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Abstract

The Wiener index is the sum of topological distances between all pairs
of vertices in a connected graph such as represents the structural formula of
a molecule. Firstly, we investigate some properties of the partially ordered
set of all vectors associated with a tree with respect to majorization. Then
these results are used to characterize the trees which minimize the Wiener
index among all trees with a given degree sequence. Consequently, all extremal
trees with the smallest Wiener index are obtained in the sets of all trees of
order n with the maximum degree, the leaf number and the matching number
respectively.

1 Introduction

Molecular graphs are usually used to describe molecules and molecular compounds.

Topological indices of molecular graphs are one of the oldest and most widely used

descriptors in quantitative structure activity relationships of molecules and molecular

compounds. Perhaps, one of the most widely known topological descriptors is the

Wiener index which is named after chemist Wiener [21] who first considered it. Many

chemical applications of the Wiener index deals with acyclic organic molecules, whose

molecular graphs are trees. In the mathematical literature, the Wiener index seems

to be the first studied by Entringer et al. [4]. For more information and background,

the readers may refer to a recent and very comprehensive survey [3] and a book [19]

which is dedicated to Harry Wiener on the Wiener index and the references therein.

Let G = (V, E) be a simple connected graph with vertex set V (G) = {v1, · · · , vn}
and edge set E(G). Denote by dG(vi) (or for short d(vi)) the degree of vertex vi of

graph G. The distance between vertices vi and vj is the minimum number of edges

between vi and vj and is denoted by dG(vi, vj) (or for short d(vi, vj)). The Wiener

index of a connected graph G is defined as

W (G) =
∑

{vi,vj}⊆V (G)

d(vi, vj).

Since the Wiener index has been used to explain the variation in the physical

and chemical properties of alkanes and correlate the pharmacological properties of
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compounds with their stucture, chemists are often interested in the Wiener index of

certain trees which present molecular structures (for example, see [10], [9], [8], [3] and

the references therein). For a saturated acyclic hydrocarbon which consists only of

carbon atoms and hydrogen atoms, we may use a tree to describe it with each vertex

representing a carbon atom. The vertex degree represents its valency. It is well known

that there are many different molecules whose chemical formula are the same. For

example, butane and isobutane are isomers with the same chemical formulas C4H10.

It is natural to ask how many different molecules there are having the same chemical

formula CnH2n+2. This problem was systematically addressed by Cayley by way of

graph theoretical techniques. But then a natural question arise as to the relations of

the Wiener indices among the different molecules with the same chemical formula,

since molecular branching and molecular cyclicity are topological characteristics that

are accounted for by the Wiener index (See [15] and [18]).

Entringer et al. [4] showed that among all trees of order n the star K1,n−1 and the

path Pn have the minimum and maximum Wiener indices, respectively. Dankelmann

[2] determined the maximum Wiener index in terms of the order and the indepen-

dence number. Recently, Fischermann et al. [6] and Jelen et al. [13] independently

determined all trees which have the minimum Wiener indices among all trees of or-

der n and maximum degree ∆. A nonincreasing sequence of nonnegative integers

π = (d0, d1, · · · , dn−1) is called graphic if there exists a simple connected graph having

π as its vertex degree sequence. Ruch and Gutman [20] discussed the majorization

partial ordering of potential degree sequences and the relation to being graphic. For

more information, the reader may refer to [12] and [7]. For other terminology and no-

tions, we follow [1]. These results and problems motivate us to propose the following

problem:

Problem 1.1 For a given graphic degree sequence π, let

G(π) = {G | G is connected with π as its degree sequence}.

Find the upper (lower) bounds for the Wiener index of G in G(π) and characterize

all extremal graphs which attain the upper (lower) bounds.
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In this paper, we only consider a special case for the above problem, i.e., for a

given degree sequence of some tree. One of the main results of this paper is as follows:

Theorem 1.2 For a given degree sequence of some tree, let

T (π) = {T | T is a tree with π as its degree sequence}.

