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Abstract 

Peptide sequences with different lengths, available from synthesised peptide libraries and 

sequenced proteins, are potentially valuable for evaluating structure-activity relationships. 

However, in order to apply multivariate regression and classification models on such 

sequences, it is necessary to have a preprocessing method that translates them into a uniform 

set of variables. 

A molecular descriptor based approach can be suitable for the characterisation of peptide 

sequences and the prediction of their chemical or biological properties. In this paper a novel 

methodology based on traditional molecular descriptors calculated on a simplified 

representation of peptides and proteins has been evaluated. This representation avoid 

problems related to molecular size and information redundancy due to the common structural 

features of every amino acid. The proposed methodology has been successfully applied on a 

peptide data set taken from the literature. 
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Introduction 

The most used approach for peptide characterisation is based on the modelling of biological 

properties of small peptides as a function of amino acid principal properties. This approach 

was introduced by Kidera et al. [1] who coded the natural amino acids through 10 orthogonal 

factors derived from Principal Component Analysis (PCA) of 188 reported properties. This 

line of research was followed by Hellberg et al. [2-5] who developed principal properties for 

each of 20 natural amino acids and for a series of non-standard ones. These properties were 

derived by carrying out Principal Components Analysis (PCA) of numerous amino acid 

properties, such as HPLC retention times, pKas, NMR-derived properties, and other 

measurable variables related to hydrophobicity, size, and electronic features. The authors 

called the first three principal component scores of each amino acid its z1, z2, and z3 scores or 

principal properties. These scores were interpreted mainly to represent hydrophilicity, side 

chain bulk/molecular size, and electronic properties, respectively. The three principal 

properties for the amino acid in each position in a peptide were then used to build and 

evaluate QSAR models. With the three z-scales it was possible to numerically quantify the 

structural variation within a series of related peptides, by arranging the z-scales according to 

the amino acid sequence. This approach produced good models for small peptides but has the 

disadvantage for those larger than a few amino acids. As a result, in this second case, the 

number of peptides needed to construct a reliable model has to be large [6,7]. 

 
Figure 1.Graphical representation of the same peptide sequence (SEWAIEGRPHGW) 

using an atom based (upper) and an amino acid based (lower) representation 

 

In this paper a novel methodology based on traditional molecular descriptors calculated on a 

simplified representation of peptides and proteins is presented. This descriptor-based 

approach could be compared to a peptide pictorial representation. As all pictorial 

representations of molecules are simplified versions of our current model of real structures, 
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similarly the descriptor-based representation is a simplified and holistic mathematical 

representation of the peptide. In both cases the peptide representation becomes clearer as 

much as our point of interest is simplified and highlighted in some way. 

Due to the fact that the information content of a molecular descriptor depends on the kind of 

molecular representation and not only on the defined algorithm for its calculation, a good 

choice for the peptide representation is indispensable. 

Considering a peptide as a topological molecular graph, the more immediate way to represent 

a peptide is an atom based representation. Using this representation all the atoms belonging to 

a peptide are considered. The atom-based representation raises one big problem related to the 

fact that complex descriptors cannot be calculated on structures constituted by thousands of 

atoms. Another issue is that not necessarily all the information brought by the atom-based 

representation is directly connected to peptides' properties.  

In this paper, an amino acid-based representation has been studied. A topological 

representation of a peptide using an atom-based approach is a complex molecular graph where 

atoms are connected to the others by the molecular bonds, while the same peptide using an 

amino acid-based approach is just a sequence of amino acid types. A graphical comparison of 

the atom based and amino acid based representations is shown in Figure 1. By means of the 

amino acid based representation, the peptide description is simplified, considering that a) the 

physicochemical properties of the amino acids are responsible for the 3D structure and the 

functionality of the peptide and b) all amino acids share common structural features, including 

an alpha-carbon to which an amino group, a carboxyl group, and a variable side chain are 

bonded. The amino acid based representation permits to reduce the complexity of the 

structures, since the number of amino acids in a peptide is significantly lower than the number 

of atoms. 

In the first part of the paper, the new approach for the calculation and the weighting scheme 

of molecular descriptors on peptide sequences is presented. Then, the results obtained on a 

dataset taken from the literature are shown and commented with respect to the regression 

models for the prediction of two biological responses. 
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Materials and methods  

Molecular Descriptors 

Molecular descriptors are formally mathematical representations of a molecule obtained by a 

well-specified algorithm applied to a defined molecular representation enabling mathematical 

treatment [8]. 

