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Abstract

Fluoranthene and its congeners are compounds which, in view of their chemical and

physical properties, belong among benzenoid hydrocarbons. However, because of the pres-

ence of a five–membered ring, in all chemical–graph–theoretical considerations of benzenoid

systems, fluoranthenes have been disregarded. The aim of this work is to establish the

basic characteristics of the molecular graphs of fluoranthene–type benzenoid hydrocarbons.

By this we prepare the theoretic framework for a systematic study of the topology–based

physico–chemical properties of this class of polycyclic aromatic hydrocarbons.
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INTRODUCTION

Benzenoid systems (also referred to as hexagonal systems, polyhexses, fusenes, or

hexagonal animals) are one of the most thoroughly studied class of molecular graphs

(see the reviews [1–7], the books [8–12], and the references cited therein). A precise

definition of benzenoid systems, as well as a survey of their basic graph–theoretical

properties can be found in the book [10]. In view of the way in which the concept

of benzenoid systems is conceived, the respective molecular graphs must not possess

odd-membered cycles. Consequently, fluoranthene and its congeners were from the

beginning excluded from consideration, and not a single graph–theory–based property

thereof seems to have been reported in the chemical or mathematical literature.

The aim of the present work is to contribute towards filling of this gap.

FLUORANTHENE–TYPE BENZENOIDS

In Fig. 1 are depicted fluoranthene (1) and a few of its congeners. From these

examples the readers will immediately get an idea of their general structure.

A more formal definition of this class of polycyclic aromatic compounds is as

follows.

Let X be a benzenoid system [10]. Let u and v be two vertices of X whose degree

is two, and which both are adjacent to a vertex w of degree 3.

Let Y be another benzenoid system. Let a and b be two adjacent vertices of Y

whose degree is two.

The fluoranthene–type benzenoid system F is obtained by joining (with a new

edge) the vertices u and a , and by joining (with a new edge) the vertices v and b ,

see Fig. 2.

What first needs to be noticed is that the vertices a, b, v, w, u of F form a five-

membered cycle. Each fluoranthene–type benzenoid system possesses (by definition)

exactly one five-membered cycle.
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Fig. 1. Fluoranthene (1) and examples of fluoranthene–type benzenoid systems. 1

and 2 are cata-catacondensed, 3 is peri-catacondensed, 4 is cata-pericondensed, and
5 is peri-pericondensed; for details see text.
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Fig. 2. The general form of a fluoranthene–type benzenoid system (F ) and its
construction from two benzenoid systems X and Y .
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It is a matter of choice whether helicenic and other geometrically non-planar

species (such as those depicted in Fig. 3) should be permitted in the above definition.

We prefer that such “pathological” congeners of fluoranthene be disregarded. Thus

the fluoranthene–type benzenoid systems considered by us must pertain to plane

graphs composed of regular hexagons and a regular pentagon, all having same edge

lengths. Non-adjacent hexagon–hexagon and hexagon–pentagon pairs must neither

touch nor overlap.

Fig. 3. Examples of fluoranthene–type species that are (by definition) excluded from
consideration.

In what follows, instead of “fluoranthene–type benzenoid system” we shall say

“f-benzenoid system” or shorter, “f-benzenoid”.

BASIC STRUCTURAL DETAILS AND CLASSIFICATION OF

f-BENZENOIDS

Let F be an f-benzenoid system. The number of its vertices, edges, and hexagons

will be denoted by n , m , and h , respectively. In view of the fact that F possesses
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h + 1 independent cycles (h hexagons and a pentagon), these three quantities are

related as

m = n + h .

Some vertices and edges of F lie on its boundary (perimeter). These will be

referred to as external vertices and external edges. Their numbers are denoted by nex

and mex , respectively. Evidently, nex = mex , and the size of the boundary of F is

equal to nex .

The vertices and edges that are not external are said to be internal. Their numbers

are denoted by ni and mi . Clearly, nex + ni = n and mex + mi = m .

The vertex w of F (see Fig. 2) does not lie on the boundary (perimeter) of F .

Thus w is an internal vertex of F , and every f-benzenoid system possesses at least

one internal vertex.

By elementary combinatorial reasoning we arrive at the following:

Theorem 1. If an f-benzenoid system has n vertices, m edges, h hexagons, and ni

internal vertices, then

n = 4h + 5 − ni (1)

m = 5h + 5 − ni . (2)

Corollary 1.1. The size of the perimeter of the f-benzenoid system specified in

Theorem 1 is equal to

nex = mex = 4h + 5 − 2 ni . (3)

In connection with the size of the boundary see also Corollary 2.1, which, in fact,

can be deduced from Eq. (3).