Then T ∗(π) (or for short T ∗, described in section 2) is a unique tree with the minimum

Wiener index in T (π).

The main Theorem 1.2 may be used to describe relations of the Wiener index among

all different molecules with the same chemical formula so as to characterize variations

amongst alkanes. For example, from Theorem 1.2, we may deduce the following result.

Theorem 1.3 Among all graphs representing molecules with the same chemical for-

mula CnH2n+2, there is only one tree representing molecules with the minimum Wiener

index and its structure is determined.

Suppose that there are two molecules with the same chemical formula C4H10, if the

Wiener index of one molecule is less than that of the other, then this molecule must

be isobutane and the other is butane by Theorem 1.3, since there are two possible

molecules with the same chemical formula C4H10.

The rest of the paper is organized as follows. In Section 2, a special tree T ∗

and the notation of a BFS-ordering are introduced. Moreover, some properties and

preliminary results are presented. In Section 3, we investigate properties of a partially

ordered set of all vectors associated with a tree. In Section 4, The above results are

used to present a proof of Theorem 1.2 by establishing relations between the partially

ordered set and the Wiener index. In Section 5, we derive some corollaries from the

main results, which contain the main results of Fischermann et al. [6] and Jelen at

al. [13]
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2 Notation and preliminaries

In order to easily understand the construction of T ∗, we first give an example to illus-

trate how to construct T ∗ before presenting the construction of T ∗ with n vertices. For

example, for a given degree sequence π = (4, 4, 4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

T ∗ is the tree of order 18 (see Fig.1). There is a vertex v01 in layer 0 with d(v01) = 4.

Then v01 in layer 0 is adjacent to four vertices v11, v12, v13, v14 in layer 1 whose degrees

are 4, 4, 3, 3 respectively. Then v11, v12, v13, v14 in layer 1 are adjacent to three, two

and two vertices respectively in layer 2 from left to right. These vertices are denoted

by v21, v22, · · · , v2,10 whose degrees are 3, 2, 1, 1, 1, 1, 1, 1, 1, 1 respectively. Then

v21, v22 are adjacent to two and one vertex respectively in layer 3. These vertices are

denoted by v31, v32, v33 whose degrees are 1.
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Figure 1

Generally, we may construct T ∗ with degree sequence π. Let π = (d0, d1, · · · , dn−1)

with n ≥ 3 be a given nonincreasing degree sequence of some tree. Now we construct

a special tree T ∗ with degree sequence π by using a ”breadth-first” scheme, which

considers the n vertices of T ∗ to be partitioned into a sequence of layers starting with

the 0th layer consisting of a single vertex v01 of maximum degree. Then recursively

develop the layers, with the 1th layer having d0 vertices each connected to v01. Denote

the number of vertices in the mth layer by lm, and the number in all layers preceding

layer m by l<m. Given lm vertices in a layer m ≥ 1, choose the degree of the ith
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vertex vm,i in this layer to be di+l<m with all but 1 of its connections to be to vertices

vm+1,k in the next layer for k = j +
∑i−1

p=1(dp+l<m − 1), with j = 1 to di+l<m − 1. The

number of vertices in this next layer then is lm+1 =
∑lm

p=1(dp+l<m−1), and the process

is continued till all n vertices are accounted for.

Let T = (V,E) be a rooted tree with root r. Denote by Tr(π) the set of all rooted

trees with degree sequence π, i.e,

Tr(π) = {T | T is a rooted tree with π as its degree sequence}.

The distance d(v, r) between v and the r is called the height of vertex v and denoted

by h(v) = d(v, r). For two vertices u and v, we say that u is a successor of v in a

rooted tree T , if the path P (u, r) from vertex u to the rooted vertex r contains vertex

v. Moreover, if u is a successor of v and u is adjacent to v, we say that u is a child of

v, and that v is the parent of u. A well-ordering (complete linear ordering) of a set

W is defined to be an ordering such that every set S ⊆ W there is a least element.

