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Abstract 
 
In this paper we give a GAP program for computing the Wiener , Schultz,  Szeged and the 
PI indices of any graph.  

1. Introduction 

One of the main distinctive characteristics of modern chemistry is the use of 

theoretical tools for the molecular modeling of physicochemical processes, chemical 

reactions, medicinal and toxicological events, etc., in which chemicals are involved. 

The success of the molecular modeling is judged by the insights that it offers on the 

nature of the processes studied, which permit better comprehension and a rational 

modification of them. These properties, measured experimentally, are almost 

invariably expressed in quantitative terms, think for instance of boiling point, 

refraction index, transition state energy, percentage of inhibition of some enzymatic 

activity, lethal dose, and so forth. The paradigm for the modeling of such properties is 

the relationship that exists between them and the molecular structure of chemical. 

This fact presupposes for the first challenge in the molecular modeling: the properties 

are expressed as numbers while the molecular structure is not. The way to solve this 

problem is by using molecular descriptors that are numbers representing information 

about different molecular features, to describe quantitatively the properties under 

study. These models are known as quantitative structure-property (QSPR) and 
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quantitative structure-activity relationships (QSAR), depending on the 

physicochemical or biological nature of the properties studied, respectively. 

Topological indices are numerical descriptors derived from the associate graphs of 

chemical compounds. Some indices based on the distances in graph are widely used 

in establishing relationships between the structure of molecules and their physico-

chemical properties. Usage of topological indices in chemistry began in 1947 when 

the chemist Harold Wiener [1] introduced Wiener index to demonstrate correlations 

between physicochemical properties of organic compounds and the index of their 

molecular graphs. Wiener originally defined his index (W) on trees and studied its use 

for correlations of physicochemical properties of alkanes, alcohols, amines and 

analogous compounds [2]. Starting from the middle of the 1970s, the Wiener index 

gained much popularity and, since then, new results related to it are constantly being 

reported. For a review, historical details and further bibliography on the chemical 

applications of the Wiener index see [3-5]. 

 Let G be a connected graph. The vertex-set and edge-set of G are denoted by V(G) 

and E(G), respectively. The degree of a vertex ( )i V G∈ is the number of vertices 

joining to i and denoted by ( )v i . The ( , )i j entry of the adjacency matrix of G is 

denoted by ( , )A i j . 

The Wiener index of a graph G is denoted by W (G) and defined as the sum of 

distances between all pairs of vertices in G: 

{ , } ( )

1( ) ( , )
2 i j V G

W G d i j
⊆

= ∑                                                                                                     (1) 

where ),( jid is the distance between vertices i  and j . Another topological index is 

the Schultz index (MTI), introduced by Schultz in 1989, as the molecular topological 

index [6], and defined by: 

{ , } ( )
( )( ( , ) ( , ) )

i j V G
MTI v i d i j A i j

⊆

= +∑                                                                      (2) 

The molecular topological index was studied in many papers [7-11]. 

In a series of articles, the Wiener index of some nanotubes is computed [12-17]. 

Another topological index was introduced by Gutman and called the Szeged index, 

abbreviated as Sz [2]. Let e be an edge of a graph G connecting the vertices u and v. 

Define two sets of non-equidistant vertices with respect to e: 

1( ) { ( ) ( , ) ( , )}N e G u V G d x u d x v= ∈ <     
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2 ( ) { ( ) ( , ) ( , )}N e G v V G d x v d x u= ∈ <  

The number of elements of 1( )N e G  and 2 ( )N e G  are denoted by 1( )n e G  and 

2 ( )n e G  respectively.  

The Szeged index of the graph G  is defined as  

1 2
( )

( ) ( ) ( )
e E G

Sz G n e G n e G
∈

= ⋅∑        (3) 

By the reason of the coincidence of Wiener and Szeged indices, in the case of 

trees, the authors in [18] and [19] introduced another Szeged/Wiener-like topological 

index, called Padmakar-Ivan index, abbreviated as PI.  This new index, denoted by 

PI(G), is defined on the ground of non-equidistant edges ( )m e G : 

1 2
( )

( ) ( ) ( )
e E G

PI G m e G m e G
∈

= +∑        (4) 

Applications of the PI index to QSRP/QSAR were studied in [20]. The index was 

mostly compared with the Wiener and the Szeged index. It turned out the PI index has 

similar discriminating power as the other two indices and in many cases it gives better 

results. As we already mentioned, the Szeged index incorporates the distribution of 

vertices of a molecular graph, while the PI index does this for edges. Hence it seems 

that a combination of both could give good results in QSRP/QSAR studies. Indeed, 

the combination of the PI index and the Szeged index is the best for modeling 

polychlorinated biphenyls (PCBs) in environment among the three possible pairs of 

indices selected from the PI index, the Szeged index, and the Wiener index [20]. For 

the Wiener and the Szeged indices such studies were previously reported in [21,22]. 

