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Abstract

The PI index of a graph G = (V, E) is defined as PI(G) =∑
e∈E(neu(e|G) + nev(e|G)), where e = uv, neu(e|G) is the number

of edges of G lying closer to u than to v and nev(e|G) is the number
of edges of G lying closer to v than to u. In this paper, it is showed
that PI(G) ≥ M1(G) − 2|E| with the equality if and only if G is a
complete multipartite graph, where M1(G) =

∑
v∈V d2(v) is the first

Zagreb index of G. Moreover, we determine the extremal graphs with
respect to the PI index among all complete multipartite graphs.
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1 Introduction

A topological index is a real number related to a molecular graph and a

structural invariant, i.e., it must not depend on the labeling or the picto-

rial representation of a graph. Many topological indices have been defined

and several of them have found applications as means to model chemical,

pharmaceutical and other properties of molecules

Here, we consider the Padmakar-Ivan index, which is abbreviated as the

PI index [1,2]. The PI index is an edge-additive topological index introduced

as a counterpart to the vertex-multiplicative Szeged index. Applications of

the PI index to QSRP/QSAR were studied in [3]. The index was mostly

compared with the Wiener and the Szeged index. It turned out that the

PI index has similar discriminating power as the other two indices and in

many cases it gives better result. The PI index is usually easier to compute

than the Wiener and the Szeged indices and is a topological index worth

studying. In a series of papers, Khadikar and coauthors [1-11] computed the

PI index of some chemical graphs. In particular, John and Khadikar [11]

described a method of computing PI index of benzenoid hydrocarbons using

orthogonal cuts. The method requires the finding of number of edges in

the orthogonal cuts in a benzenoid system. Klavžar [12] introduced the PI-

partition and expressed the PI of a graph in terms of its PI-partition. Ashrafi

and Loghman [13,14] computed the PI indices of armchairand zig-zag polyhex

nanotubes. The present author [15] gave the formulas for calculating the PI

indices of catacondensed hexagonal systems, and characterized the extremal

catacondensed hexagonal systems with the minimum or maximum PI index;

[16-19] computed the PI indices of TUV C6[2p, q], the torus and the nanotube

covering by C4 and C8, and established a relation between the PI indices of

a phenylene and of the corresponding hexagonal squeeze.

In this paper, we continue to study the PI index and show that PI(G) ≥
M1(G) − 2|E| with the equality if and only if G is a complete multipartite

graph, where M1(G) =
∑

v∈V
d2(v) is the first Zagreb index of G.

2 Preliminaries

Let G be a simple graph without directed, the vertex- and edge-sets of which

are represented by V(G) and E(G), respectively. The graph G is said to be

connected if for every pair of vertices u and v in V (G) there exists a path

between u and v. Here, we only consider connected graphs. If e is an edge

of G connecting the vertices u and v, then we write e = uv. The number of
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vertices of G is denoted by n. The distance between a pair of vertices u and

v of G is denoted by d(u, v). We now give the definition of the PI index of

a graph G. Suppose that e = uv is an edge of G, neu(e|G) is the number of

edges lying closer to vertex u than to vertex v and nev(e|G) is the number of

edges lying closer to vertex v than to vertex u. Then the PI index of a graph

G is defined as:

PI(G) =
∑

e∈E(G)

(neu(e|G) + nev(e|G)). (1)

Edges equidistant from both ends of the edge e = uv are not counted and

the number of such edges is denoted by c(e). To clarify this, for every vertex

w and any edge e = uv of graph G, we define d(e, w) = min{d(u,w), d(v, w)}.
Then e′ is equidistant from both ends of the edge e = uv if d(e′, u) = d(e′, v).

Note that if G is bipartite, then neu(e|G) = |E(G[Vu])| and nev(e|G) =

|E(G[Vv])| are the numbers of edges in the subgraphs of G induced by

Vu = {x ∈ V (G)|d(x, u) < d(x, v)} and Vv = {y ∈ V (G)|d(y, v) < d(y, u)},
respectively. But it is not true if G is not bipartite.

We denote the degree and the neighborhood of a vertex v by dG(v) and

NG(v), respectively. Then dG(v) = |NG(v)|. The first Zagreb index M1 and

the second Zagreb index M2 of G are defined as

M1(G) =
∑

v∈V (G)

d2
G(v), M2(G) =

∑

uv∈E(G)

dG(u)dG(v)

The Zagreb indices M1 and M2 were introduced in [20] and elaborated in

[21]. The main properties of M1 and M2 were summarized in [22,23]. These

indices reflect the extent of branching of the molecular carbon-atom skeleton,

and can thus be viewed as molecular structure-descriptors [24,25].

