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Abstract
In this paper the connection between closed Newton-Cotes, trigono-

metrically-fitted differential methods, symplectic integrators and effi-
cient solution of the Schrödinger equation is investigated. Several one
step symplectic integrators have been obtained based on symplectic ge-
ometry, as one can see from the literature. However, the investigation
of multistep symplectic integrators is very poor. Zhu et. al. [1] has pre-
sented the well known open Newton-Cotes differential methods as mul-
tilayer symplectic integrators. The construction of multistep symplectic
integrators based on the open Newton-Cotes integration methods was
studied by Chiou and Wu [2]. In this paper we study the closed Newton-
Cotes formulae and we write them as symplectic multilayer structures.
We also construct trigonometrically-fitted symplectic methods which
are based on the closed Newton-Cotes formulae. We apply the sym-
plectic schemes to the well known radial Schrödinger equation in order
to investigate the efficiency of the proposed method to these type of
problems.

1 Introduction

The radial Schrödinger equation has the form:

y′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (1)
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Differential equations of this type, which represent a boundary value problem,

occur frequently in theoretical physics and chemistry, (see for example [3] - [6]).

In the following we present some notations for (1):

• The function W (r) = l(l + 1)/r2 + V (r) denotes the effective potential.

This function satisfies W (r) → 0 as r → ∞

• k2 is a real number denoting the energy

• l is a given integer representing angular momentum

• V is a given function which denotes the potential.

• The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of r, determined by

form of the problem.

We note that recently much work has been done on the numerical solution

of ordinary differential equations (see [7] - [21] and references therein). It is

also known from the literature that the last decades many numerical methods

have been constructed for the approximate solution of the radial Schrödinger

equation (see [22] - [51] and references therein). The aim and the scope of the

above activity was the development of fast and reliable methods.

The developed methods can be divided into two main categories:

• Methods with constant coefficients

• Methods with coefficients dependent on the frequency of the problem 1.

The organization of the paper is the following:

1. We try to present Closed Newton-Cotes differential methods as multi-

layer symplectic integrators.

2. We apply the closed Newton-Cotes methods on the Hamiltonian system:

q̇ = mp

ṗ = −m q
(3)

1In the case of the Schrödinger equation the frequency of the problem is equal to:√|l(l + 1)/r2 + V (r) − k2|
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which represents the Hamilton’s equations of motion which are linear in

position p and monentum q (m is a constant scalar or matrix). It is

well known that the Equation (3) is a an important one in the field of

molecular dynamics. As a result of the above application we will try to

prove that the Hamiltonian energy of the system remains almost constant

as the integration proceeds.

3. A trigonometrically-fitted method is developed.

The results about symplectic matrices and schemes are presented in section 2.

In section 3 Closed Newton-Cotes integral formulae and differential methods

are described and the new trigonometrically - fitted methods are developed.

The conversion of the closed Newton-Cotes differential methods into multilayer

symplectic structures is presented in section 4. Finally in section 5 numerical

results are presented.

2 Basic Theory on Symplectic Schemes and

Numerical Methods

The following basic theory on symplectic numerical schemes and symplectic

matrices is based on that developed by Zhu et. al. [1]. The proposed methods

can be used for non-linear differential equations as well as linear ones.

Dividing an interval [a, b] with N points we have

x0 = a, xn = x0 + nh = b, n = 1, 2, . . . , N. (4)

We note that x is the independent variable and a and b in the equation for x0

(Eqn (4)) are different than the a and b in Eqn (5).

The above division leads to the following discrete scheme:(
pn+1

qn+1

)
= Mn+1

(
pn

qn

)
, Mn+1 =

(
an+1 bn+1

cn+1 dn+1

)
(5)

Based on the above we can write the n-step approximation to the solution as:(
pn

qn

)
=

(
an bn

cn dn

)(
an−1 bn−1

cn−1 dn−1

)
· · ·
(

a1 b1

c1 d1

)(
p0

q0

)

= Mn Mn−1 · · · M1

(
p0

q0

)

Defining

S = Mn Mn−1 · · · M1 =

(
An Bn

Cn Dn

)
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the discrete transformation can be written as:(
pn

qn

)
= S

(
p0

q0

)

A discrete scheme (5) is a symplectic scheme if the transformation matrix S

is symplectic.

A matrix A is symplectic if AT JA = J where

J =

(
0 1

−1 0

)

The product of symplectic matrices is also symplectic. Hence, if each matrix

Mn is symplectic the transformation matrix S is symplectic. Consequently,

the discrete scheme (2) is symplectic if each matrix Mn is symplectic.

3 Trigonometrically-Fitted Closed Newton-Cotes

Differential Methods

3.1 General Closed Newton-Cotes Formulae

The closed Newton-Cotes integral rules are given by:

∫ b

a
f(x)dx ≈ z h

k∑
i=0

tif(xi)

where

h =
b − a

N
, xi = a + ih, i = 0, 1, 2, . . . , N

The coefficient z as well as the weights ti are given in the following table

k z t0 t1 t2 t3 t4
0 1 1
1 1/2 1 1
2 1/3 1 4 1
3 3/8 1 3 3 1
4 2/45 7 32 12 32 7

Table 1: Closed Newton-Cotes integral rules.