Definition 2.1 Let T = (V, E) be a tree with root r and let (V, £) be a well-ordering

(or a complete linear ordering). The well-ordering £ of the vertex set V is called

a breadth-first search ordering (BFS-ordering for short) if the following holds for all

vertices u, v ∈ V :

(1) u £ v implies h(u) ≤ h(v);

(2) u £ v implies d(u) ≥ d(v);

(3) if u1 is a child of u and v1 is a child of v; and u £ v, then u1 £ v1.

We call trees that have a BFS-ordering of its vertices a BFS-tree.

All trees have an ordering which satisfy the conditions (1) and (3) by using a

breadth-first search. But not all tree have a BFS-ordering. For example, the following

tree T of order 17 with degree sequence π = (4, 4, 4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, )

does not have a BFS-ordering (see Fig.2).
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Figure 2

For properties of BFS-ordering, we have the following result from [22],

Proposition 2.2 (Zhang [22]) Let π be the degree sequence of some tree. Then

there exists a unique tree T ∗ with degree sequence π having a BFS-ordering. In other

words, any two trees with the same degree sequences and having a BFS-ordering are

isomorphic.

We recall the notion of majorization. For details, the readers are referred to the

book of Marshall and Olkin [17].

Let x = (x1, x2, · · · , xp) and y = (y1, y2, · · · , yp) be two nonnegative integers.

We arrange the entries of x and y in nondecreasing order x↑ = (x[1], · · ·x[p]) and

y↑ = (y[1], · · · , y[p]). If
k∑

i=1

x[i] ≤
k∑

i=1

y[i], for k = 1, · · · , p,

x is said to weakly majorize y and denoted y ¹w x. Further, if y ¹w x and

p∑

i=1

x[i] =
p∑

i=1

y[i],

x is said to majorize y and denoted by x º y or y ¹ x. Moreover, if y ¹w x (resp.

y ¹ x) and x↑ 6= y↑, x is said to strictly weakly majorize (resp. strictly majorize)

y and denoted by y ≺w x (resp. y ≺ x). Here, we present two simple properties of

majorization which will be used later.
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Proposition 2.3 Let x = (x1, · · · , xk, y1, · · · , yl) and y = (x1 + b, · · · , xk + b, y1 −
b, · · · , yl − b) be two nonnegative integer sequences with k ≤ l and b > 0. If xi ≥ yi

for i = 1, · · · , k, then x ≺w y.

Proposition 2.4 If x ≺w y and x′ ¹w y′, then (x, x′) ≺w (y, y′)

3 The partially ordered set

Let T = (V, E) be a rooted tree with root r. For each vertex u, let T (u) be the subtree

of the rooted tree T induced by u and its all successors in T . In other words, if u is not

the root r of tree T and v is the parent of u, then T (u) is the connected component of

T obtained from T by deleting the edge uv such that the component does not contain

the root r; if u is the root r, then T (u) is the tree T . Let fT (u) = |T (u)| be the

number of vertices in T (u) and denote f(T ) = (fT (u), u ∈ V (T )). For a given degree

sequence π, let

Ω(π) = {f(T ), T is a rooted tree with degree sequence π}.

Clearly, Ω(π) is a partially ordered set with respect to majorization. In this section,

we discuss that any modification of a tree gives rise to a perturbation of its f(T ).

Then we show that Ω(π) has only one maximum element with respect to majorization.

Lemma 3.1 Let T ∈ Tr(π). Suppose that u and v are successors of w and there are

two internal disjoint paths P (u,w) = (u, u1, · · · , uk, w) and P (v, w) = (v, v1, · · · , vl, w)

with 1 ≤ k ≤ l and fT (u) < fT (v), fT (ui) ≥ fT (vi) for i = 1, · · · , k. Let T ′ be a tree

with root r obtained from T by deleting the edges u1u and v1v and adding the edges

u1v and v1u. Then T ′ ∈ Tr(π) and f(T ) ≺w f(T ′).