3 A lower bound for the PI index of a graph

We now give a lower bound for the PI index of a graph in terms of the first

Zagreb index.

Theorem 1. Let G = (V, E) be a simple connected graph with m edges.

Then

PI(G) ≥ M1(G)− 2m

with the equality if and only if G is a complete multipartite graph.

Proof. Let c(e) be the number of edges equidistant from both ends of

the edge e = uv. Then c(e) + neu(e|G) + nev(e|G) = m. From the equation
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(1), we have

PI(G) = m2 − ∑

e∈E(G)

c(e).

And,

1 ≤ c(e) ≤ m− (dG(u)− 1)− (dG(v)− 1) = m + 2− dG(u)− dG(v).

So,
PI(G) ≥ m2 − ∑

e=uv∈E(G)
(m + 2− dG(u)− dG(v))

=
∑

e=uv∈E(G)
(dG(u) + dG(v))− 2m

=
∑

v∈V (G)
d2

G(v)− 2m = M1(G)− 2m

with the equality if and only if

c(e) = m + 2− dG(u)− dG(v) (2)

for all edges e = uv of G.

In the following, we prove that the equation (2) holds if and only if G is

a complete multipartite graph.

Let NG(u) ∩ NG(v) = {z1, z2, · · · , zr}, NG(u) − {v} − NG(v) = {x1, x2,

· · · , xs}, NG(v)− {u} −NG(u) = {y1, y2, · · · , yt}, as shown in Figure 1.

u v

z1

z2

zr

x1

x2

xs

y1

y2

yt

Figure 1.

Claim 1. xizj, xiyk, ykzj ∈ E(G), 1 ≤ i ≤ s, 1 ≤ j ≤ r, 1 ≤ k ≤ t.

If xizj 6∈ E(G), then d(u, zjv) = 1 and d(xi, zjv) > 1 since xiv 6∈ E(G).

So, zjv 6∈ C(uxi) = {f |f is equidistant from both ends of the edge uxi}, and

c(uxi) < m + 2− dG(u)− dG(xi), contradicting to the equation (2).
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Similarly, we have xiyk, ykzj ∈ E(G).

Claim 2. xixj 6∈ E(G), yiyj 6∈ E(G).

If xixj ∈ E(G), then d(u, xixj) = 1 and d(v, xixj) = 2 since xiv 6∈ E(G)

and xjv 6∈ E(G). So, c(uv) < m + 2 − dG(u) − dG(v), contradicting to the

equation (2).

Similarly, yiyj 6∈ E(G).

Claim 3. The subgraph G[z1, z2, · · · , zr] induced by {z1, z2, · · · , zr} is a

complete multipartite graph.

This only needs to show that zjzk ∈ E(G) if zizj 6∈ E(G) and zizk ∈ E(G)

for any three different vertices zi, zj, zk ∈ {z1, z2, · · · , zr}.
Suppose that zjzk 6∈ E(G), then d(u, zizk) = 1 and d(zj, zizk) = 2. So,

c(uzj) < m + 2− dG(u)− dG(zj), contradicting to the equation (2).

By the claims 1-3, G is a complete multipartite graph.

Conversely, it is obvious that c(e) = m + 2− dG(u)− dG(v) for all edges

e = uv of a complete multipartite graph G. @

In particularly, we have

Corollary 2. If G = (V, E) is a simple connected K3-free graph with m

edges, then

PI(G) ≥ M1(G)− 2m

with the equality if and only if G is a complete bipartite graph.

Note that the cocktail-party graph (or hyperoctahedral graph) CP (s),

obtained by removing s disjoint edges from the complete graph K2s, is a

complete multipartite graph, and its PI index is

PI(CP (s)) = M1(CP (s))− 2|E(CP (s))| = 4s(s− 1)(2s− 3).

4 The PI indices of complete multipartite

graphs

In this section, we characterize the complete multipartite graphs with the

extremal PI indices.

A p-partite graph is one whose vertex set can be partitioned into p subsets

so that no edge has both ends in any one subset; a complete p-partite graph

is one that is simple and in which each vertex is joined to every vertex that

is not in the same subset.

