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Abstract

In this paper we are developing a family of four trigonometrically
fitted six-step symmetric methods with exponential order from one to
four. The methods are constructed to solve numerically the radial
one-dimensional time-independent Schrödinger equation during the res-
onance problem with use of the Woods-Saxon potential. The new four
methods are being compared to the corresponding classical method as
long as with other recently constructed optimized methods from the
literature. With the use of various values of energy we come to the con-
clusion that the efficiency of the method increases while the exponential
order increases and this is highly noticed for high values of energy. The
new method of exponential order four is the most efficient among all
the compared methods and also its efficiency increases slightly instead
of decreasing while we use higher values of energy. Stability analysis of
the new methods is made and some diagrams are presented that show
their stability regions.

1 Introduction

Much research has been done on the numerical integration of the radial
Schrödinger equation:

y′′(x) =

(
l(l + 1)

x2
+ V (x) − E

)
y(x) (1)
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where l(l+1)
x2 is the centrifugal potential, V (x) is the potential, E is the energy

and W (x) = l(l+1)
x2 +V (x) is the effective potential. It is valid that lim

x→∞
V (x) = 0

and therefore lim
x→∞

W (x) = 0.

Many problems in chemistry, physics, physical chemistry, chemical physics,
electronics etc., are expressed by equation (1).

In this paper we will study the case of E > 0. We divide [0,∞) into subintervals

[ai, bi] so that W (x) is a constant with value Wi. After this the problem (1)
can be expressed by the approximation

y′′
i = (W − E) yi, whose solution is

yi(x) = Ai exp
(√

W − E x
)

+ Bi exp
(
−
√

W − E x
)
,

Ai, Bi ∈ R.

(2)

This form of Schrödinger equation reveals the importance of exponential fit-
ting when constructing new methods. This technique has been used in all
types of numerical methods. Raptis and Allison have developed a two-step
exponentially-fitted method of order four in [6] and Raptis has developed a
four-step exponentially-fitted method of order six in [5]. More recently Simos
has constructed a P-stable four-step exponentially-fitted method in [7] and a
four-step exponentially-fitted method in [8] and Kalogiratou and Simos have
constructed a two-step P-stable exponentially-fitted method of order four in
[10]. Also Anastassi and Simos have constructed exponentially-fitted Runge-
Kutta methods of various orders in [11], [12] and [13] and Van de Vyver has
constructed some exponentially fitted Runge-Kutta-Nyström methods in [14]
and [15].

Some other notable multistep methods for the numerical solution of oscillat-
ing IVPs have been developed by Chawla and Rao in [3], who produced a
three-stage, two-Step P-stable method with minimal phase-lag and order six,
by Henrici in [4], which is a four-step symmetric method of order six, and
by Simos in [9], where a four-step P-stable method with minimal phase-lag is
constructed.

Also some recent research work in numerical methods can be found in [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35]
and [36].

2 Basic theory

2.1 Exponential symmetric multistep methods

For the numerical solution of the initial value problem

y′′ = f(x, y) (3)
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multistep methods of the form

m∑
i=0

aiyn+i = h2

m∑
i=0

bif(xn+i, yn+i) (4)

with m steps can be used over the equally spaced intervals {xi}m
i=0 ∈ [a, b] and

h = |xi+1 − xi|, i = 0(1)m − 1.

If the method is symmetric then ai = am−i and bi = bm−i, i = 0(1)�m
2
�.

Method (4) is associated with the operator

L(x) =
m∑

i=0

aiu(x + ih) − h2

m∑
i=0

biu
′′(x + ih) (5)

where u ∈ C2.

Definition 1 The multistep method (5) is called algebraic (or exponential)
of order p if the associated linear operator L vanishes for any linear combi-
nation of the linearly independent functions 1, x, x2, . . . , xp+1 (or exp(ω0x),
exp(ω1x), . . ., exp(ωp+1x), where ωi|i = 0(1)p+1 are real or complex numbers).

Remark 1 [1] If ωi = ω for i = 0, 1, . . . , n, n � p + 1, then the operator
L vanishes for any linear combination of exp(ωx), x exp(ωx), x2 exp(ωx), . . .,
xn exp(ωx), exp(ωn+1x), . . ., exp(ωp+1x).