The information content of a molecular descriptor depends on the kind of molecular 

representation that is used and on the defined algorithm for its calculation. 

For this study amino acids constitutional and 2D autocorrelation descriptors have been used. 

All the calculations were performed by an ongoing implementation of DRAGON software 

[9,10], where an extension of its capability in order to calculate descriptors for proteins and 

peptides has been on purpose added during this study. 

Constitutional descriptors are the most simple and commonly used descriptors [8], reflecting 

the molecular composition of a compound without any information about its molecular 

geometry; the proposed constitutional descriptors are listed in Table 1. 

2D autocorrelation descriptors [11-15] are molecular descriptors which describe how a 

considered property is distributed along a topological molecular structure; the proposed 2D 

autocorrelation descriptors are listed in Table 2. 

Autocorrelation descriptors combine chemical information given by property values in 

specified molecule regions and structural information. These are based on a conceptual 

dissection of the molecular structure and the application of an autocorrelation function to 

molecular properties measured in different molecular regions.  

 

Weighting scheme 

The amino acids are the building blocks of proteins and peptides each having different 

characteristics in terms of shape, volume, and chemical reactivity. 

Molecular descriptors can be calculated in an unweighted way, i.e. considering every amino 

acid equal to the others, or weighting every amino acid by a descriptive property. 

Consequently, it has been necessary to choose the properties needed to weight the 20 natural 

amino acids.  

One of the most comprehensive resource of amino acid properties freely available on line is 

the amino acid index database (AAindex), that includes numerical indices representing 

various physicochemical, biochemical and statistical properties of amino acids and pairs of 
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amino acids [16-19]. AAindex database has been made publicly available by the Japanese 

GenomeNet database service. 

Symbol Definition 
nAAs number of AAs 
Wwi_sum sum of weight wi 
Wwi_asum average sum of weight w 
nAla number of Alanines 
nArg number of Arginines 
nAsn number of Asparagines 
nAsp number of Aspartic acids 
nCys number of Cysteines 
nGln number of Glutamic acids 
nGlu number of Glutamines 
nGly number of Glycines 
nHis number of Histidines 
nIle number of Isoleucines 
nLeu number of Leucines 
nLys number of Lysines 
nMet number of Methionines 
nPhe number of Phenylalanines 
nPro number of Prolines 
nSer number of Serines 
nThr number of Threonines 
nTrp number of Tryptophans 
nTyr number of Tyrosines 
nVal number of Valines 
nAla / nAAs number of Alanines / number of AAs 
nArg / nAAs number of Arginines / number of AAs 
nAsn / nAAs number of Asparagines / number of AAs 
nAsp / nAAs number of Aspartic acids / number of AAs 
nCys / nAAs number of Cysteines / number of AAs 
nGln / nAAs number of Glutamic acids / number of AAs 
nGlu / nAAs number of Glutamines / number of AAs 
nGly / nAAs number of Glycines / number of AAs 
nHis / nAAs number of Histidines / number of AAs 
nIle / nAAs number of Isoleucines / number of AAs 
nLeu / nAAs number of Leucines / number of AAs 
nLys / nAAs number of Lysines / number of AAs 
nMet / nAAs number of Methionines / number of AAs 
nPhe / nAAs number of Phenylalanines / number of AAs 
nPro / nAAs number of Prolines / number of AAs 
nSer / nAAs number of Serines / number of AAs 
nThr / nAAs number of Threonines / number of AAs 
nTrp / nAAs number of Tryptophans / number of AAs 
nTyr / nAAs number of Tyrosines / number of AAs 
nVal / nAAs number of Valines / number of AAs 

Table 1. List of constitutional molecular descriptors 
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AAindex consists of three sections: (1) AAindex1 for the amino acid index of 20 numerical 

values; (2) AAindex2 for the amino acid mutation matrix; (3) AAindex3 for the statistical 

protein contact potentials. 

