

THE ARCHITECTURE OF SOFTWARE SYSTEMS
FOR MOLECULAR TOPOLOGY

BAZIL PÂRV

Department of Computer Science, Faculty of Mathematics and Computer Science, Babes-

Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Romania

e-mail: bparv@cs.ubbcluj.ro

(Received April 19, 2008)

ABSTRACT. The concept software architecture becomes more and more important in the
software development process. Software system design is a two-step process: architectural design
and detailed design. Architectural design describes top-level structure and organization of a
software system, identifying its components, and is considered today the most important part of
the overall design process. At least three criteria can be used to discuss different architectural
patterns (aka architectural styles): system organization, modular decomposition, and control
strategy. According to Sommerville, system organization is concretized in three architectural
styles: shared data repository, client-server, and layered model; there are two main models
answering to modular decomposition: object, and dataflow; finally, control strategy has two
styles: centralized and event-driven. The paper presents in detail all these architectural styles, their
advantages and drawbacks, and their use in molecular topology software.

1. INTRODUCTION

Software architecture is a relatively new software engineering discipline, having an

increased impact on the ways a software system is designed and implemented today. We

believe that its important concepts, principles, and models need to be known by all people

involved in the development of software systems, including scientific software.

 According to [Shaw96], software architecture defines a software system in terms of

its structure and topology (components and interactions) and shows the correspondence

between the system requirements and elements of the constructed system, providing some

rationale for design decisions. The computational components of a system are clients, servers,

databases, filters, layers and so on, while interactions among those components can be either

simple (procedure call, shared variable access) or complex, semantical rich (client-server or

database access protocols, asynchronous event multicast, piped streams, and so on). Relevant

system-level issues at the architecture level are capacity, throughput, consistency, and

component compatibility.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 60 (2008) 869-882

 ISSN 0340 - 6253

 Architectural models can be expressed in several ways, from box-and-line diagrams to

architecture description languages, and clarify structural and semantic differences among

components and interactions. They answer questions like: how components can be composed

to define larger systems, or how individual elements of architectural descriptions are defined

independently, so they can be reused in different context, refined as architectural subsystems

and implemented in a conventional programming language.

 This paper is organized in four sections, including this one. Second section introduces

three important issues considered to be part of software architecture discipline, while the third

contains some remarks regarding the software architecture of molecular topology programs.

The last section contains some conclusions.

2. ARCHITECTURAL STYLES

 High-level design of a software system can be discussed in different ways, like

architectural views (see [Kru95]) and architectural styles. This section refers to the latter

ones.

 Architectural design is a creative process, depending on the type of the target system.

However, there are a number of common decisions that span all design processes. Among the

high-level design questions enumerated by Sommerville (2004), the most important are

referring to the general organization of the system, its decomposition into subsystems and

modules, and its control strategy.

 The concept of architectural style was introduced by Shaw and Garlan [Shaw94].

They consider the architecture of a software system as a collection of components and

connectors describing the interactions among components, described as a graph with

components as nodes and connectors as arcs. Following this approach, an architectural style

defines a family of software systems with the same structural organization. In other words, an

architectural style is defined by three sets of constructs: (a) the components, (b) the

connectors, and (c) the constraints on how components and connectors can be composed.

 Sommerville (2004) considers that subsystems and modules are different: the

subsystem is a system operating independently of the services provided by others, while the

module is a system component that provides/uses services to/from other modules, but is not

considered as a separate system. He describes five types of models that define a system's

architecture: static (structural model, showing major components of the system), dynamic

- 870 -

(process model, showing the process structure of the system), interface (defining subsystem

interfaces), relationships (showing subsystem relationships, and distribution (showing

subsystem distribution across network). In this more general framework, architectural styles

are organized in three main groups, depending on the main question they answer: system

organization, modular decomposition, and control strategy.

2.1. Architectural styles reflecting system organization

 System organisation reflects the basic strategy used to structure a software system.

The most important architectural styles are: shared data repository, shared services and

servers (client-server model), and abstract machine (layered model).