Remark 2 [1] Every exponential multistep method corresponds in a unique
way to an algebraic method (by setting ωi = 0 for all i), which is called the
classical method.

When we use an imaginary number for frequency, that is Iω, then exp(Iωx)
can be expanded to cos(ωx)+I sin(ωx), so we refer to a method that integrates
exactly these functions as a trigonometrical multistep method.

2.2 Stability analysis of symmetric multistep methods

In this section we will present the definitions for the stability of symmetric lin-
ear multistep methods according to Lambert and Watson theory [17] as well
as some definitions from the paper of Coleman and Ixaru for the stability of
methods with variable coefficients [18].

We apply the symmetric linear m-step method (4) to the scalar test equation

y′′ = −θ2y (6)

and then we solve the corresponding characteristic equation, which has m char-
acteristic roots λi, i = 0(1)m − 1.
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Definition 2 [17] If the characteristic roots satisfy the conditions |λ0| =
|λ1| = 1 and |λi| � 1, i = 2(1)m − 1 for all s < s0, where s = θh, then we say
that the method has interval of periodicity (0, s2

0).

Definition 3 [17] Method (4) is called P-stable if its interval of periodicity
is (0,∞).

We deliberately use frequency θ for the stability analysis that is different from
frequency ω used for exponential-fitting. In this way we will be able to produce
the v − s plane, which gives the stability regions of the method.

Definition 4 [18] A region of stability for a multistep method is a region of
the v−s plane, throughout which the roots of the corresponding characteristic
equation satisfy the conditions of Definition 2. If the conditions are valid for
the equality only then that curve is called stability boundary.

If we set r =
v

s
=

ω

θ
, then we can say that the principal interval of periodic-

ity is represented by the line segment from the beginning of the axes to the
intersection of line v = rs and the stability boundary. Secondary intervals of
periodicity can be defined along the line v = rs further from the beginning of
the axes, but they are less important since the method must always be stable
around the area where h → 0.

3 Construction of the new trigonometrically

fitted multistep methods

We consider the multistep symmetric method of Jenkins [2], with six steps and
sixth algebraic order:

y3 = −y−3 − a2(y2 + y−2) + h2 (b2(f2 + f−2) + b1(f1 + f−1) + b0f0) (7)

where a2 = −1, b2 = 67
48

, b1 = − 8
48

, b0 = 122
48

,
yi = y(x + ih) and fi = f(x + ih, y(x + ih))

Based on this method we will construct four trigonometrically fitted methods.

3.1 First order trigonometrically fitted method

We want the first method to integrate exactly the functions:

{1, x, . . . , x7, exp(±Iωx)}
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where ω is a real number and it is called frequency and I =
√−1.

After satisfying the exact integration of the above functions, the method has
exponential order one and all the coefficients are the same as (7) except for:

bi =
bi,num

A
, i = {0, 1, 2}, where

b0,num = −144 cos(v)3 + (72 − 70 v2) cos(v)2 + (−55 v2 + 108) cos(v)
−36 + 35 v2

b1,num = 96 cos(v)3 + (−48 + 65 v2) cos(v)2 − 72 cos(v) + 24 − 5 v2

b2,num = 1
2
(−48 cos(v)3 + 24 cos(v)2 + (36 − 65 v2) cos(v) − 12 + 35 v2)

A = 12v2(cos(v) − 1)2

(8)

where v = ω h, ω is the frequency and h is the step length used.

3.2 Second order trigonometrically fitted method

The second method we construct integrates exactly the functions:

{1, x, . . . , x7, exp(±Iωx), x exp(±Iωx)}

After this the method has exponential order two and all the coefficients are
the same as (7) except for:

bi =
bi,num

bi,den
, i = {0, 1, 2}, where (9)

b0,num = −16 cos(v)5v + 32 cos(v)4 sin(v) + (24 v + 10 v3) cos(v)3

+(8 v + 10 v3 − 32 sin(v)) cos(v)2 + (−4 sin(v) + 5 v3 − 8 v) cos(v)
+5 v3 + 4 sin(v) − 8 v

b1,num = 4 cos(v)4v − 8 cos(v)3 sin(v) + (−9 v + 4 sin(v)) cos(v)2

+(−5 v3 + 2 v + 6 sin(v)) cos(v) + 3 v − 2 sin(v)

b2,num = −16 cos(v)4v + (16 sin(v) + 12 v) cos(v)3

+(20 v − 8 sin(v)) cos(v)2 + (5 v3 − 12 v − 12 sin(v)) cos(v)
−4 v + 5 v3 + 4 sin(v)

b0,den = 2 (cos(v) + 1) A, b1,den = A, b2,den = 4 (cos(v) + 1) A,
A = v3(cos(v) − 1)2