From the above Table it is easy to see that the coefficients ti are symmetric

i.e. we have the following relation:

ti = tk−i, i = 0, 1, . . . ,
k

2
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Closed Newton-Cotes differential methods were produced from the integral

rules. For the above Table we have the following differential methods:

k = 1 yn+1 − yn = h
2
(fn+1 + fn)

k = 2 yn+1 − yn−1 = h
3
(fn−1 + 4fn + fn+1)

k = 3 yn+1 − yn−2 = 3h
8

(fn−2 + 3fn−1 + 3fn + fn+1)

k = 4 yn+2 − yn−2 = 2h
45

(7fn−2 + 32fn−1 + 12fn + 32fn+1 + 7fn+1)

In the present paper we will investigate the case k = 2 and we will produce

trigonometrically-fitted differential methods.

3.2 Trigonometrically-Fitted Closed Newton-Cotes Dif-
ferential Method

Requiring the differential scheme:

yn+1 − yn−1 = h
(
a0 fn−1 + a1 fn + a2 fn+1

)
(4)

to be accurate for the following set of functions (we note that fi = y′
i, i =

n − 1, n, n + 1):

{1, cos(±wx), sin(±wx), x cos(±wx), x sin(±wx)} (5)

the following set of equations is obtained:

a0 − a2 = 0

w h
[(

a0 + a2

)
cos(w h) + a1

]
= 2 sin(w h)

−h(−a0 cos(w h) − cos(w h) a2 + sin(w h) a0 w x + sin(w h) h a2 w

−a1 − sin(w h) a2 w x + sin(w h) h a0 w) = 2 h cos(w h)

h(a0 w x cos(w h) − cos(w h) h a2 w + cos(w h) a2 w x + h a0 w cos(w h)

+sin(w h) a0 − sin(w h) a2 + a1 xw) = 2 sin(w h) x (6)

The requirement for the accurate integration of functions (5), helps the method

to be accurate for all the problems with solution which has behavior of trigono-

metric functions.

Solving the above system of equations we obtain:
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a0 =
−cos(v) v + sin(v)

v2 sin(v)
= a2

a1 =
−sin(2 v) + 2 v

v2 sin(v)
(7)

where v = w h. For small values of v the above formulae are subject to heavy

cancellations. In this case the following Taylor series expansions must be used.

a0 =
1

3
+

1

45
v2 +

2

945
v4 +

1

4725
v6 +

2

93555
v8

+
1382

638512875
v10 +

4

18243225
v12 + . . . = a2

a1 =
4

3
− 2

45
v2 +

13

1890
v4 +

1

2700
v6 +

647

14968800
v8

+
176639

40864824000
v10 +

2867

6538371840
v12 + . . . (8)

The Local Truncation Error for the above differential method is given by:

L.T.E(h) = −h5

90

(
y(5)

n + 2 v2 y(3)
n + v4 y(1)

n

)
(9)

The L.T.E. is obtained expanding the terms yn±1 and fn±1 in (4) into Taylor

series expansions and substituting the Taylor series expansions of the coeffi-

cients of the method.

4 Closed Newton-Cotes can be expressed as

symplectic integrators

Theorem 1 A discrete scheme of the form(
b −a
a b

)(
qn+1

pn+1

)
=

(
b a

−a b

)(
qn

pn

)
(10)

is symplectic.

Proof. We rewrite (3) as(
qn+1

pn+1

)
=

(
b −a
a b

)−1 (
b a

−a b

)(
qn

pn

)

Define

M =

(
b −a
a b

)−1 (
b a

−a b

)
=

1

b2 + a2

(
b2 − a2 2ab
−2ab b2 − a2

)
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and it can easily be verified that

MT JM = J

thus the matrix M is symplectic.

In [1] Zhu et al. have proved the symplectic structure of the well-known second-

order differential scheme (SOD),

yn+1 − yn = 2hfn

The above method has been produced by the simplest Open Newton-Cotes

integral rule.

Based on the paper Chiou et al. [2] we will try to write Closed Newton-Cotes

differential schemes as multilayer symplectic structures.

Application of the Newton-Cotes differential formula for n = 2 to the linear

Hamiltonian system (3) gives

qn+1 − qn−1 = s
(
a0 pn−1 + a1 pn + a2 pn+1

)
pn+1 − pn−1 = −s

(
a0 qn−1 + a1 qn + a2 qn+1

)
(11)

where s = mh, where m is defined in (3).

¿From (11) we have that:

qn+1 − qn−1 = 2 s pn

pn+1 − pn−1 = −2 s qn

Substituting pn and qn into (11) we obtain:

qn+1 − qn−1 = s
(
a0 pn−1 + a2 pn+1

)
+

a1

2

(
qn+1 − qn−1

)
pn+1 − pn−1 = −s

(
a0 qn−1 + a2 qn+1

)
+

a1

2

(
pn+1 − pn−1

)
The above formula in matrix form can be written as:⎛⎝ (1 − a1

2

)
−s a0

s a0

(
1 − a1

2

) ⎞⎠( qn+1

pn+1

)
=

⎛⎝ (1 − a1

2

)
s a0

−s a0

(
1 − a1

2

) ⎞⎠( qn−1

pn−1

)

which is a discrete scheme of the form (10) and hence it is symplectic.