 

Symbol Definition 
ATS1wi Broto-Moreau autocorrelation of a topological structure - lag 1 / Weighted by wi 
ATS2wi Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by wi 
ATS3wi Broto-Moreau autocorrelation of a topological structure - lag 3 / Weighted by wi 
ATS4wi Broto-Moreau autocorrelation of a topological structure - lag 4 / Weighted by wi 
ATS5wi Broto-Moreau autocorrelation of a topological structure - lag 5 / Weighted by wi 
ATS6wi Broto-Moreau autocorrelation of a topological structure - lag 6 / Weighted by wi 
ATS7wi Broto-Moreau autocorrelation of a topological structure - lag 7 / Weighted by wi 
ATS8wi Broto-Moreau autocorrelation of a topological structure - lag 8 / Weighted by wi 
MATS1wi Moran autocorrelation - lag 1 / Weighted by wi 
MATS2wi Moran autocorrelation - lag 2 / Weighted by wi 
MATS3wi Moran autocorrelation - lag 3 / Weighted by wi 
MATS4wi Moran autocorrelation - lag 4 / Weighted by wi 
MATS5wi Moran autocorrelation - lag 5 / Weighted by wi 
MATS6wi Moran autocorrelation - lag 6 / Weighted by wi 
MATS7wi Moran autocorrelation - lag 7 / Weighted by wi 
MATS8wi Moran autocorrelation - lag 8 / Weighted by wi 
GATS1wi Geary autocorrelation - lag 1 / Weighted by wi 
GATS2wi Geary autocorrelation - lag 2 / Weighted by wi 
GATS3wi Geary autocorrelation - lag 3 / Weighted by wi 
GATS4wi Geary autocorrelation - lag 4 / Weighted by wi 
GATS5wi Geary autocorrelation - lag 5 / Weighted by wi 
GATS6wi Geary autocorrelation - lag 6 / Weighted by wi 
GATS7wi Geary autocorrelation - lag 7 / Weighted by wi 
GATS8wi Geary autocorrelation - lag 8 / Weighted by wi 

Table 2. List of autocorrelation molecular descriptors. wi identifies the used weight, 
the suffixes for the physicochemical weights are reported in Table 3 and the WHIM 

suffixes are reported in Table 4 

 

The first section (AAindex ver. 9.1) has been considered as a possible resource in order to 

identify relevant properties of the 20 natural amino acids, since it contains a list of 544 amino 

acid indices. Each entry consists of an accession number, a short description on the index, the 

reference information, and the numerical values for the property of the 20 natural amino 

acids. In some instances the values are not reported for all 20 amino acids. The properties 

collected in the AAindex database have been divided in six major classes. 

The first three classes can be considered as statistical properties of the amino acids, while the 

fourth and the fifth classes include physicochemical properties. 
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In order to be able to evaluate how different properties highlight different kind of information, 

two weighting schemes have been defined. 

Starting from the assumption that the physicochemical properties of the amino acids are 

responsible for the 3D structure and the functionality of the protein, the first weighting 

scheme has been defined collecting five different physicochemical properties from the amino 

acid index database: molecular weight [20], polarity [21], hydrophobicity [22], residue 

accessible surface area in folded protein [23] and hydrophilicity scale [24]. The selected 

physicochemical weights are listed in Table 3. 

 
Suffix Description 
mw molecular weight by Fasman (FASG760101) [20] 
p polarity by Grantham (GRAR740102) [21] 
hyb hydrophobicity by Jones (JOND750101) [22] 
ras residue accessible surface area in folded protein by Chothia (CHOC76010) [23] 
hyl hydrophilicity scale by Kuhn (KUHL950101) [24] 

Table 3. Suffixes and descriptions of the physicochemical weights, between brackets 
the AAindex accession number are reported 

 

Aside from the twenty standard amino acids, there is a vast number of non standard amino 

acids, that are usually formed through modifications to standard amino acids. 

In order to be able to characterise not only the twenty natural amino acids but also the 

nonstandard amino acids it has been necessary to introduce another weighting scheme, not 

depending from the amino acid index database.  

The adopted weighting scheme reported in Table 4 has been obtained calculating three 

different global Weighted Holistic Invariant Molecular descriptors (WHIM) descriptors [25] 

from the molecular structure of the isolated amino acids. Three WHIM descriptors (Am - 

global dimension descriptor, Km - global shape descriptor, Dm - global density descriptor) 

have been calculated using the classical atom based approach describing every atoms 

belonging to the amino acids using the atomic mass. 

WHIM descriptors are built in order to capture relevant molecular 3D information regarding 

molecular size, shape, symmetry and atom distribution with respect to invariant reference 

frames. They are divided into two main classes: directional WHIM descriptors and global 

WHIM descriptors. 