(10)

- 737 -



3.3 Third order trigonometrically fitted method

The third method we construct integrates exactly the functions:

{1, x, . . . , x7, exp(±Iωx), x exp(±Iωx), x2 exp(±Iωx)}

The new method has exponential order three and all of its coefficients are the
same as (7) except for:

bi =
bi,num

A
, i = {0, 1, 2},

(11)

b0,num = −24 cos(v)5v + (−8 sin(v)v2 − 20 v + 24 sin(v)) cos(v)4

+(12 sin(v) − 8 sin(v)v2 − 14 v) cos(v)3 + (−12 sin(v)v2 + 6 sin(v)
−10 v) cos(v)2 + (17 v − 12 sin(v)v2 + 6 sin(v)) cos(v) − 3 sin(v) + 6 v

b1,num = 32 cos(v)4v + (12 sin(v)v2 + 24 v − 24 sin(v)) cos(v)3

+(12 sin(v)v2 − 16 v − 12 sin(v)) cos(v)2 + (6 sin(v) − 8 v
+3 sin(v)v2) cos(v) + 3 sin(v)v2 − 2 v

b2,num = −20 cos(v)3v + (−14 v − 12 sin(v)v2 + 12 sin(v)) cos(v)2

+(13 v − 10 sin(v)v2 + 6 sin(v)) cos(v) − 3 sin(v) + 6 v + 2 sin(v)v2

b0,den = A, b1,den = A, b2,den = 2 A,
A = v4 sin(v)(cos(v) + 1)

3.4 Fourth order trigonometrically fitted method

The fourth method we construct integrates exactly the functions:

{1, x, . . . , x7, exp(±Iωx), x exp(±Iωx), x2 exp(±Iωx), x3 exp(±Iωx)}

The new method has exponential order four and all of its coefficients are the
same as (7) except for:

a1 =
a2,num

a2,den
, and bi =

bi,num

bi,den
, i = {0, 1, 2},

(12)
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a2,num = 48 cos(v)5 − 44 cos(v)5v2 − 12 v3 sin(v) cos(v)4

+72 sin(v) cos(v)4v − 84 cos(v)3 + 101 cos(v)3v2 − 108 v sin(v) cos(v)2

+24 cos(v)2 sin(v)v3 + 36 cos(v) − 60 cos(v)v2 + 27 v sin(v) − 12 sin(v)v3

b0,num = 80 cos(v)8v2 − 48 cos(v)8 + 16 v3 sin(v) cos(v)7

−96 v sin(v) cos(v)7 + 20 cos(v)6v2 + 60 cos(v)6 + 48 sin(v) cos(v)5v3

−280 cos(v)4v2 − 12 cos(v)4 + 168 cos(v)3 sin(v)v − 124 sin(v) cos(v)3v3

+105 v2 cos(v)2 − 9 cos(v)2 − 72 sin(v) cos(v)v + 9 + 30 v2

b1,num = 48 cos(v)7 − 152 cos(v)7v2 + 144 v sin(v) cos(v)6

−48 v3 sin(v) cos(v)6 + 266 cos(v)5v2 − 84 cos(v)5 − 180 sin(v) cos(v)4v
+60 v3 sin(v) cos(v)4 + 54 cos(v)3 − 51 cos(v)3v2 + 18 v sin(v) cos(v)2

+24 cos(v)2 sin(v)v3 − 33 cos(v)v2 − 18 cos(v) + 18 v sin(v) + 9 sin(v)v3

b2,num = −24 cos(v)6 + 184 cos(v)6v2 − 24 cos(v)6v4 − 96 cos(v)5 sin(v)v
+112 sin(v) cos(v)5v3 + 42 cos(v)4 − 382 cos(v)4v2 + 72 cos(v)4v4