We note here than in [2] Chiou et al. have re-written Open Newton-Cotes

differential schemes as multilayer symplectic structures based on (11).
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5 Numerical Illustrations

In this section we present some numerical results to illustrate the performance

of our new methods. Consider the numerical integration of the Schrödinger

equation (1) using the well-known Woods-Saxon potential (see [1], [4-6], [8])

which is given by

V (r) = Vw(r) =
u0

(1 + z)
− u0z

[a(1 + z)2]
(12)

with z = exp[(r − R0)/a], u0 = −50, a = 0.6 and R0 = 7.0.. In Figure 1 we

give a graph of this potential. In the case of negative eigenenergies (i.e. when

E ∈ [−50, 0]) we have the well-known bound-states problem while in the

case of positive eigenenergies (i.e. when E ∈ (0, 1000]) we have the well-known

resonance problem (see [22], [23] and [32]).

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r

The Woods-Saxon Potential

Figure 1: The Woods-Saxon potential.

5.1 Resonance Problem

In the asymptotic region the equation (1) effectively reduces to

y′′(x) + (k2 − l(l + 1)

x2
)y(x) = 0, (13)

for x greater than some value X.
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The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are the spherical Bessel and Neumann functions

respectively. Thus the solution of equation (1) has the asymptotic form (when

x → ∞)

y(x) � Akxjl(kx) − Bnl(kx)

� D[sin(kx − πl/2) + tan δl cos(kx − πl/2)] (14)

where δl is the phase shift which may be calculated from the formula

tan δl =
y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)
(15)

for x1 and x2 distinct points on the asymptotic region (for which we have that

x1 is the right hand end point of the interval of integration and x2 = x1 − h,

h is the stepsize) with S(x) = kxjl(kx) and C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0 and

y1 before starting a two-step method. From the initial condition, y0 = 0.

The value y1 is computed using the Runge-Kutta-Nyström 12(10) method of

Dormand et. al. [20]-[21]. With these starting values we evaluate at x1 of the

asymptotic region the phase shift δl from the above relation.

5.1.1 The Woods-Saxon Potential

As a test for the accuracy of our methods we consider the numerical integration

of the Schrödinger equation (1) with l = 0 in the well-known case where the

potential V (r) is the Woods-Saxon one (12).

One can investigate the problem considered here, following two procedures.

The first procedure consists of finding the phase shift δ(E) = δl for E ∈
[1, 1000]. The second procedure consists of finding those E, for E ∈ [1, 1000],

at which δ equals π/2. In our case we follow the first procedure i.e. we try

to find the phase shifts for given energies. The obtained phase shift is then

compared to the analytic value of π/2.

The above problem is the so-called resonance problem when the positive

eigenenergies lie under the potential barrier. We solve this problem, using the

technique fully described in [5].

The boundary conditions for this problem are:

y(0) = 0,

y(x) ∼ cos[
√

Ex] for large x.

The domain of numerical integration is [0, 15].
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For comparison purposes in our numerical illustration we use the following

methods:

• The Trigonometrically-Fitted Runge-Kutta Method developed by Anas-

tassi and Simos [49] (which is indicated as Method A)

• The well known Numerov’s method (which is indicated as Method B)

• The Explicit Numerov-Type Method developed by Chawla and Rao [19]

(which is indicated as Method C)

• The P-stable Exponentially Fitted Method developed by Kalogiratou

and Simos [50] (which is indicated as Method D)

• The New Proposed Method (which is indicated as Method E)

Method A

Method B

Method C

Method D

Method E

Figure 2: Error Errmax for several values of n for the eigenvalue E3 =
989.701916. The nonexistence of a value of Errmax indicates that for this
value of n, Errmax is positive.

The numerical results obtained for the four methods, with several number

of function evaluations (NFE), were compared with the analytic solution of

the Woods-Saxon potential resonance problem, rounded to six decimal places.

Figure 2 show the errors Err = −log10|Ecalculated − Eanalytical| of the highest

eigenenergy E3 = 989.701916 for several values of n.
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6 Conclusions

In this paper a new approach for constructing efficient methods for the numer-

ical solution of the Schrödinger type equations is introduced.

¿From the numerical results we have the following remarks:

• The well known Numerov’s method has better behavior than the Trigonometrically-

Fitted Runge-Kutta Method developed by Anastassi and Simos [49]

• The Explicit Numerov-Type Method developed by Chawla and Rao [19]

has better behavior than the well known Numerov’s method

• The P-stable Exponentially Fitted Method developed by Kalogiratou and

Simos [50] has better behavior than the explicit Numerov-type method

with minimal phase-lag of Chawla et. al. [19] for small number of func-

tion evaluations

• The New Proposed Method has the better behavior i.e. is the most

efficient

All computations were carried out on a IBM PC-AT compatible 80486 using

double precision arithmetic with 16 significant digits accuracy (IEEE stan-

dard).
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