Directional WHIM descriptors are calculated as some univariate statistical indices on the 

projections of the atoms along each individual principal axis, while the global WHIMs are 

- 677 -



directly calculated as a combination of the former, thus simultaneously accounting for the 

variation of molecular properties along the three principal directions in the molecule. In this 

case, any information individually related to each principal axis disappears and the 

description is related only to a global view of the molecule. 

 

Suffix Description 
Am WHIM global dimension index weighted by atomic masses 
Km WHIM global shape index weighted by atomic masses 
Dm WHIM global density index weighted by atomic masses 

Table 4. Suffixes and descriptions of the WHIM weights 

 

Within the WHIM approach, a molecule is seen as a configuration of points (the atoms) in the 

three-dimensional space defined by the Cartesian axes (x, y, z). In order to obtain a unique 

reference frame, principal axes of the molecule are calculated. Then, projections of the atoms 

along each of the principal axes are performed and their dispersion and distribution around the 

geometric centre are evaluated. 

 

Amino Acid 3-letter 1-letter mw p hyb ras hyl Am Km Dm 
Alanine  Ala A 0.651 0.973 0.614 0.57 0.78 0.3634 0.4430 0.2330 
Arginine  Arg R 1.272 1.261 0.6 2.052 1.58 1.9266 0.7980 0.3130 
Asparagine  Asn N 0.965 1.393 0.063 1.437 1.2 0.9274 0.4970 0.2960 
Aspartic acid  Asp D 0.972 1.562 0.466 1.14 1.35 0.8575 0.4290 0.3700 
Cysteine  Cys C 0.885 0.661 1.072 0.433 0.55 0.6683 0.4990 0.2530 
Glutamic acid Glu E 1.068 1.261 0 1.619 1.19 0.9970 0.5840 0.3810 
Glutamine  Gln Q 1.075 1.477 0.473 1.117 1.45 1.1128 0.4040 0.3260 
Glycine  Gly G 0.548 1.081 0.071 0.525 0.68 0.2343 0.5420 0.3220 
Histidine  His H 1.133 1.249 0.614 0.981 0.99 1.0631 0.7590 0.2740 
Isoleucine  Ile I 0.958 0.625 2.222 0.41 0.47 0.9845 0.5820 0.2660 
Leucine  Leu L 0.958 0.589 1.531 0.525 0.56 1.1486 0.5210 0.3370 
Lysine  Lys K 1.068 1.357 1.157 2.212 1.1 1.5369 0.8120 0.3340 
Methionine  Met M 1.09 0.685 1.178 0.707 0.66 1.0385 0.4610 0.2940 
Phenylalanine Phe F 1.207 0.625 2.025 0.547 0.47 1.3731 0.5790 0.2710 
Proline  Pro P 0.841 0.961 1.954 1.14 0.69 0.5536 0.4870 0.2910 
Serine  Ser S 0.768 1.105 0.049 1.003 1 0.4656 0.3910 0.2810 
Threonine  Thr T 0.87 1.033 0.049 1.072 1.05 0.6918 0.4850 0.3070 
Tryptophan  Trp W 1.492 0.649 2.66 0.73 0.7 2.3415 0.6410 0.2970 
Tyrosine  Tyr Y 1.324 0.745 1.884 1.368 1 1.6385 0.6620 0.2840 
Valine  Val V 0.856 0.709 1.319 0.41 0.51 0.7066 0.5100 0.2980 

Table 5. Weighting scheme values for the 20 AAs. m (Molecular Weight), p (Polarity), 
hyb (Hydrophobicity), ras (Residue accessible surface area in folded protein), hyl 

(Hydrophilicity scale), Am (WHIM global dimension descriptor), Km (WHIM global 
shape descriptor) and Dm (WHIM global density descriptor) 
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Once selected, the five physicochemical indices have been separately scaled in order to obtain 

values with mean equal to one. Scaled index values are showed in Table 5. Hydrophilicity has 

not been scaled due to the fact that this property is already scaled. 

WHIM index values for all the 20 amino acids are reported in Table 5. 

The two previously described weighting schemes have been used in order to separately 

calculate two different blocks of molecular descriptors. 

 

Data 

The twenty sequences evaluated in this application have been collected from the literature 

[26]; these sequences belong to a peptide library of 190 hits from Pharmacia & Upjohn. The 

twenty considered peptides have different lengths, from 6 to 12 amino acids. All the twenty 

peptides showed activity with respect to two biological responses: a) activated partial 

thromboplastin time (APTT); b) thromboplastin time (TBPL). 

