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ABSTRACT. The concept software architecture becomes more and more important in the 
software development process. Software system design is a two-step process: architectural design 
and detailed design. Architectural design describes top-level structure and organization of a 
software system, identifying its components, and is considered today the most important part of 
the overall design process. At least three criteria can be used to discuss different architectural 
patterns (aka architectural styles): system organization, modular decomposition, and control 
strategy. According to Sommerville, system organization is concretized in three architectural 
styles: shared data repository, client-server, and layered model; there are two main models 
answering to modular decomposition: object, and dataflow; finally, control strategy has two 
styles: centralized and event-driven. The paper presents in detail all these architectural styles, their 
advantages and drawbacks, and their use in molecular topology software. 

 
1. INTRODUCTION 

 
Software architecture is a relatively new software engineering discipline, having an 

increased impact on the ways a software system is designed and implemented today.  We 

believe that its important concepts, principles, and models need to be known by all people 

involved in the development of software systems, including scientific software.  

 According to [Shaw96], software architecture defines a software system in terms of 

its structure and topology (components and interactions) and shows the correspondence 

between the system requirements and elements of the constructed system, providing some 

rationale for design decisions. The computational components of a system are clients, servers, 

databases, filters, layers and so on, while interactions among those components can be either 

simple (procedure call, shared variable access) or complex, semantical rich (client-server or 

database access protocols, asynchronous event multicast, piped streams, and so on). Relevant 

system-level issues at the architecture level are capacity, throughput, consistency, and 

component compatibility. 

MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 60 (2008) 869-882  
 

                                          ISSN 0340 - 6253 
 



 Architectural models can be expressed in several ways, from box-and-line diagrams to 

architecture description languages, and clarify structural and semantic differences among 

components and interactions. They answer questions like: how components can be composed 

to define larger systems, or how individual elements of architectural descriptions are defined 

independently, so they can be reused in different context, refined as architectural subsystems 

and implemented in a conventional programming language. 

 This paper is organized in four sections, including this one. Second section introduces 

three important issues considered to be part of software architecture discipline, while the third 

contains some remarks regarding the software architecture of molecular topology programs. 

The last section contains some conclusions. 

 

2. ARCHITECTURAL STYLES 

 

 High-level design of a software system can be discussed in different ways, like 

architectural views (see [Kru95]) and architectural styles. This section refers to the latter 

ones. 

 Architectural design is a creative process, depending on the type of the target system. 

However, there are a number of common decisions that span all design processes. Among the 

high-level design questions enumerated by Sommerville (2004), the most important are 

referring to the general organization of the system, its decomposition into subsystems and 

modules, and its control strategy. 

 The concept of architectural style was introduced by Shaw and Garlan [Shaw94]. 

They consider the architecture of a software system as a collection of components and 

connectors describing the interactions among components, described as a graph with 

components as nodes and connectors as arcs. Following this approach, an architectural style 

defines a family of software systems with the same structural organization. In other words, an 

architectural style is defined by three sets of constructs: (a) the components, (b) the 

connectors, and (c) the constraints on how components and connectors can be composed. 

 Sommerville (2004) considers that subsystems and modules are different: the 

subsystem is a system operating independently of the services provided by others, while the 

module is a system component that provides/uses services to/from other modules, but is not 

considered as a separate system. He describes five types of models that define a system's 

architecture: static (structural model, showing major components of the system), dynamic 
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(process model, showing the process structure of the system), interface (defining subsystem 

interfaces), relationships (showing subsystem relationships, and distribution (showing 

subsystem distribution across network). In this more general framework, architectural styles 

are organized in three main groups, depending on the main question they answer: system 

organization, modular decomposition, and control strategy. 

 

2.1. Architectural styles reflecting system organization 

 System organisation reflects the basic strategy used to structure a software system. 

The most important architectural styles are: shared data repository, shared services and 

servers (client-server model), and abstract machine (layered model). 