2.1.1. Shared data repository

Figure 1. Shared data repository model

 Shared data repository model (Figure 1) has two categories of components: a central

data structure (data store) and a set of independent components (subsystems) that operate on

the data store. The connectors between subsystems and the data store are interactions, i.e.

different types of transactions.

- 871 -

 The set of constraints is represented here by the control discipline. There are two

variations here: traditional database model, in which types of transactions in the input stream

trigger selection of the process to execute (according to the pull programming model), and

blackboard model, in which the current state of the central data structure is the main trigger

of selecting process to execute (according to the push programming model).

 Figure 1 above represents the architecture of a CASE toolset [Som04], in which the

central data store is the project repository.

Advantages of this architecture are straightforward. It represents an efficient way to

share large amounts of data between its subsystems, which need not to be concerned with

how data is produced. In order to consume and produce data, the subsystems need to know

the repository schema. The data model represents the main drawback of this architecture: all

subsystems must agree on a common representation of data, usually a compromise.

Moreover, any change in this model is difficult and expensive.

2.1.2. Client-server organization

 Client-server organization (Figure 2) corresponds to the request-response paradigm.

Its main components are the (database) server(s) and the client applications; the connectors

are procedure calls. A client issues a request at a time to the server (using a procedure call,

i.e. explicit invocation); the server is faced to deal simultaneously with many clients,

processing their requests and sending back responses to them.

 Clients and servers cooperate in order to cover all logical functions (or layers) of an

interactive application [Fowler02]: presentation logic (presenting data to the user, capturing

user interaction), application logic (application-specific processing), and data management

(storing and retrieving persistent data).

Figure 2. Client-server model: (a) two-tier, (b) three (n)-tier, (c) web-based

- 872 -

 All variations sketched in Figure 2 consider that presentation logic is located in the

client application, while data management functions reside on the server side. They differ in

the ways components implement application logic: two-tier client-server splits application

logic between the client and the server, while three (n)-tier client-server considers

intermediate (middle) tier(s) dedicated to application logic, freeing clients and servers of

application-specific duties. Web-based approach belongs to the latter scheme, employing a

thin universal client (running a Web browser), always connected to a Web server. In this

case, Web server connects to one or many application server(s), which on their turn make

calls to database server(s).

 Usually, client-server architecture is a common method for distributing computer

power within an enterprise, where many users (clients) connect to and share some processing

resources and data (servers). As Duchessi et al. [Duc98] noted the main benefits are:

improved integration of shared data, improved accessibility, and reduced costs, by using

cheaper client hardware. In the same time, there are some technical problems to be addressed

when such architecture is intended to be used, related to computer architecture, management

and organization, and conversion and maintenance. There is no shared data model, so

different logical subsystems (clients) use different data organization. Additionally, because

there is no central register of names and services, all clients need to know exactly what

servers and services are available.

2.1.3. Layered model

 In the layered model (Figure 3), each layer represents a component, while the

connectors are, as in the client-server organization, procedure calls. Layers are seen as

abstract machines, each defining its own application programming interface (API) to be used

by its clients, i.e. other layers. The constraints are of topological nature, devising two

alternatives: strict layering and non-strict layering.

 In the strict layering variant, each layer communicates only with the adjacent layers,

the other (inner or outer) layers being hidden. The non-strict layering approach means: (a)

certain functions of inner layers are exported to the outer layers, or (b) the inner layers are not

hidden from the outer layers, or (c) some connectors are used to determine how layers will

interact.

- 873 -

Figure 3. Layered model

 Figure 3 above depicts the strict layered architecture of an interactive application,

illustrating the functionality of each layer.

 Layered systems provide good support for design, maintenance, and reuse. By

supporting design based on increased level of abstraction, they allow designers to decompose

a complex problem into a sequence of incremental steps. Because each layer interacts with a

few other layers, the coupling between them is kept to a minimum. Abstract machine view of

a layer (i.e. defining standard interfaces or APIs) allows its different implementations to be

used interchangeably.

 The drawbacks of layered architecture are related to performance and design issues.