 

Peptide Sequence IC50 (µM)    

  APTT TBPL Log(1+APTT) Log(1+TBPL) 
1 PKPRPDR 5.52 17.4 0.81 1.26 
2 SWKHYW 0.58 2.17 0.20 0.50 
3 SWKYYW 0.79 2.34 0.25 0.52 
4 SWVDAW 1.56 1.26 0.41 0.35 
5 RQGRYWL 1.5 6.06 0.40 0.85 
6 PPGEMD 2.66 3.04 0.56 0.61 
7 EGEGGM 1.58 1.2 0.41 0.34 
8 RHWNIEGRPWWS 0.66 0.71 0.22 0.23 
9 SEWAIEGRPHGW 1.21 0.58 0.34 0.20 

10 FLRGEV 2.32 1.94 0.52 0.47 
11 FMHLST 2.26 3.5 0.51 0.65 
12 FMRPQM 4.14 54 0.71 1.74 
13 FGWGQN 4.87 14.64 0.77 1.19 
14 CWPMTRGC 1.09 0.77 0.32 0.25 
15 KPRWWMWK 0.05 0.13 0.02 0.05 
16 KSWQVWVK 0.8 1.1 0.26 0.32 
17 KSWKYYWK 0.04 0.75 0.02 0.24 
18 SWKYYWK 0.03 1.5 0.01 0.40 
19 KSWKYYW 0.03 0.71 0.01 0.23 
20 KMMSWKGK 0.7 0.49 0.23 0.17 

Table 6. Peptide sequences and their biological activities (APTT and TBPL) 
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The partial thromboplastin time (PTT) or activated partial thromboplastine time (aPTT or 

APTT) is a performance indicator measuring the efficacy of both the intrinsic (now referred to 

as the contact activation pathway) and the common coagulation pathways. Apart from 

detecting abnormalities in blood clotting, it is also used to monitor the treatment effects with 

heparin, a major anticoagulant. 

The biological activities are expressed as 50% inhibition concentration (IC50) in µM; since the 

biological activities ranged from 0.03 to 5.52 for APTT and from 0.13 to 54 for TBPL, a log 

transformation have been performed prior to modelling. APTT  and TBPL values (both 

original and log-transformed) for the considered peptide sequences are collected in Table 6. 

 

Multivariate modelling 

Once calculated the molecular descriptors, regression models have been built using Genetic 

Algorithms (GAs) [27-30] as implemented in the MobyDigs package [31,32], in order to 

select subsets of variables that maximise the predictive power of the multivariate models. 

An important characteristic of the Genetic Algorithms is that they provide not a single model 

but a population of acceptable models; this characteristic enables the evaluation of variable 

relationships with response from different points of view. The studied approach extends the 

genetic strategy based on the evolution of a single population of models to a more complex 

genetic strategy based on the evolution of more than one population. These populations 

evolve independently from each other and, after a number of iterations, they can be combined 

according to different criteria, thus obtaining a new population with different evolutionary 

capabilities. 

Models can be optimised by different statistical parameters to measure their quality. 

Moreover, the genetic parameters that control the population evolution can be changed during 

the model searching. Mutation and crossover probabilities are tailored by this strategy. 

Finally, once the best models from one or more optimised populations are obtained, bootstrap 

and y-scrambling techniques can be used for further validation. 

Bootstrapping is a modern, computer-intensive, general purpose approach to statistical 

inference, falling within a broader class of resampling methods. By bootstrap validation 

technique [33-35], the original size of the data set (n) is preserved for the training set, by the 

selection of n objects with repetition; in this way the training set usually consists of repeated 

objects and the evaluation set of the objects left out. The model is calculated on the training 
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set and responses are predicted on the evaluation set. All the squared differences between the 

true response and the predicted response of the objects of the evaluation set are collected in 

PRESS (predictive residual sum of squares). This procedure of building training sets and 

evaluation sets is repeated thousands of time, PRESS are summed and the average predictive 

power is calculated. Y-scrambling validation technique is adopted to check models with 

chance correlation, i.e. models where the independent variables are randomly correlated to the 

response variables. The test is performed by calculating the quality of the model (usually R2 

or, better, Q2) randomly modifying the sequence of the response vector y, i.e. by assigning to 

each object a randomly selected response [36,37]. Usually, the test is repeated several 

hundreds of times and the mean result is then considered. If the original model has no chance 

correlation, there is a significant difference in the quality of the original model and that 

associated with a model obtained with random responses. For a model to be valid, the 

desirable intercept limits should be R2 < 0.3 and Q2 < 0.05. If both limits are exceeded, the 

model should be treated with caution.  