 

2.1.1. Shared data repository 

 

 
Figure 1. Shared data repository model 

 

 Shared data repository model (Figure 1) has two categories of components: a central 

data structure (data store) and a set of independent components (subsystems) that operate on 

the data store. The connectors between subsystems and the data store are interactions, i.e. 

different types of transactions. 
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 The set of constraints is represented here by the control discipline. There are two 

variations here: traditional database model, in which types of transactions in the input stream 

trigger selection of the process to execute (according to the pull programming model), and 

blackboard model, in which the current state of the central data structure is the main trigger 

of selecting process to execute (according to the push programming model). 

 Figure 1 above represents the architecture of a CASE toolset [Som04], in which the 

central data store is the project repository. 

Advantages of this architecture are straightforward. It represents an efficient way to 

share large amounts of data between its subsystems, which need not to be concerned with 

how data is produced. In order to consume and produce data, the subsystems need to know 

the repository schema. The data model represents the main drawback of this architecture: all 

subsystems must agree on a common representation of data, usually a compromise. 

Moreover, any change in this model is difficult and expensive.  

 

2.1.2. Client-server organization 

 Client-server organization (Figure 2) corresponds to the request-response paradigm. 

Its main components are the (database) server(s) and the client applications; the connectors 

are procedure calls. A client issues a request at a time to the server (using a procedure call, 

i.e. explicit invocation); the server is faced to deal simultaneously with many clients, 

processing their requests and sending back responses to them. 

 Clients and servers cooperate in order to cover all logical functions (or layers) of an 

interactive application [Fowler02]: presentation logic (presenting data to the user, capturing 

user interaction), application logic (application-specific processing), and data management 

(storing and retrieving persistent data). 

 
Figure 2. Client-server model: (a) two-tier, (b) three (n)-tier, (c) web-based 
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 All variations sketched in Figure 2 consider that presentation logic is located in the 

client application, while data management functions reside on the server side. They differ in 

the ways components implement application logic: two-tier client-server splits application 

logic between the client and the server, while three (n)-tier client-server considers 

intermediate (middle) tier(s) dedicated to application logic, freeing clients and servers of 

application-specific duties. Web-based approach belongs to the latter scheme, employing a 

thin universal client (running a Web browser), always connected to a Web server. In this 

case, Web server connects to one or many application server(s), which on their turn make 

calls to database server(s). 

 Usually, client-server architecture is a common method for distributing computer 

power within an enterprise, where many users (clients) connect to and share some processing 

resources and data (servers). As Duchessi et al. [Duc98] noted the main benefits are: 

improved integration of shared data, improved accessibility, and reduced costs, by using 

cheaper client hardware. In the same time, there are some technical problems to be addressed 

when such architecture is intended to be used, related to computer architecture, management 

and organization, and conversion and maintenance. There is no shared data model, so 

different logical subsystems (clients) use different data organization. Additionally, because 

there is no central register of names and services, all clients need to know exactly what 

servers and services are available. 

 

2.1.3. Layered model 

 In the layered model (Figure 3), each layer represents a component, while the 

connectors are, as in the client-server organization, procedure calls. Layers are seen as 

abstract machines, each defining its own application programming interface (API) to be used 

by its clients, i.e. other layers. The constraints are of topological nature, devising two 

alternatives: strict layering and non-strict layering.  

 In the strict layering variant, each layer communicates only with the adjacent layers, 

the other (inner or outer) layers being hidden. The non-strict layering approach means: (a) 

certain functions of inner layers are exported to the outer layers, or (b) the inner layers are not 

hidden from the outer layers, or (c) some connectors are used to determine how layers will 

interact. 
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Figure 3. Layered model 

 

 Figure 3 above depicts the strict layered architecture of an interactive application, 

illustrating the functionality of each layer. 

 Layered systems provide good support for design, maintenance, and reuse. By 

supporting design based on increased level of abstraction, they allow designers to decompose 

a complex problem into a sequence of incremental steps. Because each layer interacts with a 

few other layers, the coupling between them is kept to a minimum. Abstract machine view of 

a layer (i.e. defining standard interfaces or APIs) allows its different implementations to be 

used interchangeably.  

 The drawbacks of layered architecture are related to performance and design issues. 

Considerations of performance may require tighter coupling between layers (i.e. logically 

high-level functions and their lower-level implementations). Moreover, not all systems can be 

easily structured in a layered fashion; usually it is difficult to find the right levels of 

abstraction. 

