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Abstract 
 

The edge Szeged polynomial of a graph G is defined as Sze(G,x) = 
( ) ( ) ,u vm e m e

e uv x=∑ where mu(e) is the number of edges of G lying closer to u than to v and 
mv(e) is the number of edges of G lying closer to v than to u. In this paper the main 
properties of this newly proposed polynomial are investigated. We also compute this 
polynomial for some classes of well-known graphs. Finally, the edge Szeged polynomials 
of an infinite family of nanostar dendrimers are computed.   

  
1. Introduction 
 
Let G be a graph with vertex and edge sets V(G) and E(G), respectively. As usually, 

the distance between the vertices u and v of a connected graph G is denoted by d(u,v) 

and it is defined as the number of edges in a minimal path connecting the vertices u 

and v. Throughout the paper, a graph means an undirected, connected graph without 

loops and multiple edges. 

In chemical graph theory, a molecular graph or chemical graph is a 

representation of the structural formula of a chemical compound in terms of Graph 

Theory. A chemical graph is a graph whose vertices correspond to the atoms of the 

compound and edges correspond to chemical bonds.  

 A topological index is a numeric quantity extracted from the structure of a 

graph which is invariant under automorphisms of G. Usage of topological indices in 

chemistry began in 1947 when chemist Harold Wiener developed the most popular 

topological descriptor, the Wiener index, and used it to determine physical properties 

of alkanes [1]. Although this topological index is an easily calculable quantity, it does 
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not uniquely correspond to the individual structure of a graph. John Platt was the only 

person who immediately realized the importance of the Wiener's pioneering work and 

wrote papers analyzing and interpreting the physical meaning of the Wiener index.  

We recall some definitions that will be used in the paper. The Wiener index of 

a graph G is defined as the sum of all topological distances between the pair of 

vertices, where the topological distance is the number of edges on the shortest path 

between these vertices (see [2,3] for details). For two vertices u and v of G, the 

topological distance between them is denoted by d(u,v).  

The PI index is a new topological index defined by Khadikar, [4-6]. It is 

defined as PI(G) = ∑e=uv∈G[mu(e)+ mv(e)], where mu(e) is the number of edges of G 

lying closer to u than to v and mv(e) is the number of edges of G lying closer to v than 

to u. Edges equidistant from both ends of the edge uv are not counted.  

The Szeged index is another topological index which is introduced by 

Gutman, [7-9]. To define the Szeged index of a graph G, we assume that e = uv is an 

edge connecting the vertices u and v. Suppose nu(e) is the number of vertices of G 

lying closer to u and nv(e) is the number of vertices of G lying closer to v. Then the 

Szeged index of the graph G is defined as Sz(G) = ∑e=uv∈E(G)nu(e)nv(e). Notice that 

vertices equidistant from u and v are not taken into account. In [10], the authors 

introduced an edge version of the Szeged index. It is defined as Sze(G) = 

∑e=uv∈E(G)mu(e)mv(e), where mu(e) and  mv(e) have the same meaning as above. Edges 

equidistant from both ends of an edge are not counted. In the mentioned paper, the 

main properties of this new index investigated and some open question addressed.  

Diudea and Nagy in their recent book [11] wrote: “It is well-known that a 

graph can be described by: a connection table, a sequence of numbers, a matrix, a 

polynomial or a derived number called a topological index”.  In this paper we apply a 

polynomial approach for studying the molecular graphs. Here, a finite sequence of 

some graph theoretical properties can be described by so-called counting polynomials 
k

kP(G, x) p(G,k) x ,= ⋅∑ where p(G,k) is the frequency of occurrence of  the property 

partitions of G, of length k, and x is simply a parameter to hold k. The edge Szeged 

polynomial is a new counting polynomial for graphs defined by Sze(G,x) = 
u vm (e)m (e)

e uv x ,=∑  see [12,13].  

The first attempt to study topological indices of nanostructures was done by 

Diudea and his co-authors, [14-20].  Next, the first author of this paper continued the 
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pioneering work of Diudea and his team to compute the PI and Szeged indices of 

some classes of nanostructures, [21-26]. We also encourage the reader to consult 

papers [27-31] for more information on this subject.  
 

2. Examples 

In this section the PI and edge Szeged polynomials of some well-known graphs are 

computed. In fact, the edge Szeged polynomials of Kn, Cn, Wn, Pn and 
1 2 rn n nK , ,..., are 

computed. The PI polynomials of these graphs have been computed in [32]. 