 

Results and Discussion 

Constitutional and autocorrelation descriptors have been weighted using the two different 

weighting schemes previously described (physicochemical and WHIM weighting schemes).  

The physicochemical weighting scheme collects five different properties and in this case the 

constitutional descriptor block consists of 51 descriptors and 2D autocorrelation descriptors 

consist of 120 molecular descriptors, giving a total of 171 molecular descriptors. On the other 

side, the WHIM weighting scheme comprises three different properties and the resulting 

calculated descriptors are 47 constitutional and 72 autocorrelation descriptors, giving a total 

of 119 molecular descriptors.   

The two different responses (APTT and TBPL) have been modelled separately using in both 

cases genetic algorithms in order to perform the variable subset selection. For both biological 

responses the following steps have been performed, once considering the molecular 

descriptors weighted by the physicochemical weighting scheme and once the WHIM 

weighting scheme: 

1. constitution of two different populations of variable, the first one collecting all the 

constitutional descriptors and the second one collecting all the autocorrelation 

descriptors; 

- 681 -



2. selection of explained variance in validation (Q2 leave-one-out) as fitness function for 

GAs; 

3. application of all subset model approach for the selection of the best regression 

models up to two variables; 

4. evolution of GAs with a maximum number of variables for each model set to three 

variables; 

5. creation of a new population by merging the constitutional and the autocorrelation 

populations collecting all variables and preserving the best models; 

6. increasing of the number of variables for each regression model up to four variables; 

7. selection of the best five models from each population; 

8. evaluation of the predictive quality of each selected model by means of bootstrap; 

evaluation of the stability of each selected model by means of y-scrambling analysis. 

Three different model populations have been obtained for each response and for each 

weighting scheme: one model population collecting constitutional descriptors (one population 

for physicochemical and one for WHIM weighting scheme), one model population collecting 

autocorrelation descriptors and one model population collecting both descriptor blocks. 

The best selected models are listed in Table 7 and Table 8 for molecular descriptors calculated 

using the physicochemical weighting scheme while the final models obtained from the 

molecular descriptors calculated using the WHIM weighting scheme are reported in Table 9 

and Table 10. 

Both bootstrap and Y-scrambling results look acceptable and indicate that the model quality is 

good with respect to the absence of overfitting and chance correlation, respectively. In fact, 

almost all Q2
BOOT values are comparable with the Q2 and R2 values (see Table 7-10), 

indicating that the calculated regression models are not significantly affected by overfitting 

and that when applying a robust validation approach, the predictive capabilities of the selected 

models do not decrease. 

On the other hand, the Y-scrambling results (not shown) for the reported models are all 

comprised in the expected limits (0.3 for R2 and 0.05 for Q2), showing that no chance 

correlation is present and highlighting the predictive abilities of the models. 
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Method Size Variables Descriptors R2 Q2 Q2
boot

GAs 4 nPro  nTrp  nAla/nAAs  nAsp/nAAs   Constitutional 88.3 83.4 81.0 
GAs 4 ATS6mw  ATS1hyl  MATS4hyl  GATS4p ATS 88.8 81.2 76.3 
GAs 4 nTrp  nLys/nAAs  nMet/nAAs  GATS1hyb Constitutional / ATS 89.2 80.4 75.2 
GAs 3 ATS6mw  ATS1hyl  MATS4hyl   ATS 84.8 75.4 74.6 
GAs 3 nTrp  nLys/nAAs  GATS1hyb  Constitutional / ATS 84.0 75.3 73.3 
GAs 3 Whyb_sum  nPhe  nPro   Constitutional 84.7 73.9 72.2 
ASM 2 nTrp  nAsp/nAAs   Constitutional 73.0 65.8 65.1 
ASM 2 nPro/nAAs  ATS3hyb   Constitutional / ATS 72.7 60.4 56.7 
ASM 2 ATS5hyb  GATS5mw  ATS 65.7 55.3 56.1 

Table 7. Best models obtained for APTT, using the physicochemical weighting 
scheme. ASM: all subset models, ATS: autocorrelation descriptor block 