 

2.2. Architectural styles reflecting modular decomposition 

 Modular decomposition deals with the decomposition of subsystems into modules, 

and main decomposition models are dataflow (pipe-and-filter) model (the system is 

decomposed into functional modules which transform inputs to outputs) and object model 

(the subsystem is decomposed into a set of interacting objects).  

 

- 874 -



2.2.1. Pipe-and-filter model 

 In this model (known also as dataflow model), shown in Figure 4, filters are 

computational components, while pipes represent connectors, serving as communication 

media between filters.  

 
Figure 4. Pipe-and filter model 

 

Filters are independent entities; they don't know their neighbors. A filter starts 

processing when input data are available on incoming pipes. Pipe-and-filter architecture has 

three common specializations: pipelines, linear sequence of filters; bounded pipes, where the 

amount of data that reside on a pipe is restricted; and typed pipes, which require that the date 

passed between two filters have a well-defined type. Batch sequential systems represent a 

special case of this architectural style, where each filter processes all of its input data as a 

single entity, and the pipes no longer serve the function of providing a stream of data. Usually 

this style is treated separately. 

 Benefits of this architecture, prescribed by the functional decomposition, are related 

especially to the enhanced reusability and maintainability of filters. They allow the designer 

to understand the overall input/output behavior of a system as a simple composition of the 

behaviors of the individual filters. Any two filters can be connected, provided they agree on 

the data that is transmitted between them; new filters can be added to the existing systems 

and old filters can be replaced by new and improved versions. Finally, this architectural style 

supports concurrent execution, each filter being implemented as a separate task, potentially 

executed in parallel with other filters. 

 Disadvantages of this architecture are related to the data representation. Because pipe-

and-filter style is function-oriented, data representation is a second-class citizen. Changing 

data representation may produce the need to maintain correspondences between two separate, 

but related streams. In addition, this architecture is not good at handling interactive 

applications, because of its transformation character.  
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2.2.2. Data abstraction and object-oriented organization 

 This architectural style considers objects as computational components, and messages 

(method invocations, explicit invocation) as connectors. Objects are instances of classes 

(implementations of abstract data types). An object-oriented program is a structured 

collection of communicating objects.  

Each object is responsible for preserving its state; object representation is hidden and 

inheritance does not have a direct architectural function. Inheritance and object composition 

are main mechanisms for code reuse. 

 Benefits of object systems are related especially to two object design principles: 

separation of concerns (each object has a well-defined role) and program to an interface. 

Object implementation be changed without affecting its clients (object representation is 

hidden), and the resulting object-oriented program is a collection of interacting agents. This 

leads to more flexible, maintainable and extensible systems. 

 Of course, all above advantages have a cost. Each class of objects in the system needs 

a separate design, implementation, and testing process. In addition, in order for one object to 

interact with another, the first must know the identity of the second. Whenever the identity of 

an object changes, all other objects that use it need to be notified in some way. This is in 

contrast to pipe and filter systems, where filters are totally independent.  

 
2.3. Architectural styles reflecting control strategy 

 Control strategy is concerned with the control flow between subsystems, which is 

distinct from the system decomposition model. Two main control styles are employed: 

centralised control and event-based control.  

 
2.3.1. Centralized model 

 In the centralised model, components are subsystems, while connectors represent 

control flow. One of the subsystems has the overall responsibility of the system, managing 

the execution of all other subsystems. Centralized control comes in two flavors: call-return 

model, and manager model. Call-return model (Figure 5) is applicable to sequential systems 

only: the control starts at the top of the component (subroutine) hierarchy and moves 

downwards. Manager model (Figure 6) is good for concurrent systems: one system 

component (subsystem, monitor) controls the starting, stopping, and coordinating all other 

subsystems (system processes). 
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Figure 5. Call-return model 

 
Figure 6. Manager model 

 
In the call-return model, subsystems (subprograms) are invoked using traditional 

subprogram calls. This was the main control model driven by FORTRAN programming 

language. 

 
2.3.2. Event-driven control 

 Systems employing event-driven control have no master controller. Subsystems react 

to externally generated events, which are not under their control. Two main event-driven 

models are used: broadcast models and interrupt-driven models. In broadcast models, the 

event is broadcast to all subsystems, and any of the subsystems can handle it. Interrupt-driven 

models are used in real-time systems, and use hardware interrupts processed by interrupt 

handlers. 