Considerations of performance may require tighter coupling between layers (i.e. logically

high-level functions and their lower-level implementations). Moreover, not all systems can be

easily structured in a layered fashion; usually it is difficult to find the right levels of

abstraction.

2.2. Architectural styles reflecting modular decomposition

 Modular decomposition deals with the decomposition of subsystems into modules,

and main decomposition models are dataflow (pipe-and-filter) model (the system is

decomposed into functional modules which transform inputs to outputs) and object model

(the subsystem is decomposed into a set of interacting objects).

- 874 -

2.2.1. Pipe-and-filter model

 In this model (known also as dataflow model), shown in Figure 4, filters are

computational components, while pipes represent connectors, serving as communication

media between filters.

Figure 4. Pipe-and filter model

Filters are independent entities; they don't know their neighbors. A filter starts

processing when input data are available on incoming pipes. Pipe-and-filter architecture has

three common specializations: pipelines, linear sequence of filters; bounded pipes, where the

amount of data that reside on a pipe is restricted; and typed pipes, which require that the date

passed between two filters have a well-defined type. Batch sequential systems represent a

special case of this architectural style, where each filter processes all of its input data as a

single entity, and the pipes no longer serve the function of providing a stream of data. Usually

this style is treated separately.

 Benefits of this architecture, prescribed by the functional decomposition, are related

especially to the enhanced reusability and maintainability of filters. They allow the designer

to understand the overall input/output behavior of a system as a simple composition of the

behaviors of the individual filters. Any two filters can be connected, provided they agree on

the data that is transmitted between them; new filters can be added to the existing systems

and old filters can be replaced by new and improved versions. Finally, this architectural style

supports concurrent execution, each filter being implemented as a separate task, potentially

executed in parallel with other filters.

 Disadvantages of this architecture are related to the data representation. Because pipe-

and-filter style is function-oriented, data representation is a second-class citizen. Changing

data representation may produce the need to maintain correspondences between two separate,

but related streams. In addition, this architecture is not good at handling interactive

applications, because of its transformation character.

- 875 -

2.2.2. Data abstraction and object-oriented organization

 This architectural style considers objects as computational components, and messages

(method invocations, explicit invocation) as connectors. Objects are instances of classes

(implementations of abstract data types). An object-oriented program is a structured

collection of communicating objects.

Each object is responsible for preserving its state; object representation is hidden and

inheritance does not have a direct architectural function. Inheritance and object composition

are main mechanisms for code reuse.

 Benefits of object systems are related especially to two object design principles:

separation of concerns (each object has a well-defined role) and program to an interface.

Object implementation be changed without affecting its clients (object representation is

hidden), and the resulting object-oriented program is a collection of interacting agents. This

leads to more flexible, maintainable and extensible systems.

 Of course, all above advantages have a cost. Each class of objects in the system needs

a separate design, implementation, and testing process. In addition, in order for one object to

interact with another, the first must know the identity of the second. Whenever the identity of

an object changes, all other objects that use it need to be notified in some way. This is in

contrast to pipe and filter systems, where filters are totally independent.

2.3. Architectural styles reflecting control strategy

 Control strategy is concerned with the control flow between subsystems, which is

distinct from the system decomposition model. Two main control styles are employed:

centralised control and event-based control.

2.3.1. Centralized model

 In the centralised model, components are subsystems, while connectors represent

control flow. One of the subsystems has the overall responsibility of the system, managing

the execution of all other subsystems. Centralized control comes in two flavors: call-return

model, and manager model. Call-return model (Figure 5) is applicable to sequential systems

only: the control starts at the top of the component (subroutine) hierarchy and moves

downwards. Manager model (Figure 6) is good for concurrent systems: one system

component (subsystem, monitor) controls the starting, stopping, and coordinating all other

subsystems (system processes).

- 876 -

Figure 5. Call-return model

Figure 6. Manager model

In the call-return model, subsystems (subprograms) are invoked using traditional

subprogram calls. This was the main control model driven by FORTRAN programming

language.