Combining Eqs. (2) and (3), we arrive at:

Corollary 1.2. The number of internal edges of the f-benzenoid system specified in

Theorem 1 is equal to h + ni .

Recall that all internal edges connect vertices of degree 3, a detail that will be

needed later.
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A benzenoid system is said to be catacondensed if it has no internal vertices; oth-

erwise it is pericondensed [10]. In view of this, we propose the following classification

of f-benzenoid systems.

If the f-benzenoid system F has just a single internal vertex, then it is said to be

cata-catacondensed. This happens when both fragments X and Y (as shown in Fig.

2) are catacondensed benzenoids. If X is pericondensed, and Y is catacondensed,

then F is peri-catacondensed. If X is catacondensed, and Y is pericondensed then

F is cata-pericondensed. If both X and Y are pericondensed, then F is said to be

peri-pericondensed.

Examples of cata-cata–, peri-cata–, cata-peri–, and peri-pericondensed f-benze-

noids are found in Fig. 2.

For cata-catacondensed f-benzenoids, ni = 1 . For peri-cata– and cata-periconden-

sed species, ni ≥ 2 . For peri-pericondensed f-benzenoids, ni ≥ 3 .

MORE STRUCTURAL DETAILS

Benzenoid systems are bipartite graphs and therefore possess only cycles of even

size. f-Benzenoids possess a (single) five-membered cycle and are thus non-bipartite.

In fact, f-benzenoids necessarily possess 5-, 6-, 9-, 10-, 11-, 13-, and 15-membered

cycles, and may (but need not) possess also 12- and 14-membered cycles, as well as

k-membered cycles for any k ≥ 16 . Only cycles of size 3, 4, 7, and 8 can never occur

in an f-benzenoid system.

In Fig. 4 are depicted some cycles of the f-benzenoid system 3.

By means of a proof technique analogous to what earlier was used for benzenoid

systems [13,14] we can demonstrate the validity of the following:

Theorem 2. Let F be an f-benzenoid system and Z its cycle of size |Z| . If |Z| ≡
0 (mod 4) or |Z| ≡ 3 (mod 4) , then in the interior of Z there is an odd number of

vertices. Otherwise, i. e., if |Z| ≡ 1 (mod 4) or |Z| ≡ 2 (mod 4) , then in the interior

of Z there is an even number of vertices or there are no vertices at all.
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Z1 Z2Z1

Z4Z3

Fig. 4. The cycles Z1, Z2, Z3, Z4 of the f-benzenoid system 3 (cf. Fig. 1), indicated
by heavy lines. Note that their sizes are 16, 17, 18, and 19, respectively. Note also
that in the interior of Z2 and Z3 there is an even number (2 and 6) of vertices,
whereas in the interior of Z1 and Z4 there is an odd number (3 and 3) of vertices.
This illustrates Theorem 2.

Corollary 2.1. If ni(F ) is odd, then the boundary of F is either of the size 4k or

4k +3 . If ni(F ) is even, then the boundary of F is either of the size 4k +1 or 4k +2 .

All these four cases may happen, as shown in Fig. 5.

4k 4k + 1 4k + 2 4k + 3

k= 5 k= 5 k= 4 k= 3

Fig. 5. f-Benzenoids with the smallest boundaries of sizes 4k , 4k + 1 , 4k + 2 , and
4k + 3 . The sizes of the boundaries are indicated.
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An f-benzenoid system has vertices of degree 2 or 3. Let their number be n2 and

n3 , respectively, n2 +n3 = n . By mathematical induction on the number of hexagons

we easily verify that

n3 = 2h

which, combined with Eq. (1) yields

n2 = 2h + 5 − ni . (4)

From Eqs. (1) and (4) we conclude that the formula of a fluoranthene–type ben-

zenoid hydrocarbon with h six-membered rings and ni internal carbon atoms is

C4h+5−ni
H2h+5−ni

. The formula of all cata-catacondensed f-benzenoids with h six-

membered rings is then C4h+4H2h+4 and, consequently, all these hydrocarbons are

isomers.

All vertices of degree two lie on the boundary. Therefore, the boundary contains

nex − n2 vertices of degree three, which by Eqs. (3) and (4) is equal to 2h − ni .