From our viewpoint, event-driven systems (Figure 7) are of a particular interest. Their 

components are modules, whose interfaces provide a collection of methods (incoming 
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interface) and a set of events (outgoing interface). Methods pertaining to incoming interface 

are called by explicit invocation, while events that constitute the outgoing interface are 

subject to implicit invocation (connectors): registered procedures will be called when the 

corresponding events occur at runtime. The announcer of events does not know which 

components will be affected by those events: event consumers are dynamically registered to 

event sources. 

 

 
Figure 7. Event-based model - broadcast 

 

  Benefits of event models are their strong support for reuse and for system 

evolution. Any new component (event consumer) can be introduced into a system (event 

source) by simply registering it for the events of that source. Moreover, a component may be 

replaced by other components without affecting the interface of other components in the 

system. 

 Disadvantages of this model are related to the undefined response to events, data 

exchange, and reasoning about correctness. When a event source fires an event, it cannot 

assume event consumers will respond to that event. In the case there are registered more 

event consumers and they react to an event, the order in which they respond is undefined. 

Finally, traditional reasoning about procedure calls does not apply in the case of implicit 

invocation. 

 

3. SOFTWARE ARCHITECTURE OF MOLECULAR TOPOLOGY 

PROGRAMS 
 

 Molecular topology (a.k.a. chemical graph theory) is an interdisciplinary science that 

using tools taken from graph theory, set theory, and statistics, attempts to identify structural 

features involved in structure-property-action relationships. 
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 Typically, molecular topology software involves a lot of processing and usually some 

standard (reusable) data, regarding the structure and constituents of a chemical molecule, 

made up from atoms and bonds. Usually, chemical molecules are represented in graph form 

(a.k.a. molecular graph), with atoms as vertices and covalent bonds as edges. Of course, 

structures that are more complex need special attention. 

 From a logical viewpoint, a software system has three  

 This section contains some remarks concerning high-level design of molecular 

topology software. First, we have to sketch the main features of such computer programs, in 

terms of their data representation and processing. After that, we can issue some remarks 

regarding optimal choices for their architecture. 

 

3.1. Data representation 

 As [Fogh05] remarks, there is a lack of standards for data storage and exchange in 

scientific software. The problem lies not only in defining and maintaining the standards, but 

also in convincing scientists and application programmers with a wide variety of backgrounds 

and interests to adhere to them. 

 Traditional bookkeeping approaches, such as the laboratory notebook, do not scale the 

multiuser and multisite environments. In [Paj05], two possible approaches to allow the data 

to be shared between users and applications are discussed. The first is to define a general and 

unique data format to transfer data between applications (i.e. a single format meeting the 

needs of all users/applications), while the second is to build a data model.  

 The first approach is supported by some well-known computer applications, e.g. 

HYPERCHEM, which impose a de facto standard in data representation. This way, the 

researcher can use them (i.e. HYPERCHEM) for specific processing of the chemical 

copounds he/she proposes. For example, we designed the output of our experimental 

programs (TORUS) generating new toroidal structures in the HYPERCHEM format, which 

allowed us to visualize them in a HYPERCHEM window. This is an example of a pipeline 

architecture, where filters are TORUS and HYPERCHEM, and the pipe is represented by a 

HYPERCHEM-complaint data file. 

 The second approach involves a more dedicated work. The idea is to identify and 

define the classes of information of interest along with their relationships, in order to produce 

a structural description (static view) of all the data, i.e. a data model. Such a general data 

model provides well-defined interfaces for data manipulation and can be used by different 
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computer applications in order to perform specific tasks. This way, the data model and the 

processing are separated and can evolve in an independent way.  

 The use of a data model has implications in application and data management layers, 

as they are defined in 2.1.2. In this case, application layer will contain application-specific 

objects, while data management layer is responsible with the maintenance of the data model 

contained in the persistent store. 

 From our architectural viewpoint, the use of a data model suggests either repository 

architecture or a client-server one. In the shared data repository model, the central data store 

contains the data model, while independent components (subsystems) are dedicated to 

specific processing needs. In the client-server model, the database server performs data 

management functions, while client applications are designed to cover specific processing 

functions. 