The Szeged and PI indices of some nanotubes were computed and reported in [23-26]. 

The computing of Szeged and PI indices seems to be straightforward, but this is  

not true. For computing the Szeged or PI index, we must  

obtain ( )n e G  or ( )m e G  for any edge in the graph [23-32] and it is time consuming. 

In the present paper, we provide an algorithm, implemented in the GAP program, 

which proved to be faster than the direct implementation of definitions. The program 

also enables the calculation of the Wiener and Schultz indices. 
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2. An algorithm for computing the Wiener and  

    Schultz indices of a graph 
 

In this section, we give an algorithm that enables one to compute the Wiener and 

Schultz indices of any graph. The algorithm is as follows: 

 
1- Assign to any vertex one index number.  

2- Determine all adjacent vertices of the vertex Vii ∈,  and denote this set by ). N(i  

3- Start the program, by setting w =0, Sc=0, and at the end of run, the values of w
2
1  

and Sc will be the Wiener and Schultz indices of the graph G, respectively. 

4- The set of vertices having their distance to vertex i  equal to ( )0≥tt  is denoted by 

 ti, D and consider }{0, iDi = . We have the following relations: 

ViDV tit ∈= ≥ ,0�                                                                                                      (5) 

,
( ) 1

( , ) , ( )i t
j V G t

d i j t D i V G
∈ ≥

= × ∀ ∈∑ ∑                                                                      (6) 

∑
≥∈

×=
1,

,2
1)(

tVi
tiDtGW                                                                                                   (7)  

,

( ) ( )

( ) ( ) ( )\ ( )

2
,

( ) , 2

( ) ( ) ( ( , ) ( , ))

( ) 2 ( , )

2 ( ) ( )
i t

i V G j V G

i V G j N i j V G N i

i t
i V G j D t

MTI G v i d i j A i j

v i d i j

v i v i t D

∈ ∈

∈ ∈ ∈

∈ ∈ ≥

= × +

⎛ ⎞
= × +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ×⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ ∑

∑ ∑

 (8) 

According to (7) and (8), by determining these sets, we can obtain Wiener and 

Schultz indices of the graph.  

The distance between the vertex i  and its adjacent vertices is equal to 1, therefore 

).iN(D 1i, =  For each 1, ≥∈ tDj ti , the distance between each vertex of set 

)(\)( 1,, −titi DDjN �  and the vertex i  is equal to 1+t , thus we have: 

  

,

( ( ) \ ( ) , 1, 1 , , 1
i tj D

D N j D D ti t i t i t
∈

= ≥+ −��                                                (9) 
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According to (9), we can obtain 2,, ≥tD ti   for each Vi∈ . 

GAP stands for Groups, Algorithms and Programming [33]. The name was 

chosen to reflect the aim of the system, which is theoretical software for solving 

computational problems in group theory. The last years, a rapid spread of interest in 

the understanding, design and even implementation of group theoretical algorithms 

was recorded. GAP software was built by GAP's team in Aachen. We encourage the 

reader to consult Refs. [34] and [35] for background materials and computational 

techniques related to applications of GAP in solving some problems in chemistry and 

biology.  

According to the above algorithm, we developed a GAP program to compute the 

Wiener and Schultz indices of 4 8 ( )TUC C S  nanotubes. 

 

Example 2.1. In [36 ], the Wiener index of 4 8 ( )TUC C S  nanotubes was reported and 

we can compute this index by the above program. 

A 4 8C C  net is a trivalent decoration made by alternating 4C and 8C . It can cover 

either a cylinder or a torus. 

 

 
Figure1. 4 8 ( )TUC C S nanotube, (p=4, q=6)  

For computing of the Wiener and Schultz indices of 4 8 ( )TUC C S nanotube by the 

above program, at first we assign to any vertex an index number (Figure 1). 

According to this numbering, the set of adjacent vertices to each vertex ni ≤≤1  is 

obtained by the following program (part 1). The Wiener index of the graph is 

computed by the 2nd part of the program. 
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We denote the number of octagons in one row by p and we denote the number of 

rows by q, 2q ≥ . In each row there are 4p vertices and hence the number of vertices 

in this nanotube is equal to 4pq .  