2.3.2. Event-driven control

 Systems employing event-driven control have no master controller. Subsystems react

to externally generated events, which are not under their control. Two main event-driven

models are used: broadcast models and interrupt-driven models. In broadcast models, the

event is broadcast to all subsystems, and any of the subsystems can handle it. Interrupt-driven

models are used in real-time systems, and use hardware interrupts processed by interrupt

handlers.

From our viewpoint, event-driven systems (Figure 7) are of a particular interest. Their

components are modules, whose interfaces provide a collection of methods (incoming

- 877 -

interface) and a set of events (outgoing interface). Methods pertaining to incoming interface

are called by explicit invocation, while events that constitute the outgoing interface are

subject to implicit invocation (connectors): registered procedures will be called when the

corresponding events occur at runtime. The announcer of events does not know which

components will be affected by those events: event consumers are dynamically registered to

event sources.

Figure 7. Event-based model - broadcast

 Benefits of event models are their strong support for reuse and for system

evolution. Any new component (event consumer) can be introduced into a system (event

source) by simply registering it for the events of that source. Moreover, a component may be

replaced by other components without affecting the interface of other components in the

system.

 Disadvantages of this model are related to the undefined response to events, data

exchange, and reasoning about correctness. When a event source fires an event, it cannot

assume event consumers will respond to that event. In the case there are registered more

event consumers and they react to an event, the order in which they respond is undefined.

Finally, traditional reasoning about procedure calls does not apply in the case of implicit

invocation.

3. SOFTWARE ARCHITECTURE OF MOLECULAR TOPOLOGY

PROGRAMS

 Molecular topology (a.k.a. chemical graph theory) is an interdisciplinary science that

using tools taken from graph theory, set theory, and statistics, attempts to identify structural

features involved in structure-property-action relationships.

- 878 -

 Typically, molecular topology software involves a lot of processing and usually some

standard (reusable) data, regarding the structure and constituents of a chemical molecule,

made up from atoms and bonds. Usually, chemical molecules are represented in graph form

(a.k.a. molecular graph), with atoms as vertices and covalent bonds as edges. Of course,

structures that are more complex need special attention.

 From a logical viewpoint, a software system has three

 This section contains some remarks concerning high-level design of molecular

topology software. First, we have to sketch the main features of such computer programs, in

terms of their data representation and processing. After that, we can issue some remarks

regarding optimal choices for their architecture.

3.1. Data representation

 As [Fogh05] remarks, there is a lack of standards for data storage and exchange in

scientific software. The problem lies not only in defining and maintaining the standards, but

also in convincing scientists and application programmers with a wide variety of backgrounds

and interests to adhere to them.

 Traditional bookkeeping approaches, such as the laboratory notebook, do not scale the

multiuser and multisite environments. In [Paj05], two possible approaches to allow the data

to be shared between users and applications are discussed. The first is to define a general and

unique data format to transfer data between applications (i.e. a single format meeting the

needs of all users/applications), while the second is to build a data model.

 The first approach is supported by some well-known computer applications, e.g.

HYPERCHEM, which impose a de facto standard in data representation. This way, the

researcher can use them (i.e. HYPERCHEM) for specific processing of the chemical

copounds he/she proposes. For example, we designed the output of our experimental

programs (TORUS) generating new toroidal structures in the HYPERCHEM format, which

allowed us to visualize them in a HYPERCHEM window. This is an example of a pipeline

architecture, where filters are TORUS and HYPERCHEM, and the pipe is represented by a

HYPERCHEM-complaint data file.

 The second approach involves a more dedicated work. The idea is to identify and

define the classes of information of interest along with their relationships, in order to produce

a structural description (static view) of all the data, i.e. a data model. Such a general data

model provides well-defined interfaces for data manipulation and can be used by different

- 879 -

computer applications in order to perform specific tasks. This way, the data model and the

processing are separated and can evolve in an independent way.

 The use of a data model has implications in application and data management layers,

as they are defined in 2.1.2. In this case, application layer will contain application-specific

objects, while data management layer is responsible with the maintenance of the data model

contained in the persistent store.