 
Method Size Variables Descriptors R2 Q2 Q2

boot

GAs 4 nPhe  nGlu/nAAs  nPro/nAAs  MATS7ras   Constitutional / ATS 88.2 73.5 67.1 
GAs 4 nGln  nTrp  nArg/nAAs  nGlu/nAAs   Constitutional 85.1 73.5 56.2 
GAs 4 ATS3ras  ATS5ras  MATS4ras  GATS2ras   ATS 85.3 73.4 68.3 
GAs 3 nGlu/nAAs  nPro/nAAs  MATS7ras   Constitutional / ATS 83.9 68.0 62.8 
GAs 3 nGln  nAsp/nAAs  nGlu/nAAs   Constitutional 65.8 58.1 47.6 
GAs 3 ATS1ras  ATS5ras  GATS5mw   ATS 73.3 54.8 51.3 
ASM 2 nGlu/nAAs  MATS7ras   Constitutional / ATS 67.1 51.6 51.5 
ASM 2 nTrp  nGlu/nAAs   Constitutional 65.0 46.0 43.7 
ASM 2 ATS3mw  ATS1ras   ATS 53.2 36.7 34.3 

Table 8. Best models obtained for TBPL, using the physicochemical weighting 
scheme. ASM: all subset models, ATS: autocorrelation descriptor block 

 
Method Size Variables Descriptors R2 Q2 Q2

boot

GAs 4 nPro  nArg/nAAs  ATS4Am GATS5Dm   Constitutional / ATS 95.7 92.8 89.5 
GAs 4 ATS3Km  ATS1Dm  ATS2Dm  GATS1Dm ATS 92.1 84.3 81.8 
GAs 3 nPro  ATS4Am  GATS5Dm   Constitutional / ATS 92.9 88.7 87.9 
GAs 3 WAm_sum  nAsn / nAAs  nAsp / nAAs Constitutional 82.4 73.6 69.4 
GAs 3 ATS6Km  ATS1Dm  MATS2Dm   ATS 80.1 70.8 68.6 
ASM 2 GATS2Dm  GATS6Dm   ATS 72.4 60.5 60.7 

Table 9. Best models obtained for APTT, using the WHIM weighting scheme. ASM: 
all subset models, ATS: autocorrelation descriptor block 

 

Method Size Variables Descriptors R2 Q2 Q2
boot

GAs 4 nPro  nGlu / nAAs  ATS2Km  ATS4Km   Constitutional / ATS 86.0 71.2 64.7 
GAs 4 ATS1Dm  ATS2Dm  GATS3Km  GATS1Dm ATS 78.4 60.7 55.9 
GAs 3 nGlu / nAAs  nPro / nAAs  MATS7Km  Constitutional / ATS 80.3 61.9 45.1 
GAs 3 ATS1Dm  ATS2Dm  GATS1DM ATS 72.8 57.9 55.1 
ASM 2 nGlu / nAAs MATS7Km   Constitutional / ATS 64.2 48.6 39.6 
ASM 2 ATS1Dm  ATS2Dm   ATS 55.5 35.0 33.1 

Table 10. Best models obtained for TBPL, using the WHIM weighting scheme. ASM: 
all subset models, ATS: autocorrelation descriptor block 
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Considering the physicochemical weighting scheme, models with same dimension obtained 

using constitutional, autocorrelation or both descriptor blocks had similar predictive power. 

The APTT response is modelled better than the TBPL response. Models being constituted by 

four variables have a Q2 ranging between 80.46 to 83.41 for APTT response while models 

with four variables obtained for TBPL had a Q2 ranging between 73.48 to 73.54. 

Looking deeply at the best models, the APTT response is modelled using different 

constitutional descriptors, but the most frequent are the number of prolines (nPro) and the 

number of tryptophan (nTrp). The mostly selected autocorrelation descriptors are weighted by 

molecular weight (mw suffix), hydrophobicity (hyb) and hydrophilicity scale (hyl). Only one 

model among the best ones include also autocorrelation descriptors weighted by polarity (p). 

No models include autocorrelation descriptors weighted by residue accessible surface area 

(ras). The best model obtained for APTT using four molecular descriptors is represented in 

Figure 2. 