We partition the vertices of this graph to the following sets: 

 

1K : The vertices of the first row. 

2K : The vertices of the rows 2m-1, 12
2

qm +⎡ ⎤≤ ≤ ⎢ ⎥⎣ ⎦
. 

3K : The vertices of the rows 2m, 1
2
qm ⎡ ⎤≤ ≤ ⎢ ⎥⎣ ⎦

. 

4K : The vertices of the final row. 

 

We wrote a program to obtain the adjacent vertices set to each vertex in the sets ,iK       

i=1, …, 4. In this program, x is the index of vertex i  in that row. The program 

computes the Wiener and Schultz indices of 4 8 ( )TUC C S  nanotube for arbitrary 

p and q . 

p:=6; q:=10; # (For example) 
n:=4*p*q; 
N:=[]; 
k1:=[1..4*p]; 
v1:=[2..4*p-1]; 
for i in v1 do 
 if i mod 4 in [1,2] then N[i]:=[i-1,i+1,i+4*p]; 
  else N[i]:=[i-1,i+1]; fi; 
 N[1]:=[2,4*p,4*p+1]; N[4*p]:=[4*p-1,1]; 
od; 
k:=[4*p+1..n-4*p]; 
k2:=Filtered(k,i->i mod (8*p) in [1..4*p]); 
for i in k2 do 
 x:=i mod (8*p); 
 if (x mod 4) in [0,3] then N[i]:=[i-1,i+1,i-4*p]; 
  else  N[i]:=[i-1,i+1,i+4*p];fi; 
 if x=1 then N[i]:=[i+1,i+4*p-1,i+4*p];fi; 
 if x=4*p then N[i]:=[i-1,i-4*p,i-4*p+1]; fi; 
od; 
k3:=Filtered(k,i->i mod (8*p) in Union([4*p+1..8*p-1],[0])); 
for i in k3 do  
 x:=(i-4*p) mod (8*p); 
 if x mod 4 in [0,3] then N[i]:=[i-1,i+1,i+4*p]; 
  else N[i]:=[i-1,i+1,i-4*p]; fi; 
 if x=1 then N[i]:=[i+1,i+4*p-1,i-4*p]; fi; 
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 if x=4*p then N[i]:=[i-1,i-4*p+1,i+4*p]; fi; 
od; 
k4:=[n-4*p+1..n]; 
 for i in k4 do  
  x:=(i-4*p) mod (8*p); 
    if q mod 2=0 then 
      if x mod 4 in [0,3] then N[i]:=[i-1,i+1]; 
        else N[i]:=[i-1,i+1,i-4*p]; fi; 
       if x=1 then N[i]:=[i+1,i+4*p-1,i-4*p]; fi; 
       if x=4*p then N[i]:=[i-1,i-4*p+1]; fi; 
     else    
  x:=i mod (8*p);  
        if x mod 4 in [0,3] then N[i]:=[i-1,i+1,i-4*p]; 
          else  N[i]:=[i-1,i+1];fi; 
        if x=1 then N[i]:=[i+1,i+4*p-1];fi; 
        if x=4*p then N[i]:=[i-1,i-4*p,i-4*p+1]; fi; 
     fi; 
  od; 
 
w:=0; 
Sc:=0; 
v:=[]; 
D:=[]; 
for i in [1..n] do  
 D[i]:=[]; 
 u:=[i]; 
 D[i][1]:=N[i]; 
 v[i]:=Size(N[i]); 
 u:=Union(u,D[i][1]); 
 w:=w+Size(D[i][1]); 
 Sc:=Sc+v[i]*2*Size(D[i][1]); 
 r:=1; 
 t:=1; 
 while r<>0 do 
  D[i][t+1]:=[]; 
  for j in D[i][t] do  
   for m in Difference (N[j],u) do 
    AddSet(D[i][t+1],m); 
   od; 
  od; 
  u:=Union(u,D[i][t+1]); 
  w:=w+(t+1)*Size(D[i][t+1]); 
  Sc:=Sc+v[i]*(t+1)*Size(D[i][t+1]); 
  if D[i][t+1]=[] then r:=0;fi; 
  t:=t+1; 
  od; 
 od; 
w:=w/2; # This value is equal to the Wiener index of the graph 
Sc; # This value is equal to the Schultz index of the graph 
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Examples for various p and q, are given in Table 1. 