+132 cos(v)3 sin(v)v − 214 sin(v) cos(v)3v3 − 27 cos(v)2 + 207 v2 cos(v)2

−72 cos(v)2v4 + 72 sin(v) cos(v)v3 − 36 sin(v) cos(v)v + 9 + 24 v4 − 24 v2

a2,den = A, b0,den = sin(v) v3 A,
b1,den = sin(v) v3 A, b2,den = 2 sin(v) v3 A,

A = 4 cos(v)4v2 + 11 v2 − 12 cos(v)2v2 + 27 sin(v) cos(v)v
−18 cos(v)3 sin(v)v − 12 − 24 cos(v)4 + 36 cos(v)2

For small values of v the coefficients are subject to heavy cancelations, so we
use the Taylor series expansions of the coefficients around zero. Of course
the constant terms of the series are equal to the respective coefficients of the
classical method.

4 Analysis of the new methods

4.1 Local truncation error analysis

In order to see the behavior of the error and which parameters it depends on,
we will use the local truncation error (LTE), that is the Taylor series expansion
of the difference between the theoretical and the approximate solution over the
step length h. We see that indeed the order of the methods is six and we will
present the principal term of the local truncation error for the methods below
while integrating the Schrödinger equation:

a) The classical six-step symmetric method (7),
b) The first trigonometrically fitted method (8),
c) The second trigonometrically fitted method (9),
d) The third trigonometrically fitted method (11) and
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e) The fourth trigonometrically fitted method (12)

In order to calculate the errors of methods b), c), d) and e) we need to deter-
mine the frequency ω. The formula for ω as it is used during calculations for

the resonance problem is ω =
√

E − W and this is also used during the error
analysis.

LTEa = h8

12096
[787 yE4 − 3148 yWE3 + ((17314 W ′′ + 4722 W 2)y

+9444 W ′y′)E2 + ((−12592 W (4) − 34628 W ′′W − 3148 W 3

−22036 (W ′)2)y − 18888 W (3)y′ − 18888 W ′y′W )E
+(787 W 4 + 17314 W ′′W 2 + (12592 W (4) + 22036 (W ′)2)W
+11805 (W ′′)2 + 787 W (6) + 20462 W (3)W ′)y + 37776 W ′W ′′y′

+4722 (W (5))y′ + 9444 W 2W ′y′ + 18888 WW (3)y′]

(13)

LTEb = h8

362880
[(−23610 yW + 23610 yW )E3 + (141660 y′W ′

+70830 yW 2 − 70830 yWW + 354150 yW ′′)E2 + (−70830 yW 3

+70830 yW 2W + (−873570 y(W ′′ − 424980 y′W ′)W
+(−354150 W (4) + 165270 W ′′W − 566640 (W ′)2)y − 472200 y′W (3)

+141660 y′W ′W )E + 23610 yW 4 − 23610 yW 3W + (283320 y′W ′(x)
+519420 yW ′′)W 2 + ((377760W (4) + 661080 (W ′)2

−165270 (W ′′W )y + 566640 y′W (3) − 141660 y′W ′W )W

+(613860W ′W (3) + (−94440 (W ′)2 − 23610 W (4))W + 23610 W (6)

+354150 ((W ′′)2)y + 1133280 y′W ′W ′′ + 141660 y′W (5)

−94440 y′W (3)W ]

(14)

LTEc = h8

181440
[((106245W ′′ + 11805 W 2 + 11805W

2 − 23610 WW )y

+23610 y′W ′)E2 + ((−23610 WW
2
+ (141660W ′′ + 47220 W 2)W

−354150 WW ′′ − 236100 (W ′)2 − 165270 W (4) − 23610 W 3)y

−188880 y′W (3) − 141660 y′WW ′ + 94440 y′W ′W )E

+((11805W ′′ + 11805 W 2)W
2
+ (−23610 W (4) − 23610 W 3

−94440 (W ′)2 − 165270 WW ′′)W + 177075 (W ′′)2 + 330540 W (W ′)2

+188880WW (4) + 306930 W ′W (3) + 11805 W 4 + 11805 W (6)

+259710W 2W ′′)y + 23610 y′W ′W
2
+ (−141660 y′WW ′

−94440 y′W (3))W + 70830 y′W (5) + 141660 y′W 2W ′

+283320 y′WW (3) + 566640 y′W ′(W ′′]

(15)
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LTEd = h8

362880
[94440 yW ′′E2 + (−306930 yW (4) + ((354150W

−543030 W )W ′′ + 23610W
3 − 23610 W 3 − 70830( WW

2
+ W 2W )

