
 

 
 
 
 
 
 

Extension of Euler Formula in Multi-Shell Polyhedra 
 
 

Mircea V. Diudea and Csaba L. Nagy 

Faculty of Chemistry and Chemical Engineering 
“Babes-Bolyai” University, 400028 Arany Janos 11, Cluj, Romania 

 
(Received April 18, 2008)  

 
 

Abstract. Operations on maps are geometric-topological transformations enabling 

modification of a given covering of a polyhedral covering. They can be extended to 

work on all rings of a 3D network, thus generating finite multi-shell polyhedra or 

infinite periodic units. The obtained structures are evaluated by an extension of Euler 

formula which accounts for all the distinct elements of a finite CW-complex.  

 
 

1. Introduction 

A map is a combinatorial representation of a (closed) surface S.1,2 Let us denote in a 

map: v – the number of vertices, e – the number of edges, f – the number of faces and d – the 

vertex degree. 

Recall some basic relations in a map: 

∑ = evd d 2         (1) 

∑ = efn n 2         (2) 

where vd and fn are the number of vertices of degree d and number of n-gonal faces, 

respectively. The two relations are joined in the famous Euler (1758) formula:3 

( )S v e fχ = − +        (3) 
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with χ being the Euler characteristic of a graph.4 This formula is useful for checking the 

consistency of an assumed structure. For a convex polyhedron, which is homeomorphic to a 

sphere, 2χ = . Positive/negative χ values indicate positive/negative curvature of a surface. 

The first rigorous proof of Euler's formula is due to Cauchy. For other proofs, the 

reader can consult ref. 5. 

The Euler characteristic of a closed, orientable, surface is related to its genus g (i.e., 

the number of tori, in a connected sum decomposition of the surface, or the number of cuts 

that turn a cyclic structure into a tree - for a sphere, g = 0): 

( ) 2(1 )S gχ = −        (4) 

A surface is orientable, when it has two sides, or it is non-orientable, when it has only 

one side, like the Möbius strip. In case of a non-orientable surface, the Euler characteristic 

reads: 

( ) 2S nχ = −         (5) 

where n is the number of cross-caps attached to the sphere to make it homeomorphic to that 

non-orientable surface.6 

The Euler characteristic can also be found by integrating the Gaussian curvature K of a 

surface (the Gauss-Bonnet theorem).7,8 

∫ =
S

SKdS )(2πχ        (6) 
A discrete analog of the Gauss-Bonnet theorem is Descartes' theorem22,23 that states 

the "total defect" of a polyhedron, measured in full circles, is proportional to the Euler 

characteristic of the polyhedron:  

∑ =
S

p
p S)(2πχφ        (7) 

For any finite CW-complex, the Euler characteristic χ can be defined as the alternating 

sum:9 

0 1 2 3 ...k k k kχ = − + − + ,      (8) 

where kn denotes the number of cells of dimension n in the complex. It can also be defined by 

using the Betti numbers, in terms of homology groups.10 

Several transformations (i.e., operations) on maps are known and used for various 

purposes. Among the basic map operations, the most important are dualization, truncation, 

medial, and the composite operations: leapfrog, chamfering and capra. The reader can find 
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more about map operations in some recent monographs.11,12 In the hereafter discussion, these 

transformations are operated basically on the Platonic objects (Figure 1). 
 

Tetrahedron T Cube C Octahedron O Dodecahedron D Icosahedron I 

 

 

 

 

 

 

 

  

Figure 1. The five Platonic polyhedra. 

 
 

 

2. Operations in Multi-Shell Polyhedra  
 

Motivation of this study originates in the theory of hyper-cube,13 expressed by the 

“cube-into-cube” 2C geometrical representation (Figure 2a) and the experimental existence of 

“onion”-fullerenes, as well. 

Among the basic map operations we focused here on the medial Med operation. This 

is because “bisection” (the other name used for Med) is the most natural operation in nature 

and Cubeoctahedron (shown as double-shell polyhedron in Figure 2b) could intercalate within 

the cubic crystalline network. In the top of figures, lattice data and ring r counting 

polynomials are given. 
 