We say that an edge of a graph is of (i, j)-type if it connects a vertex of degree i

with a vertex of degree j . In f-benzenoids only edges of type (2, 2) , (2, 3) , and (3, 3)

occur. Their number is denoted by m22 , m23 , and m33 , respectively. Then

m22 + m23 + m33 = m (5)

and

2 m22 + m23 = 2 n2

m23 + 2 m33 = 3 n3

from which
1

2
(2 m22 + m23) +

1

3
(m23 + 2 m33) = n

i. e.,

6 m22 + 5 m23 + 4 m33 = 6n . (6)

In order to be able to solve the system of two equations (5) and (6) in three

unknowns (m22 , m23 , and m33) we need to examine the structural features occurring

on the boundary of an f-benzenoid system.
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We already know that on the boundary there are 2h+5−ni vertices of degree two

and 2h − ni vertices of degree three. If we move along the boundary then the vertex

degrees form one of the following sequences: 232 , 2332 , 23332 , 233332 , and 2333332 .

These sequences pertain to structural features called “fissure”, “bay”, “cove”, “fjord”,

and “lagoon” [10,15], see Fig. 6.

bay

fjord

bay cove

fissure

cove

fjord

lagoon

fissure

cove
lagoon

Fig. 6. Structural features occurring on the boundary of f-benzenoid systems.

The number of fissures, bays, coves, fjords, and lagoons will be denoted by nfi ,

nb , nc , nfj , and n` , respectively. Then, evidently, nfi +2 nb +3 nc +4 nfj +5 n` is the

number of vertices of degree 3 on the boundary. In addition, nb +2 nc +3 nfj +4 n` is

the number of (3, 3)-type edges on the boundary. In the theory of benzenoid systems

(in which lagoons cannot occur) nb+2 nc+3 nfj is called the “number of bay regions”

[10]. In view of this, we call nb + 2 nc + 3 nfj + 4 n` the number of bay regions of the

underlying f-benzenoid, and denote it by b . Thus, b is just the number of (3, 3)-type

edges on the boundary.

By inspecting Fig. 2 it is seen that b ≥ 2 holds for all f-benzenoid systems.

By Corollary 1.2 we know that the number of (3, 3)-type edges that do not lie on
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the boundary is h + ni . Consequently,

m33 = h + ni + b . (7)

From Eqs. (5) and (6) we get

n22 = 6n − 5m + m33

n23 = 6m − 6n − 2 m33

which combined with Eqs. (1), (2), and (7) yield:

Theorem 3. If an f-benzenoid system has h hexagons, ni internal vertices, and b

bay regions, then the counts of edges of type (2, 2) and (2, 3) are

m22 = b + 5

m23 = 4h − 2 ni − 2b

whereas the analogous expression for the count of (3, 3)-type edges is given by Eq.

(7).

SPECTRAL PROPERTIES

In this section we are concerned with the eigenvalues of the adjacency matrix of the

molecular graphs of fluoranthene–type benzenoid hydrocarbons. These eigenvalues

will be denoted by λi , i = 1, 2, . . . , n , and assumed to be labelled in a non-increasing

order as

λ1 ≥ λ2 ≥ · · · ≥ λn .

At the present moment not much is known on the spectral properties of f-benze-

noids. Because these are not bipartite graphs, the pairing theorem, namely λi =

−λn−i+1 for all i = 1, 2, . . . , n , is not obeyed.

We can nevertheless prove:

Theorem 4. If F is an f-benzenoid system with even number of vertices, and if F has

a perfect matching (i. e., a Kekulé structure), then λn/2 > 0 > λn/2+1 . Furthermore,

if F has K perfect matchings (Kekulé structures), then

n
∏

i=1

λi = (−1)n/2 K2 .
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The proof of Theorem 4 is lengthy and complicated. Its details will be communi-

cated elsewhere.

The k-th spectral moment is defined as

Mk =
n

∑

i=1

(λi)
k .

In the theory of benzenoid systems much attention was paid to the spectral moments

(see [3,16] and the references cited therein). We anticipate that spectral moments

will play a similar role also in the theory of f-benzenoid systems.

Based on the fact that the k-th spectral moment is equal to the number of closed

walks of length k , we have established the following results:

Theorem 5. If F is an f-benzenoid system with n vertices, m edges, and b bay

regions, then its first six spectral moments satisfy the relations:

M1 = 0

M2 = 2m

M3 = 0

M4 = 18 m − 12 n

M5 = 10

M6 = 158 m − 144 n + 6b + 30 .

It is worth noting that the formula for M4 holds also for benzenoid systems,

whereas the sixth spectral moment of benzenoid systems is equal to 158 m− 144 n +

6b + 48 .
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