−377760 (W ′)2)y − 283320 y′W (3) + (141660( y′W − y′W )W ′)E
+141660 y′W (5) + (−70830W + 377760 W )yW (4) + (613860 W ′W (3)

+354150 (W ′′)2 + (519420 W 2 − 495810 WW + 70830W
2
)W ′′

+(661080W − 283320W )(W ′)2 − 70830 W 3W

+23610W 4 + 23610 W (6) − 23610WW
3
+ 70830 W 2W

2
)y

+(−283320 y′W + 566640 y′W )W (3)

+1133280 y′W ′(W ′′ + (283320 y′W 2

−424980 y′WW + 141660 y′W
2
)W ′]

(16)

LTEe = h8

181440
[((−141660 W (4) + (−188880 W + 188880W )W ′′

−141660 (W ′)2)y − 94440 y′W (3))E + (11805 W (6)

+(188880W − 47220W )W (4) + 306930 W ′W (3) + 177075 (W ′′)2

+(−330540 WW + 259710 W 2 + 70830W
2
)(W ′′ + (−188880W

+330540W )(W ′)2 + 11805 W 4 − 47220 WW
3
+ 11805W

4

−47220W W 3 + 70830 W 2W
2
)y + 70830 y′W (5) + (−188880W

+283320W )y′W (3) + 566640 y′W ′W ′′ + (141660W
2
+ 141660 W 2

−283320 WW )W ′y′]

(17)

where y = y(x) and W = W (x), while W is constant.

We notice the maximum power of energy E in these expressions. We see that
for the classical method a) the maximum power of the energy is E4. For the
trigonometrically-fitted of first order method b) the maximum power becomes
E3, for the second order method c) E2, for the third order method d) E2 and
for the fourth order method e) E.

The first conclusion that we come to is that when solving the equation using
higher values of energy, all methods will be less efficient, because of the power
of the energy in the local truncation error. Exception is the fourth exponential
order method, which has a slight increase in accuracy while the energy in-
creases. This can be shown in Figures 1 and 2 for the resonance problem while
using the Woods-Saxon potential for 600 and 1200 function evaluations respec-
tively. This indicates that we can use the fourth exponential order method to
compute arbitrarily large eigenvalues for the Schrödinger equation with the
same accuracy.

The second conclusion is that by increasing the exponential order of the method,
the maximum power reduces and the method will gain efficiency as related to
the other methods. It will always be more efficient than the methods of lower
exponential order of the same family. The difference between them will be
higher for higher values of energy.
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Figure 1: Accuracy of the new methods for various values of Energy (600
Function Evaluations)
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Figure 2: Accuracy of the new methods for various values of Energy (1200
Function Evaluations)
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4.2 Stability analysis

We will use the stability theory to produce the v − s plane of the four newly
developed methods, where v = ωh and s = θh. The planes are presented in
Figures 3-6, where the stability region of each method is represented by the
shaded area. The critical part of the stability region is the one that includes
the beginning of the axes, because we want the method to be stable as h → 0.

A confirmation for the fact that all four exponentially-fitted methods are de-
rived from the same classical method is that for line r = 0, that is the horizontal
axis, the stability region ends at the same point s0 = 0.84. We shall note that
r = 0 ⇒ v = 0 ⇒ ω = 0, which means that the exponentially-fitted method
becomes the corresponding classical method.

In practice we are more interested for the principal interval of periodicity along
line r = 1, that is when ω = θ. We are presenting the intervals for the four
new methods and the corresponding classical one in Table 1.

Table 1: Interval of periodicity

Method s0 (0, s2
0)

Corresponding classical method 0.84 (0, 0.71)
New TF method with exp. order 1 0.91 (0, 0.83)
New TF method with exp. order 2 1.02 (0, 1.05)
New TF method with exp. order 3 2.30 (0, 5.29)
New TF method with exp. order 4 1.61 (0, 2.58)

5 Numerical results

5.1 The resonance problem

The efficiency of the two newly constructed methods will be measured through
the integration of problem (1) with l = 0 at the interval [0, 15] using the well
known Woods-Saxon potential

V (x) =
u0

1 + q
+

u1 q

(1 + q)2
, q = exp

(
x − x0

a

)
, where (18)

u0 = −50, a = 0.6, x0 = 7 and u1 = −u0

a

and with boundary condition y(0) = 0.