(a) 2C 
v=16; e=32; d = 4; r=24; 424x  

(b) Med(2C) 
v=24; e=60; d = 5; r=52; 43 3616 xx +  

 

  
Figure 2. Double-shell polyhedra 

 
 

Other map operations can also be used for modifying the faces of a “polyhedron-into-

polyhedron”, either as closed or open structures, as shown in Figures 3 and 4. 

A particular result is obtained when the Med operation is performed on the “point-

into-polyhedron” and acts on all rings (see the subscript _all at the end of operation name): it 

leads to a structure type in which the parent and its transform coexist (Figure 5).  
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(a) Ca(2C)) 

v=112; e=224; r=144; 64 4896 xx +  
(b) Op(Ca(2C))) 

v=160; e=296; r=156; 74 48108 xx +  
 

 

 

 

Figure 3. Capra transform (a) and the corresponding open structure (b) 
 
 

(a) Q(2C)) 
v=64; e=128; r=84; 64 2460 xx +  

(b) Op(Q(2C))) 
v=112; e=200; r=96; 84 2472 xx +  

 

 

 

 

Figure 4. Chamfering transform (a) and its open structure (b) 
 
 

(a) Med(CP))_all 
v=20; e=60; r=56; 43 1244 xx +  

(b) Med(OP))_all 
v=18; e=60; r=58; 43 652 xx +  

 

 

 

 

Figure 5. Med(MP)_all transforms of cube (a) and octahedron (b) 
 

Two all-Med transforms, obtained from identical “polyhedron-into-polyhedron” nP are 

shown in Figure 6. The procedure was also applied on toroidal 2P structures (Figure 7). A 

series of interesting structures could be obtained by applying the all-operations on the array of 

12 dodecahedra (Figure 8). 
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(a) Med(2D))_all 
v=80; e=240; r=214; 543 2430160 xxx ++  

(b) Med(2I))_all 
v=72; e=240; r=214; 543 2430160 xxx ++  

 

 

 

Figure 6. All-Med(M) transforms of multi-shell dodecahedron (a) and icosahedron (b) 
 

(a) Med(2TOR(4,4)[5,25])_all 
v=625; e=2000; r=1750; 43 7501000 xx +  

(b) Med(2TOR(4,4)[5,25])_all (slide) 
v=40; e=100; f3=40; f4=20; g = 1 

 

 

 

 

 

Figure 7. Medial of a double shell toroidal structure 
 

(a) 12×D 
v=130; e=230; r=114; 5114x  

(b) Du(12×D) 
v=114; e=390; r=310; 3310x  

    

(c) Med(12×D) 
v=230; e=570; r=424; 3 5280 114x x+  

(d) Le(12×D) 
v=570; e=960; r=424; 3 5 650 114 260x x x+ +  

  
Figure 8. Double-shell polyhedra derived from the 12-array of dodecahedra 
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Cubeoctahedron could play the role of tetrapodal repeat unit used in the design of spongy 

carbon architectures.11,12 Thus, spongy-structures derived from the dodecahedron and cube 

can be designed by the aid of Med operation (Figure 9). 

 
(a) Med(Med(OP))_all 
v=60; e=156; r=112; 

43 6052 xx +  

(b) Med(Med(IP))_all 
v=150; e=390; r=274; 

543 24120130 xxx ++  

(c) 12×Med(Med(IP))_all 
v=870; e=2430; r=1818; 

3 4 5810 780 228x x x+ +  

   
Figure 9. Spongy-structures 

 
The discussed structures have been performed by our original software: CVNET,14 

TORUS15 and JSCHEM16. 

 

3. Euler Extended Formula for Multi-Shell Polyhedra. 

 
The Euler formula relates the basic map parameters to the χ-characteristic of the 

surface S and the genus g of a graph embedded into S. In multi-shell polyhedra, the map (a 2D 

lattice) is changed by a 3D lattice and faces are correspondingly changed by hard rings (i.e., 

those elementary rings that are not the sum of other, smaller rings). In a 3D lattice, an edge 

can share more than two rings, this fact generating serious problems in counting SSSR 

(smallest set of smallest rings). Within this paper, the rings are also counted in terms of the 

ring polynomial. 

