12,12] 

 
 

Tu(6,3)HH10[12,12] Tu(6,3)HH12[12,12]; 
Tu(6,3)HV12[12,12]= Tu(6,3)H/Z[24,6] 

 

Figure 3: Nanotube twisting; diameter doubling at t = c is evident by comparing the 
top left corner tube with the bottom right one. 

 
 
KEKULÉ VALENCE STRUCTURES IN TWISTED H/Z POLYHEX TUBES 

A Kekulé structure is a valence structure covered by the maximal number of disjoint 

(double) edges so that all vertices are incident to exactly one of the disjoint edges.10,11  

 A Kekulé structure coincides with a perfect matching and a 1-factor in the Graph Theory. 

The number of Kekulé valence structures, K, of a molecule is the number of 1-factors of its 

associate molecular graph. 

The tubes under study have been generated with TORUS 3.0 software package.12 A 

Molecular Mechanics procedure (MM+) was used to optimize the tubes and, finally, a semi-

empirical method (PM3). The strain energy was estimated in terms of POAV1 theory.13-15  

In the following, the results obtained for the family of tubes Tu(6,3)HHt[12,6] are 

presented. 

Generation of all Kekulé structures, has shown that, at the maximum twisting (t=c), the 

tube has the minimum value of K (Figure 4). The twisting leads to more relaxed tubes, by 

decreasing the strain of their surface, as shown in Figure 5. This is a consequence of the process 
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ending in diameter doubling of the tube.   
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Figure 4: Number of Kekulé valence structures for the family of tubes Tu(6,3)HHt[12,6] 

 
 The number Kekulé valence structures has a trend similar to that shown in Figure 4 for all 

the families of polyhex tubes Tu(6,3)HHt[c,n] we studied, with a minor variation: the twisting 

step t for which K shows the maximum value (listed in Table 1). 

 

Table 1: Twisting step for which K has maximum value 

 n=4 6 8 10 12 14 16 18 20 22
c=6 2 2 2 2 2 2 2 2 2 2

8 2 2 2 2 2 2 2
10 2 2 2 2 2 4 4
12 2 2 4 4 4
14 2 4 4 4
16 2 4 4 4
18 2 4 4
20 2 4 4
22 2 4 4
24 2 4 4
26 2 4 4
28 2 4 4
30 2 4 4
32 2 4 
34 2 4 
36 2 4 
38 2 6 
40 2 8 

 
The strain energy and the heat of formation  for these families of tubes have the same 

trend as shown in Figures 5 and 6, respectively. 
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Figure 5: Strain energy for the family of tubes Tu(6,3)HHt[12,6] 
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Figure 6: Heat of formation per atom for the family of tubes Tu(6,3)HHt[12,6] 

 
KEKULÉ VALENCE STRUCTURES FOR UNTWISTED H/Z POLYHEX TUBES 

 For polyhex tubes Tu(6,3)H[c,n], we propose an analytical formula enabling the 

calculation of K number: 

( (6,3) [ , ]) 2nK Tu H c n =  (1)

Proof.  Let’s consider a cross-section, being terminal at least in the left hand part (Figure 7). 
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Figure  7: Section of Tu(6,3)H[6,n] (two cross-sections and the bonds joining them) 
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The size of the tube cross-section is always even. Double bonds and vertices covered by 

them are colored. If only one bond e1, e2, or e3  is double (Figure 8,a), the terminal cross-section 

will remain with an odd number of vertices, therefore no perfect matching exists and K=0 for the 

section considered. If two bonds are double (Figure 8,b), the terminal cross-section will have one 

isolated vertex, therefore K=0. If all bonds e1, e2, e3 are double (Figure 8,c), the terminal cross-

section will have three isolated vertices, and again K=0. If all bonds e1, e2, e3 are single, there are 

two ways for covering each cross-section by double bonds, therefore K=2 for each cross-section, 

and the pair sections in Figure 7 will have 2×2=4 Kekulé valence structures (Figure 9). The 

above argument can be generalized for any even dimension of the tube cross-section. 

In conclusion, for a tube Tu(6,3)H[c,n], every Kekulé valence structure has all the double 

bonds on the cross-section bonds. Because the cross-section rings are bipartite (allways have an 

even number of atoms), there are only two ways of covering. That’s why K=2n for the 

Tu(6,3)H[c,n] tube.  