When p ≥ 2, we write Kn1,n2,···,np for the complete p-partite graph with

partite subsets of sizes n1, n2, · · · , np.
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The complete p-partite graph on n vertices in which each part has either

[n/p] or {n/p} vertices is denoted by Tn,p, where [x] denotes the largest in-

teger no more than x and {x} denotes the smallest integer no less than x.

Theorem 3. Let G be a complete p-partite graph on n vertices. Then

(i) PI(G) ≤ PI(Tn,p) with the equality if and only if G is isomorphic

to Tn,p, i.e., Tn,p is the unique graph with the maximal PI index among all

complete p-partite graphs on n vertices;

(ii) PI(G) ≥ PI(K1,···,1,n−p+1) with the equality if and only if G is isomor-

phic to K1,···,1,n−p+1, i.e., K1,···,1,n−p+1 is the unique graph with the minimal

PI index among all complete p-partite graphs on n vertices;

Proof. Let G = Kn1,n2,···,np be a complete p-partite graph on n vertices.

(i) If G is not isomorphic to Tn,p, then there are 1 ≤ i, j ≤ p such that

ni − nj ≥ 2. Let G′ = Kn1,···,ni−1,···,nj+1,···,np be the complete p-partite graph

on n with partite subsets of sizes n1, · · · , ni−1, ni − 1, ni+1, · · · , nj−1, nj +

1, nj+1, · · · , np.

From Theorem 1, we have

PI(G) = M1(G)− 2|E(G)| =
p∑

k=1

nk(n− nk)
2 −

p∑

k=1

nk(n− nk),

and

PI(G′)− PI(G)
= (ni − 1)(n− ni + 1)2 + (nj + 1)(n− nj − 1)2 − (ni − 1)(n− ni + 1)

−(nj + 1)(n− nj − 1)− ni(n− ni)
2 − nj(n− nj)

2

+ni(n− ni) + nj(n− nj)
= (ni − nj − 1)(4n− 3ni − 3nj − 2) > 0.

That is, if G is not isomorphic to Tn,p, there is a complete p-partite graph G′

on n vertices such that PI(G′) > PI(G). So, Tn,p is the unique graph with

the maximal PI index among all complete p-partite graphs on n vertices.

(ii) Without loss of the generality, we assume that n1 ≤ n2 ≤ · · · ≤ np.

If G is not isomorphic to K1,···,1,n−p+1, then there are 1 ≤ i < p such

that n1 = · · · = ni−1 = 1 and ni ≥ 2. By the proof of (i), we have

PI(G) > PI(G′′), where G′′ = K1,···,1,ni−1,···,np+1 is the complete p-partite

graph on n with partite subsets of sizes 1, · · · , 1, ni−1, ni+1, · · · , np−1, np +1.

So, K1,···,1,n−p+1 is the unique graph with the minimal PI index among all

complete p-partite graphs on n vertices. @

If d1 ≤ d2 ≤ · · · ≤ dn is the degree sequence of a complete multipartite
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graph G on n vertices, then by Theorem 1, we have

PI(G) = M1(G)− 2|E(G)| =
n∑

i=1

(d2
i − di) =

n∑

i=1

(di − 1

2
)2 − 1

4
n (3)

Let d1 ≤ d2 ≤ · · · ≤ dn and d′1 ≤ d′2 ≤ · · · ≤ d′n be the degree sequences

of Tn,p and Tn,p+1, respectively. Then di ≤ d′i, 1 ≤ i ≤ n and at least one of

these inequalities is strict. By the equation (3),

PI(Tn,p) < PI(Tn,p+1).

Similarly, PI(K1,···,1,n−p+1) < PI(K1,···,1,n−p).

So, we have

Theorem 4. (i) The complete graph Kn = K1,1,···,1 is the unique graph

with the maximal PI index among all the complete multipartite graphs on n

vertices;

(ii) The star graph K1,n−1 is the unique graph with the minimal PI index

among all the complete multipartite graphs on n vertices. @

Since every tree with n vertices has the same PI index and K1,n−1 is a tree

with n vertices, we prove the following result from Theorem 1 and Theorem

4(ii).

Corollary 5. Let G be a simple connected graph with n vertices. Then

PI(G) ≥ (n− 1)(n− 2) with the equality if and only if G is a tree. @

From Theorem 4(i), Kn = K1,1,···,1 is the unique graph with the maximal

PI index among all the complete multipartite graphs on n vertices. But we

do not know whether Kn is the graph with the maximal PI index among all

the simple connected graphs on n vertices. So, we end this paper with the

following problem.

Problem. Characterize the graph(s) on n vertices with the maximal PI

index.
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