Let consider the evaluation of Euler χ-characteristic as an alternating sum (eq 8) of the 

number of cells kn of dimension n in a finite CW-complex. In a multi-shell polyhedral 

structure, the cells of dimension n=3 must be accounted, and the Euler formula can read as: 

( 1) ( )v e r p s Gχ− + − − =        (9) 

where p is the number of k3-cells (i.e., elementary polyhedra) while s is the number of shells; 

in case of s=1, the classical Euler formula is recovered (after identifying r with f). The results 

of application of eq 9 are presented in Tables 1 to 7. 
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 Table 1. Euler-Extended Formula in Multi-Shell Platonic nP Polyhedra 

 Object (nP):  Ring Polynomial d ( 1)v e r p s χ− + − − =  p 

1 2C: 424x  4 16-32+24-6=2 )C(f    

2 3C: 442x  5 (8), 4 (16) 24-52+42-6×2=2 )C(f    

3 2D: 54 2430 xx +  4 40-80+54-12=2 )D(f  
4 3D: 53660 4 xx +  5 (20), 4 (40) 60-130+96-12×2=2 )D(f  
5 2I: 43 3040 xx +  6 24-72+70-20=2 )I(f  
6 3I: 43 6060 xx +  7 (12), 6 (24) 36-114+120-20×2=2 )I(f  
7 2O: 43 1216 xx +  5 12-30+28-8=2 )O(f  
8 3O: 43 2424 xx +  6 (6), 5 (12) 18-48+48-8×2=2 )O(f  
9 2T: 43 68 xx +  4 8-16+14-4=2 )T(f  
10 3T: 43 1212 xx +  5 (4), 4 (8) 12-26+24-4×2=2 )T(f    

 
 

Table 2. Euler-Extended Formula in Double-Shell Closed/Open Polyhedra 

 Object (nP):  Ring Polynomial d v e r p χ− + − =  p 
1 Ca(2C):  64 4896 xx +  4 112-224+144-30=2 ))C((Caf  
2 Q(2C):  64 2460 xx +  4 64-128+84-18=2 ))C((Qf  
3 Op(Ca(2C)):  74 48108 xx +  4(112), 3(48) 160-296+156-24=-4 )))C((( CaOpf  
4 Op(Q(2C)):  84 2472 xx +  4(64), 3(48) 112-200+96-12=-4 )))C((( QOpf  

 

Table 3. Euler-Extended Formula in Double-Shell Polyhedra (Med(MP)_all of Platonics) 

 Object (MP):  Ring Polynomial d v e r p χ− + − =  p 
1 CP:  43 1244 xx +  6 20-60+56-14=2 ))C((Medf  
2 DP:  53 24110 xx +  6 50-150+134-32=2 ))D((Medf  
3 IP:  543 1220110 xxx ++  10(12), 6(30) 42-150+142-32=2 ))I((Medf  
4 OP:  43 652 xx +  8(6), 6(12) 18-60+58-14=2 ))O((Medf  
5 TP:  3 424 6x x+  6 10-30+30-8=2 ))T((Medf  

 

In case of identically transformed shells, p equals the number of faces of the parent 

map (Tables 1 and 2). When all rings are “operated”, the vertex number of the parent map is 

added (Table 4).  
Table 4. Euler-Extended Formula in Multi-Shell Med(nP)_all Polyhedra 

 Object (nP):  Ring Polynomial d ( 1)v e r p s χ− + − − =  p 
1 2C:  43 2464 xx +  6 32-96+88-22=2 )C())C(( vMedf +  
2 3C:  43 42120 xx +  8 (12), 6 (40) 52-168+162-22×2=2 )C())C(( vMedf +  
3 2D:  543 2430160 xxx ++  6 80-240+214-52=2 )D())D(( vMedf +  
4 3D:  543 3660300 xxx ++  8 (30), 6 (100) 130-420+396-52×2=2 )D())D(( vMedf +  
5   2I:  543 2430160 xxx ++  10 (12), 6 (60) 72-240+214-44=2 )I())I(( vMedf +  
6 2O:  43 2464 xx +  8 (6), 6 (24) 30-96+88-20=2 )O())O(( vMedf +  
7 3O:  43 42120 xx +  8 (24), 6 (24) 48-168+162-20×2=2 )O())O(( vMedf +  
8  2T: 43 640 xx +  6 16-48+46-12=2 )T())T(( vMedf +  
9  3T: 43 2460 xx +  8 (6), 6 (20) 26-84+84-12×2=2 )T())T(( vMedf +  
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Table 5. Euler-Extended Formula in Double-Shell Toroidal Polyhedra 