Example 1. Consider the complete graph Kn and the cycle graph Cn. Then  

Sze(Kn,x) = 
2(n 2)n

x
2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; Sze(Cn,x) = 

2

2

n 2
2

n 1
2

nx 2|n

nx 2 | n

−⎛ ⎞
⎜ ⎟
⎝ ⎠

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧
⎪⎪
⎨
⎪
⎪ /⎩

. 

 
Example 2. Suppose Pn is the path with n vertices. Then Sze(P1,x) = Sze(P2,x) = 1, 

Sze(P3,x) = 2 and for n > 3, 
2n 3 2(n 4) n(n 4) / 4 (n 2) / 4

e n n 3 2(n 4) (n 1)(n 3) / 4

2 2x 2x ... 2x x 2|nSz (P , x) .
2 2x 2x ... 2x 2 | n

− − − −

− − − −

⎧ + + + + +⎪= ⎨
+ + + +⎪ /⎩

 

 

Example 3. Consider a complete r-partite graph G = 
1 2 rn n nK , ,...,  containing n = 

|V(G)| vertices. By definition, the vertices V of this graph can be partitioned into 

subsets V1, V2, ..., Vr such that for every i, 1 ≤ i ≤ r, there is no edge between the 

vertices of Vi (Figure 1). Then i j

1 2 r

(n n 1)(n n 1)
1 i j re n n n i jSz (K , ,..., , x) n n x .− − − −
≤ ≤ ≤= ∑  In 

particular, if Sn denotes the star graph on n+1 vertices then Sze(Sn,x) = n.  
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Figure 1. An r-partite Graphs. 
 
Example 4. A wheel Wn is a graph of order n which contains a cycle of order n, and 

for which every vertex in the cycle is connected to the central vertex, Figure 2. Then 

Sze(W3,x) = 6x4, Sze(W4,x) = 4x4 + 4x6 and for n > 4, Sze(Wn,x) = nx9 + nx2(2n-5). 

 

 
Figure 2. The Wheel Graph W3, W4 and W5. 

3. Main Results and Discussion 

In this section, some basic properties of edge Szeged polynomial are investigated. 

Then the edge Szeged polynomial of a particular type of nanostar dendrimer is 

computed.  
 
Lemma 1. Let G be a connected graph with n vertices and m edges. Then 

a) Sze(G,1) = m, 

b) Szé(G,1) = Sze(G), 
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c) deg Sze(G,x) ≤ 2

m(m 2) 2|m
4

(m 1) 2 | m
4

−⎧
⎪⎪
⎨

−⎪ /⎪⎩

 and Sze(G,x) ≤ 

2

2

m (m 2) 2|m
4

m(m 1) 2 | m
4

⎧ −
⎪⎪
⎨

−⎪ /⎪⎩

, 

d) If T is a tree then Sze(T,x) = x1-nSz(T,x), with Sz(T,x) being the Szeged 

polynomial defined on vertices: Sz(G,x) = u vn (e)n (e)
e uv E(G) x= ∈∑ . 

 
Proof. (a) and (b) are trivial. To prove c), notice that mu(e) + mv(e) ≤ m – 1. So the 

maximum value of mu(e)mv(e) is m(m-2)
4

 or 
2(m-1)

4
, when m is even or odd, 

respectively. We now assume that T is tree. Then 

u v

u v

u v u v

u v

u v

m (e)m (e)
e uve

(n (e) 1)(n (e) 1)
e uv

n (e)n (e) [n (e) n (e) 1]
e uv

n (e)n (e) n 1
e uv

n (e)n (e)1 n
e uv

1 n

Sz (T, x) x

x

x

x

x x

x Sz(T, x).

=
− −

=
− + −

=
− +

=
−

=
−

= ∑

= ∑

= ∑

= ∑

= ∑

= ♦

 

 
 By part (b) of the previous Lemma and also Example 3, one can see that 

1 2 r 1 i j re n n n i j i jSz (K , ,..., ) n n (n n 1)(n n 1).≤ ≤ ≤= − − − −∑  In what follows, we first define 

the concepts of weighted edge Szeged polynomial and hyper-edge Szeged index of a 

graph G. Then the main properties of this polynomial is proved, [37,38]. 
 