 

 

Table 1. Wiener and Schultz indices of 4 8 ( )TUC C S   

nanotube  for some p and q 

 

p q W(G) MTI(G) 

2 2 336 1768 

3 2 1032 5292 

3 3 2664 14328 

4 2 2336 11856 

4 3 5824 31200 

5 4 20800 114220 

6 3 18144 96912 

7 4 52864 290276 

7 7 189336 1076488 

3 5 9456 52704 

4 6 30720 172944 

4 8 64384 367280 

5 7 79200 449560 

6 8 175056 1000200 

7 8 260288 1488340 

7 9 346528 1990352 

8 8 369664 2115168 

6 10 306480 1765560 
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3. An algorithm for computing the Szeged and PI indices 

In this section, we give an algorithm that enables one to compute the Szeged and 

PI indices of any graph. The algorithm is as follows: 

 

1- Assign to any vertex one index number.  

2- Determine all adjacent vertices of the vertex Vii ∈,  and denote this set by ). N(i  

The set of vertices that their distance to vertex i  is equal to (t
= be an edge connecting the vertices i  and j , 

then we have the following results: 

 

a) ViDV tit ∈= ≥ ,,0� (G). 

b) .1,)()\( 1,1,,, ≥⊆ +− tDDDD tjtjtjti �  

c) , , 1 2 , , 1 1( ) ( ) ( ) 1i t j t i t j tD D N e G and D D N e G t− +⊆ ⊆ ≥� � . 

d) ).()}{(\)}{()()}{(\)}{( 21,1,11,1, GeNiDjDandGeNjDiD ijji ⊆⊆ ����  

 

According to the above relations, by determining 1,, ≥tD ti , we can obtain 

)(1 GeN  and )(2 GeN  for each edge e and therefore the Szeged and PI indices of the 

graph G is computed.  

 3- The distance between vertex i  and its adjacent vertices is equal to 1, therefore 

).iN(D 1i, =  For each 1,, ≥∈ tDj ti , the distance between each vertex of set 

)(\)( 1,, −titi DDjN �  and the vertex i  is equal to 1+t , thus we have  

.1,)(\)(( 1,,1, ,
≥= −∈+ tDDjND titiDjti ti

��  

According to the above equation, 2, ≥tD ti   for each Vi∈ (G) can be obtained. 

 4- At the start of program, set ZS and PI equal to zero and T equal to empty set. At 

the end of program, the values ZS and PI are equal to the Szeged and PI indices of 

the graph G, respectively. For each vertex i , ni ≤≤1 , and each vertex j  in )(iN ,  

calculate )(1 GeN and )(2 GeN for edge ,ije =  then add the values of )(.)( 21 GenGen  

and )()( 21 GenGen +  to ZS and PI , respectively. Since the edge ij  is equal to ,ij  
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the vertex i is added to T and continue this step for the vertex i+1 and for each vertex 

in .\)1( TiN +  According to the above algorithm, a GAP program to compute the 

Szeged and PI indices of  a ],[75 qpCHAC  nanotube was provided. 

 

Example 3.1. A 75CC  net is a trivalent decoration made by alternating 5C  and 7C . It can 

cover either a cylinder or a torus. In this example, the Szeged and PI indices of 

],[75 qpCHAC  nanotube is computed by the GAP program.  

 

 

Figure2. 75CHAC [4, 2] 

 

 

 

 

Let’s denote the number of heptagons in one row by p. In this nanotube, the three 

first rows of vertices and edges are repeated alternatively, and the number of this repetition is 

denoted by q. In each period there are p8 vertices and p vertices, which are joined to the end 

of the graph and hence the number of vertices in this nanotube is equal to ppq +8 . 

Let’s partition the vertices of this graph to following sets: 

 

1K : The vertices of the first row, which number is p2 . 

2K : The vertices of the first row in each period (except the first one) which number 

is )1(2 −qp . 

3K : The vertices of the second rows in each period, which number is pq3 . 
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4K : The vertices of the third row in each period, which number is pq3 . 

5K : The last vertices of the graph, which number is p . 

 

Figure 3 shows the rows of mth period. 

 

 
Figure3 

 

A program to obtain the adjacent vertices set to each vertex in the sets ,iK  i=1…5 was 

written. The set of adjacent vertices to each vertex is obtained by joining these programs. The 

values of x denote the index number of vertex i  in a given period. 