 From our architectural viewpoint, the use of a data model suggests either repository

architecture or a client-server one. In the shared data repository model, the central data store

contains the data model, while independent components (subsystems) are dedicated to

specific processing needs. In the client-server model, the database server performs data

management functions, while client applications are designed to cover specific processing

functions.

3.2. Typical processing

 Molecular topology processing involves matrix and graph algorithms (see [Diu00] for

an exhaustive review). The main categories of outputs are: topological matrices, topological

indices, symmetry and similarity studies, and property modeling using QSPR (Quantitative

Structure-Property Relationship)/QSAR (Quantitative Structure-Activity Relationship), as

well as molecular modeling. All these results involve a lot of computational power and

internal storage.

 Chemical graphs can be represented in list form (as a sequence of numbers),

ploynomial form, or matrix form. There are many matrix representations, collectively known

as topological matrices: adjacency matrix, Laplacian matrix, distance and distance-extended

matrices, detour matrix, 3D - distance matrix, path and distance-path matrices, Wiener,

Szeged, Hosoya, Schultz, and Cluj matrices, reciprocal and walk matrices, layer and

sequence matrices.

 The characteristic polynomial of a graph is the most popular and most extensively

used polynomial in molecular topology. There are many variations of it, such as the matching

polynomial, the μ-polynomial and the β-polynomial. They are studied in order to find some

specific properties of their roots.

 Other processing needs are related to the graphical visualization of chemical

structures and to the data management functions.

- 880 -

3.3. Recommended architectures for molecular topology software

 In what follows, we briefly discuss some ideas regarding the architecture of three

important classes of molecular topology applications and subsystems: processing-intensive,

data-intensive, and user interaction-centered.

 Processing-intensive components and applications involve usually few data and many

processing power. This is the case when the specific processing involves the computation of

molecular topology matrices, indices, or polynomials. In addition, graphical visualization

involves a lot of matrix computation. The recommended architecture in this situation is

dataflow (best for sequential and well-defined processing steps), where each filter computes a

specific topological matrix or index. In addition, where the computation complexity is a big

issue, each filter can be organized in a layered fashion.

 A central data store is recommended for data-intensive applications and components.

This situation is typical when the same large amounts of static data are used again and again

in different processing steps and moments. Because of the static nature of such data, it is

recommended to consider data entry as a separate processing step. Such an example is

presented in [Paj05]

 Finally, user interaction-centered components and applications are best designed by

employing implicit invocation architectures. They provide the necessary flexibility and

reliability in the presentation of data and in capturing and processing the user interaction.

REFERENCES

[Bass98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,

Addison-Wesley, 1998.

[Deu89] L. P. Deutsch, Design reuse and frameworks in the Smalltalk-80 system. In

T. J. Biggerstaff, A. J. Perlis, editors, Software Reusability, Volume II:

Applications and Experience, Addison-Wesley, Reading, MA, 1989, 57–71

pp.

[Diu00] M.V.Diudea, I. Gutman, J. Lorentz, Molecular topology, Nova Science

Publishers, 2000.

[Duc98] P. Duchessi, I. Chengalur-Smith, Client/Server benefits, problems, best

practices, Comm. ACM 41 (1998) 87-94.

- 881 -

[Fogh05] R.H. Fogh et al., A framework for scientific data modeling and automated

software development, Bioinformatics 21 (2005) 1678-1684.

[Fowler02

]

M. Fowler et al., Patterns of Enterprise Application Architecture, Addison-

Wesley, 2002.

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.

[GS03] J. Greenfield, K. Short, Models, Frameworks, and Tools, Wiley, 2003.

[Paj05] A. Pajon et al., Design of a Data Model for Developing Laboratory

Information Management and Analysis Systems for Protein Production,

Proteins: Structure, Function, and Bioinformatics 58 (2005) 278-284.

[Shaw94] M. Shaw, D. Garlan, An Introduction to Software Architecture, CMU/SEI-

94-TR-21, 1994.

[Shaw96] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline, Prentice-Hall, 1996.

[Som04] J. Sommerville, Software Engineering, 7th ed., Addison-Wesley, 2004

- 882 -