 
Figure 2. Experimental vs. predicted values of log(1 + APTT) for the best model obtained using the 

physicochemical weights. (nPro, nTrp, nAla/nAAs, nAsp/nAAs , Q2 = 83.41) 
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TBPL on the contrary is better modelled by autocorrelation descriptors weighted by residue 

accessible surface area (ras). The best 4-dimensional autocorrelation descriptors model is 

constituted only by descriptors weighted by residue accessible surface area. Only two models 

include a molecular descriptor weighted by molecular weight. No models for TBPL include 

autocorrelation descriptors weighted by hydrophobicity, hydrophilicity or polarity. The most 

frequent constitutional descriptor is the relative frequency of glutamic acid (nGlu/nAAs) in a 

single peptide, that is selected in all the models containing at least one constitutional 

descriptor. The best model obtained for TBPL response using four molecular descriptors is 

represented in Figure 3. 

 
Figure 3. Experimental vs. predicted values of log(1 + TBPL) for the best model using the 

physicochemical weights. (nPhe, nGlu/nAAs, nPro/nAAs, MATS7ras, Q2 = 73.54) 
 

Considering the WHIM weighting scheme only one model being constituted only by 

constitutional descriptors is reported in Table 9. It includes the average sum of the WHIM 

global dimension index (WAm_sum). Anyway, considering APTT as modelled response, the 

models based on the WHIM weights are significantly better than the models obtained using 
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the physicochemical weighting scheme. The best model, being constituted by two 

constitutional and two autocorrelation descriptors, has a Q2 equal to 92.86% that is more than 

ten points higher than the best model obtained using the physicochemical descriptors. The 

best model with four variables being constituted only by autocorrelation descriptors has a Q2 

equal to 84.37%. 

The mostly selected autocorrelation descriptors are weighted by the WHIM global density 

index (Dm suffix); these descriptors appear in all the models containing at least one 

autocorrelation descriptor. Descriptors calculated using the WHIM global shape index (Km) 

and WHIM global dimension index (Am) occur in two of the five models containing 

autocorrelation descriptors. Considering the constitutional descriptors, the number of prolines 

(nPro) occurs in two different models and is always coupled with ATS4Am and GATS5Dm 

autocorrelation descriptors. The best model obtained for APTT response using four molecular 

descriptors weighted by the WHIM indices is represented in Figure 4. 

 
Figure 4. Experimental vs. predicted values of log(1 + APTT) for the best model obtained using the 

WHIM weights (nPro, nArg/nAAs, ATS4Am, GATS5Dm , Q2 = 92.86) 
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Models obtained for TBPL response using the WHIM weighting scheme have a lower 

predictive power compared to those obtained using the physicochemical weighting scheme. 

Models constituted only by constitutional descriptors are omitted in Table 10 due to the fact 

that are the same models reported in Table 8, since no models for TBPL include weighted 

constitutional descriptors. 

APTT is globally better modelled than TBPL; the reason is probably due to the not 

homogeneous distribution of the response values for TBPL. In Figure 3 a cluster of 10 

peptides among 20 with response values between 0.2 and 0.6 is highlighted by an oval. This 

kind of distribution, where a small portion of the response space is deeply described, while 

the greater part of the response space is not well represented, is usually an obstacle to build 

good models.  

However, the models obtained using the proposed approach look significantly better than the 

models proposed in the literature. The best model proposed by Andersson et al. [26] was 

calculated using a modified z-scales approach and gave R2 = 86.2% and Q2 = 60.3%, while 

the models proposed in this paper have Q2 significantly higher, both for APTT and TBPL 

responses.  

 

Conclusions 

In this paper a new methodology for the characterisation of peptide sequences using a 

molecular descriptor based approach is presented.  

Constitutional and 2D autocorrelation descriptors have been calculated by applying two 

different kinds of weights (the first based on physicochemical properties of the amino acids, 

the second based on WHIM descriptors) and used for the prediction of two biological 

responses on a dataset of 20 peptide sequences taken from the literature. 

The presented application confirm the capability of the proposed methodology to model 

responses of a considered data set of peptide of different lengths. The models obtained using 

the proposed methodology are significantly better than the models taken from literature and 

appear stable and with good predictive power. 

The results obtained using the physicochemical weighting scheme confirm the capability of 

the presented simplified representation of the peptide structure to describe a peptidic data set, 

while the capability of the WHIM weighting scheme to improve the predictive power of the 
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molecular descriptor models can be conducted to the 3-dimensional information contained by 

the WHIM global dimension indices used as weighting scheme. 
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