 

3.2. Typical processing 

 Molecular topology processing involves matrix and graph algorithms (see [Diu00] for 

an exhaustive review). The main categories of outputs are: topological matrices, topological 

indices, symmetry and similarity studies, and property modeling using QSPR (Quantitative 

Structure-Property Relationship)/QSAR (Quantitative Structure-Activity Relationship), as 

well as molecular modeling. All these results involve a lot of computational power and 

internal storage.  

 Chemical graphs can be represented in list form (as a sequence of numbers), 

ploynomial form, or matrix form. There are many matrix representations, collectively known 

as topological matrices: adjacency matrix, Laplacian matrix, distance and distance-extended 

matrices, detour matrix, 3D - distance matrix, path and distance-path matrices, Wiener, 

Szeged, Hosoya, Schultz, and Cluj matrices, reciprocal and walk matrices, layer and 

sequence matrices. 

 The characteristic polynomial of a graph is the most popular and most extensively 

used polynomial in molecular topology. There are many variations of it, such as the matching 

polynomial, the μ-polynomial and the β-polynomial. They are studied in order to find some 

specific properties of their roots. 

 Other processing needs are related to the graphical visualization of chemical 

structures and to the data management functions. 
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3.3. Recommended architectures for molecular topology software 

 

 In what follows, we briefly discuss some ideas regarding the architecture of three 

important classes of molecular topology applications and subsystems: processing-intensive, 

data-intensive, and user interaction-centered. 

 Processing-intensive components and applications involve usually few data and many 

processing power. This is the case when the specific processing involves the computation of 

molecular topology matrices, indices, or polynomials. In addition, graphical visualization 

involves a lot of matrix computation. The recommended architecture in this situation is 

dataflow (best for sequential and well-defined processing steps), where each filter computes a 

specific topological matrix or index. In addition, where the computation complexity is a big 

issue, each filter can be organized in a layered fashion. 

 A central data store is recommended for data-intensive applications and components. 

This situation is typical when the same large amounts of static data are used again and again 

in different processing steps and moments. Because of the static nature of such data, it is 

recommended to consider data entry as a separate processing step. Such an example is 

presented in [Paj05] 

 Finally, user interaction-centered components and applications are best designed by 

employing implicit invocation architectures. They provide the necessary flexibility and 

reliability in the presentation of data and in capturing and processing the user interaction. 

 
REFERENCES 

 
[Bass98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 

Addison-Wesley, 1998. 

[Deu89] L. P. Deutsch, Design reuse and frameworks in the Smalltalk-80 system. In 

T. J. Biggerstaff, A. J. Perlis, editors, Software Reusability, Volume II: 

Applications and Experience, Addison-Wesley, Reading, MA, 1989, 57–71 

pp. 

[Diu00] M.V.Diudea, I. Gutman, J. Lorentz, Molecular topology, Nova Science 

Publishers, 2000. 

[Duc98] P. Duchessi, I. Chengalur-Smith, Client/Server benefits, problems, best 

practices, Comm. ACM 41 (1998) 87-94. 

- 881 -



[Fogh05] R.H. Fogh et al., A framework for scientific data modeling and automated 

software development, Bioinformatics 21 (2005) 1678-1684. 

[Fowler02

] 

M. Fowler et al., Patterns of Enterprise Application Architecture, Addison-

Wesley, 2002. 

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of 

Reusable Object-Oriented Software, Addison-Wesley, 1995. 

[GS03] J. Greenfield, K. Short, Models, Frameworks, and Tools, Wiley, 2003. 

[Paj05] A. Pajon et al., Design of a Data Model for Developing Laboratory 

Information Management and Analysis Systems for Protein Production, 

Proteins: Structure, Function, and Bioinformatics 58 (2005) 278-284. 

[Shaw94] M. Shaw, D. Garlan, An Introduction to Software Architecture, CMU/SEI-

94-TR-21, 1994. 

[Shaw96] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging 

Discipline, Prentice-Hall, 1996. 

[Som04] J. Sommerville, Software Engineering, 7th ed., Addison-Wesley, 2004 
 

 

- 882 -