Question 1: Under which condition(s) the equality holds in part (c)? 
 
Definition. A vertex weighted graph is a graph which associates a label (weight) with 

every vertex in the graph. Weights are usually real numbers. They may be restricted to 

rational numbers or integers. Let G be a connected vertex weighted graph with weight 

function w: V(G) → R. The weighted edge Szeged polynomial of G is defined as 

u vm (e)m (e)
e=uvewSz (G,x)= w(u)w(v)x .∑  We also define the hyper-edge Szeged index 

of G as (2) 2 2
e=uvew u v u vSz (G)= w(u)w(v)[(m (e)) (m (e)) +m (e)m (e)].∑  

 

Lemma 2. (2)
ew ew ewSz (G) 2Sz (G,1) Sz (G,1).′ ″= +   
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Proof. By definition 

e uvew ew u v

e uv u v u v
2 2

e uv u v u v u v
2 2

e uv u v u v
(2)
ew

2Sz (G,1) Sz (G,1) 2 w(u)w(v)m (e)m (e)
w(u)w(v)m (e)m (e)[m (e)m (e) 1]

w(u)w(v)[2m (e)m (e) m (e) m (e) m (e)m (e)]

w(u)w(v)[m (e)m (e) m (e) m (e) ]

Sz (G).

′ ″
=

=

=

=

+ = ∑
+ −∑

= + −∑

= +∑

= ♦
 

 The nanostar dendrimer is part of a new group of macromolecules that seem 

photon funnels just like artificial antennas and also, it is a great resistant of photo 

bleaching. The nanostar dendrimer promises to have great applications but first the 

structure must be understood. In what follows, the edge Szeged polynomial of a 

particular class of nanostar dendrimer, NS[n], is computed, Figure [3]. 

N1

N2 N3

E1

E2 E3

E11

E21E31

E12

E22

E32

E13
E23E33

N1N2

0

0 0

0

0 0

1

11

1

1

1

1

1
1

11

 
Figure.3. The Nanostar Dendrimer NS[1]. 

Using a simple calculation, one can show that |V(NS[n])| = 39×2n – 20 and 

|E(NS[n])| = 45×2n − 24. For the edges e = E1
0 = a1b1, E2

0 = a2b2, E3
0 = a3b3, 

0 ( [ ])
( ) 1 15 2 9

3r
n

a r
E NS n

m E = − = × − , 1 ≤ r ≤ 3. Consider edges of Erk
i, r = 1, 2, 3, 1≤ i 

≤ n and 1≤ k ≤3×2i-1. If e = uv = E2k
i then (e)mu  = 12(2n-i–1) + 3(2n-i–1) + 6 = 15×2n-i 

– 9 and for f = xy = E1k
i, xm (f) = 30×2n-i–16.  
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Finally, if h = ab = E3k
i, am (h)  = 12(2n-i–1) + 3(2n-i–1) + 6 = 15×2n-i – 9. On 

the other hand, for edge e = uv of hexagons Nj
i, 0≤ i ≤n, 1≤ j ≤3×2i, Figure 3, (e)um = 

12(2n-i–1) + 3(2n-i–1) +2 = 15×2n-i –13. Therefore, 

n n

( ) ( )

(15 2 -9)(30 2 -16)

n i 1 (15 2 9)(45 2 15 2 16)
i 1

1 (30 2 16)(45 2 30 2 9)
1

( [ ], )

                  3x

                   6 2   

                   3 2

         

u v

n i n n i

n i n n i

m e m e
e e uv

n i
i

Sz NS n x x

x

x

− −

− −

=

× ×

− × − × − × −
=

− × − × − × −
=

=

=

+

+

∑

∑
∑

2 2 2 2 2 2

2

(15 2 13)(45 2 15 2 13)
0

675 2 225 2 105 2 405 2 144 1350 2 900 2 210 2 720 2 144
1

675 2

          18 2

1                    3 2 (
2

                    6

n i n n i

n i n i n i n n i n i n i n

n i

n i
i
n i
i

x

x x

x

− −

− − − − − −

−

× − × − × −
=

× − × − × − × + × − × + × − × +
=

× −

+

= +

+

∑
∑

2 2225 2 585 2 169 450 4 510 2 144 450 4 585 2 169) 3( 6 )
n i n n n n n

x x
−× − × + × − × + × − × ++ +

 This completes our calculations. 
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