The following program computes the Szeged and PI indices of a ],[75 qpCHAC  nanotube, 

for arbitrary p and q . 

p:=3; q:=7;# (For example) 
n:=8*p*q +p; 
N:=[]; 
K1:=[1..2*p]; 
V1:=[2..2*p-1]; 
N[1]:=[2,2*p]; 
N[2*p]:=[2*p-1,5*p,1]; 
for i in V1 do 
 if i mod 2=0 then N[i]:=[i-1,i+1,3/2 *i+2*p]; 
  else N[i]:=[i-1,i+1];fi; 
od; 
k:=[2*p+1..8*p*q]; 
k2:=Filtered(k,i->i mod (8*p)in [1..2*p]);; 
for i in k2 do 
 x:= i mod (8*p); 
 if x mod 2 =1 then N[i]:=[i-1,i+1,(x-1)*(3/2) +1+i-x-3*p]; 
  else N[i]:=[i-1,i+1,x*(3/2) +2*p+i-x];fi; 
 if x=1 then N[i]:=[i+1,i-1+2*p,i-3*p];fi; 
 if x=2*p then N[i]:=[i-1,i+3*p,i-2*p+1];fi; 
od; 
 
k3:=Filtered(k,i->i mod (8*p) in[2*p+1..5*p]);; 
for i in k3 do 
 x:=i mod (8*p); 
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 if (x-(2*p)) mod 3 =1 then N[i]:=[i-1,i+1,i+3*p-1]; 
  elif (x-(2*p)) mod 3 =2 then N[i]:=[i-1,i+1,i+3*p]; 
   elif (x-(2*p)) mod 3 =0 then N[i]:=[i-1,i+1,(2/3) *(x-2*p)+i-x];fi; 
 if x=2*p+1 then N[i]:=[i-1+3*p,i-1+6*p,i+1];fi; 
 if x=5*p   then N[i]:=[i-3*p,i-3*p+1,i-1];fi; 
od; 
 
k4:=Filtered(k,i->i mod (8*p) in Union([5*p+1..8*p-1],[0]) );; 
for i in k4 do 
 x:=i mod (8*p); 
 if (x-(5*p)) mod 3 =1 then N[i]:=[i-1,i+1,(x-(5*p)-1)*(2/3) +1+(i-x)+8*p]; 
  elif (x-(5*p)) mod 3 =2 then N[i]:=[i-1,i+1,i-3*p]; 
   elif (x-(5*p)) mod 3 =0 then N[i]:=[i-1,i+1,i-3*p+1];fi; 
 if x=5*p+1 then N[i]:=[i+3*p-1,i+1,i+3*p];fi; 
 if x=0 then N[i]:=[i-1,i-3*p+1,i-6*p+1];fi; 
od; 
K5:=[8*p*q+1 ..8*p*q+p]; 
 
for i in K5 do 
 x:=i-8*p*q; 
 y:=8*p*(q-1)+5*p+3*x-2; 
 N[i]:=[y]; 
 N[y][3]:=i; 
od; 
D:=[]; 
for i in [1..n] do 
   D[i]:=[]; 
   u:=[i]; 
   D[i][1]:=N[i]; 
   u:=Union(u,D[i][1]); 
   s:=1; 
   t:=1; 
   while s<>0 do 
     D[i][t+1]:=[]; 
     for j in D[i][t] do  
       for m in Difference(N[j],u) do 
         AddSet(D[i][t+1],m); 
       od; 
     od; 
   u:=Union(u,D[i][t+1]); 
       if D[i][t+1]=[] then  
      s:=0; 
   fi;  
   t:=t+1; 
   od; 
od; 
A:=[]; 
T:=[]; 
sz:=0; 
pi:=0; 
e:=[]; 
for i in [1..n-1] do 
N1:=[]; 
  for j in Difference(N[i],T) do 
N2:=[]; 
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    N1[j]:=Union(Difference(N[i],Union([j],N[j])),[i]); 
    N2[i]:=Union(Difference(N[j],Union([i],N[i])),[j]);        
      for t in [2..Size(D[i])-1] do 
        for x in Difference(D[i][t],Union(D[j][t],[j])) do 
          if not x in D[j][t-1] then  
             AddSet(N1[j],x); 
           elif x  in D[j][t-1] then  
            AddSet(N2[i],x);  
         fi; 
        od; 
     od; 
   sz:=sz+Size(N1[j])*Size(N2[i]); 
   pi:=pi+Size(N1[j])+Size(N2[i]); 
  od;  
  Add(T,i); 
od; 
sz;# The value of sz is equal to szeged index of the graph 
pi;# The value of pi is equal to pi index of the graph. 
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