The potential V (x) decays more quickly than l (l+1)
x2 , so for large x (asymptotic

region) the Schrödinger equation (1) becomes
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Figure 3: v − s plane for the new method with 1st exponential order

Figure 4: v − s plane for the new method with 2nd exponential order
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Figure 5: v − s plane for the new method with 3rd exponential order

Figure 6: v − s plane for the new method with 4th exponential order
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y′′(x) =

(
l(l + 1)

x2
− E

)
y(x) (19)

The last equation has two linearly independent solutions k x jl(k x) and
k x nl(k x), where jl and nl are the spherical Bessel and Neumann functions.
When x → ∞ the solution takes the asymptotic form

y(x) ≈ Ak x jl(k x) − B k x nl(k x)
≈ D[sin(k x − π l/2) + tan(δl) cos (k x − π l/2)],

(20)

where δl is called scattering phase shift and it is given by the following expres-
sion:

tan (δl) =
y(xi) S(xi+1) − y(xi+1) S(xi)

y(xi+1) C(xi) − y(xi) C(xi+1)
, (21)

where S(x) = k x jl(k x), C(x) = k x nl(k x) and xi < xi+1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the
accurate value of which is π/2 for the above problem.

5.2 The methods

We have used several multistep methods for the integration of the Schrödinger
equation. These are:

• The new method of exponential order four shown in (12)

• The new method of exponential order three shown in (11)

• The new method of exponential order two shown in (9)

• The new method of exponential order one shown in (8)

• The corresponding classical method of Jenkins of order six [2]

• The P-stable exponentially-fitted method of Simos of order six [7]

• The exponentially-fitted method of Raptis of order six [5]

• The P-stable method of Henrici with minimal phase-lag and order six [4]

• The exponentially-fitted method of Raptis and Allison of order four [6]

• The P-stable exponentially-fitted method of Kalogiratou and Simos of
order four [10]

• The three-stage method of Chawla and Rao of order six [3]

- 746 -



5.3 Comparison

We will use three different values for the energy: i) 989.701916, ii) 341.495874
and iii) 163.215341. As for the frequency ω we will use the suggestion of Ixaru
and Rizea [16]:

ω =

{√
E − 50, x ∈ [0, 6.5]√
E, x ∈ [6.5, 15]

(22)

We are presenting the accuracy of the tested methods expressed by the
− log10(error at the end point) when comparing the phase shift to the actual
value π/2 versus the log10(total function evaluations). The function evalua-
tions per step are equal to the number of stages of the method multiplied by
one, which is the dimension of the vector of the functions integrated for the res-
onance problem. In Figure 7 we see the results for E = 989.701916, in Figure
8 we have used E = 341.495874 and in Figure 9 we have used E = 163.215341.

While comparing the four trigonometrically fitted methods (8), (9), (11) and
(12) and the corresponding classical method of Jenkins (7), we can confirm
all the conclusions of the error analysis that is the fourth method is the most
efficient as it has the highest exponential order. We can see that every new
method with higher exponential order is more efficient than another method
from the same family, which guides us to use high exponential order methods
for the integration of the Schrödinger equation.

We also see that the new method is more efficient than other exponential mul-
tistep methods, which have the same algebraic order, two or three stages or
P-stability. However we conclude that higher exponential order crucial when
integrating the Schrödinger equation.

6 Conclusions

In this paper we have constructed four trigonometrically-fitted methods of ex-
ponential order from one to four based on a symmetric six-step method of
Jenkins. We have shown that the higher the exponential order is the more ef-
ficient the method is and also that for the maximum exponential order (four),
the efficiency of the method actually increases while the energy used also in-
creases. This is a very important conclusion in order to integrate problems
with high values of energy. We have also shown that the new method of order
four is much more efficient than the others methods compared of the same
algebraic order.
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Figure 7: − log10(Error) versus log10(Function Evaluations) for the Resonance
Problem using E = 989.701916

Efficiency (E = 341.495874)
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Figure 8: − log10(Error) versus log10(Function Evaluations) for the Resonance
Problem using E = 341.495874
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Efficiency (E = 163.215341)
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Figure 9: − log10(Error) versus log10(Function Evaluations) for the Resonance
Problem using E = 163.215341
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