(a) (b) 
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Figure 8: One bond e1, e2, e3 is double (a); Two bonds e1, e2, e3 are double (b); all bonds e1, e2, e3 

are double (c) 
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Figure 9: The 4 Kekulé structures of the section considered 
 

The same result was obtained by Sachs et al.16  

From the chemistry of planar benzenoid molecules, it is known that a molecule with a 

higher K value is more aromatic and more stable.10,17 But in the case of non-planar molecules, the 

strain of the σ-frame becomes an important energetic factor which may revert the expected 

ordering.18,19 As the tube cross-section increases, the molecular structure becomes less strained 

and the K-value decreases (Table 2). Therefore, a larger K value correlates here with a decrease 

in the tube stability. 

Table 2. Trend of the Strain Energy/atom and K-values in tubes of increasing cross-section size. 

Polyhex 
Tube 

Number  
of Atoms 

Strain 
Energy K 

TuH[8,6] 48 9.9325 64
TuH[12,4] 48 3.807 16
TuH[16,3] 48 1.9842 8

 

TuH[8,7] 56 10.1073 128
TuH[14,4] 56 2.7987 16

 

TuH[12,5] 60 3.9271 32
TuH[20,3] 60 1.2454 8

 

TuH[10,7] 70 5.8269 128

Polyhex 
Tube 

Number  
of Atoms 

Strain 
Energy K 

TuH[12,8] 96 4.4171 256
TuH[16,6] 96 2.2667 64
TuH[24,4] 96 0.9369 16
TuH[32,3] 96 0.4589 8

 

TuH[14,8] 112 3.0421 256
TuH[16,7] 112 2.3148 128
TuH[28,4] 112 0.686 16

 

TuH[20,6] 120 1.4547 64
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TuH[14,5] 70 2.8872 32
 

TuH[12,6] 72 4.0171 64
vH[18,4] 72 1.6841 16

 

TuH[10,8] 80 5.8945 256
TuH[16,5] 80 2.2137 32
TuH[20,4] 80 1.3595 16

 

TuH[12,7] 84 4.082 128
TuH[14,6] 84 2.956 64
TuH[28,3] 84 0.6119 8

 

TuH[18,5] 90 1.748 32
TuH[30,3] 90 0.5264 8 

TuH[24,5] 120 0.9786 32
TuH[30,4] 120 0.5901 16

 

TuH[16,8] 128 2.3431 256
TuH[32,4] 128 0.5192 16

 

TuH[20,7] 140 1.4793 128
TuH[28,5] 140 0.7171 32

 

TuH[24,6] 144 1.0072 64
TuH[36,4] 144 0.4048 16

 

TuH[20,8] 160 1.4977 256
TuH[32,5] 160 0.5496 32 

 

Let’s consider the family of tubes Tu(6,3)H[c,4]. Because n has a constant value, all these 

tubes have the same K-value: 2n=24=16 (see formula (1)). However, the thin-tubed structures 

have the highest strain energy while the thick-tubed ones  are the most relaxed (Figure 10). Thus, 

in the case of tubes Tu(6,3)H[c,n] (n =constant), the stability of structures does not depend on the 

Kekulé valence structures count. Similar results were obtained for tubes Tu(6,3)H[c,n] with 

{ }3,5,6,7,8n∈ . 
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Figure 10: Strain energy curve for Tu(6,3)H[c,4] tubes 

 

CONCLUSIONS 

 In this article, it was shown that the twisting leads to more relaxed tubes, by 
decreasing the strain of their lattice. The number of the Kekulé valence structures was found 
larger in thinner tubes than in thicker ones but it is not involved in the stability of these molecular 
structures, as resulted by investigation of some twisted families of polyhex tubes 
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(Tu(6,3)HHt[c,n]). Our results confirm the previous finding that the thinnest polyhex tubes show 
the largest K value.  
 An analytical formula for the calculus of the Kekulé valence structures number in 
Tu(6,3)H[c,n] tubes was derived. Examples of numerical calculation of the strain energy and the  
K-values, in some families of polyhex tubes (Tu(6,3)H[c,n]) were also given.  
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