 Object: Ring Polynomial d v e r p χ− + − =  p 
1 2TOR(4,4)[7,7]: 449x  5 98-245+196-49=0 ])7,7)[4,4(TOR(f  

2 Med(2TOR(4,4)[7,7])_all: 
43 294392 xx +  

8 (49), 6 (196) 245-784+686-147=0 ]))7,7)[4,4(TOR((Medf + 
(TOR(4,4)[7,7])f =98+49 

3 Med(2TOR (4,4)[5,25])_all: 
43 7501000 xx +  

8 (125), 6 (500) 625-2000+1750-375=0 ]))25,5)[4,4(TOR((Medf + 
(TOR(4,4)[5,25])f =250+125 

 

Table 6. Euler-Extended Formula in Multi-Shell Convex Polyhedra 
 Object: Ring Polynomial d v e r p χ− + − =  p 
1 (12×D): 5114x  3 (60), 4(70) 130-230+114-12=2 (D)f  

2 Du(12×D)_all: 3310x  10 (42), 5 (72) 114-390+310-32=2 (I) (I)f v+  

3 Med(12×D)_all: 3 5280 114x x+  4 (120), 6 (110) 230-570+424-52=2 (D) 2 (I)f f+  

4 Le(12×D)_all: 3 5 650 114 260x x x+ +  3 (360), 4 (210) 
 

570-960+424-32=2 
60(C )f  

 

Table 7. Euler-Extended Formula in Spongy Polyhedra 
 Object: Polynomials d v e r p χ− + − =  p 

1 
Med(Med(IP))_all:  

3 4 5( ) 130 120 24R G x x x= + +  
6 (90), 4 (60) 150-390+274-32=2 ( (I))f Med  

 
3 4 5( ) 100 120 0F G x x x= + +  faces 150-390+220-0=-20 g=11 

2 
12×Med(Med(IP))_all: 
 3 4 5( ) 810 780 228R G x x x= + +  

4 (180), 6 (690) 870-2430+1818-256=2 256=130+114+12 

 
3 4 5( ) 580 780 0F G x x x= + +  faces 870-2430+1360-0=-200 g=101 

3 
Med(Med(OP))_all:  

3 4( ) 52 60R G x x= +  

6 (36), 4 (24) 60-156+112-14=2 ( (O))f Med  

 3 4( ) 40 48F G x x= +  faces 60-156+88-0=-8 g=5 

 
 

The objects derived from the array of 12 dodecahedra (Figure 8 and Table 6) open the 

way to the quasi-crystals17 of fullerenes. Our energetic calculations have shown good stability 

for such 3D conglomerates. 

Spongy structures, (Figure 9) are of particular interest because of their 

hollows/channels. When consider the rings and all the cells filling the space, g=0, as for any 

spherical polyhedron. When only the faces are considered, the multi-tori character is revealed, 

and corresponding high genera (Table 7). The deleted triangles in 12×Med(Med(IP))_all 

(Table 7, second row) equal the number of edges (230) in the 12×D array (Table 6, first row) 

while the pentagons are now channels. In case they will be synthesized, e.g., by using 
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appropriate MOFs, a catalytic activity can be predicted,18 like that of the natural zeolites. 

Energetic and crystallographic calculations are in progress. 
 
 

4. Conclusions  

The map operations enable modification of a given polyhedral tessellation. More over, 

they can be applied on 3D lattices to give multi-shell polyhedra. Among these operations, the 

Medial was particularly useful in generating finite objects or infinite periodic units. The 

designed multi-shell polyhedra obey the novel extension of the well-known Euler formula 

which accounts for the distinct elementary polyhedra glued together (by identification of 

common features) in more complex architectures. 
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