Proof. Clearly, T and T ′ have the same degree sequence and T ′ ∈ Tr(π). Put b =

fT (v)−fT (u) > 0. By the definition of f(T ), it is easy to see that fT ′(vi) = fT (vi)−b;

for 1 ≤ i ≤ l. Moreover, fT ′(ui) = fT (ui)+b; for 1 ≤ i ≤ k. Hence by Proposition 2.3,

(fT (u1), · · · , fT (uk), fT (v1), · · · , fT (vl)) ≺w (fT ′(u1), · · · , fT ′(uk), fT ′(v1), · · · , fT ′(vl)).

For any vertex y in V (T )\{u1, · · · , uk, v1, · · · , vl}, we have fT ′(y) = fT (y). Therefore

by Proposition 2.4, f(T ) ≺w f(T ′)
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Lemma 3.2 Let T be a rooted tree with root r. Suppose that u and v are two suc-

cessors of w such that there are two paths P (v, w) = (v, v1, · · · , vl, w) and P (u, w) =

(u,w) with u 6= vl and l ≥ 1. If fT (u) < fT (v), let T ′ be a rooted tree with root r

obtained from T by deleting the two edges uw and vv1 and adding two edges uv1 and

vw. Then T ′ ∈ Tr(π) and

f(T ) ≺w f(T ′).

Proof. It is easy to see that T ′ ∈ Tr(π). Let b = fT (v)− fT (u) > 0. Then fT ′(vi) =

fT (vi)− b for i = 1, · · · , l. Hence (fT (v1), · · · , fT (vl)) ≺w (fT ′(v1), · · · , fT ′(vl)). More-

over, fT ′(y) = fT (y) for y ∈ V \(v1, · · · , vl). Hence by Proposition 2.4, the assertion

holds.

Lemma 3.3 T ∈ Tr(π). Suppose that u and v are two successors of w and there are

two internal disjoint paths P (u,w) = (u, u1, · · · , uk, w) and P (v, w) = (v, v1, · · · , vl, w)

with 1 ≤ k ≤ l and fT (u) ≥ fT (v), fT (ui) ≥ fT (vi) for i = 1, · · · , k. If dT (u) < dT (v),

denote s = dT (v) − dT (u) > 0, and let T ′ be a tree with root r obtained from T by

deleting the s edges vxi and adding s edges uxi,i = 1, · · · , s, where {x1, · · · , xs} are

children of v. Then T ′ ∈ Tr(π) and f(T ) ≺w f(T ′).

Proof. Since dT ′(u) = dT (v) and dT ′(v) = dT (u), we have T ′ ∈ Tr(π). Let b =
∑s

i=1 fT (xi) > 0. By the definition of f(T ), it is easy to see that fT ′(v) = fT (v)− b,

fT ′(vi) = fT (vi)−b; for i = 1, · · · , l. Moreover, fT ′(u) = fT (u)+b, fT ′(ui) = fT (ui)+b;

for i = 1, · · · , k. Hence by Proposition 2.3, we have (fT (u), fT (u1), · · · , fT (uk), fT (v),

fT (v1), · · · , fT (vl)) ≺w (fT ′(u), fT ′(u1), · · · , fT ′(uk), fT ′(v), fT ′(v1), · · · , fT ′(vl)). For

any vertex y in V (T )\{u, u1, · · · , uk, v, v1, · · · , vl}, we have fT ′(y) = fT (y). Therefore

by Proposition 2.4, f(T ) ≺w f(T ′).

Lemma 3.4 Let T be a rooted tree with root r. Suppose that u and v are two suc-

cessors of w such that there are two paths P (v, w) = (v, v1, · · · , vl, w) and P (u, w) =

(u,w) with u 6= vl and l ≥ 1. If dT (u) < dT (v), denote s = dT (v) − dT (u) > 0, and

let T ′ be a tree with root r obtained from T by deleting the s edges vxi and adding

s edges uxi,i = 1, · · · , s, where {x1, · · · , xs} are children of v. Then T ′ ∈ Tr(π) and

f(T ) ≺w f(T ′).
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Proof. The proof of Lemma 3.4 is similar to that of Lemma 3.3 and is omitted.

Lemma 3.5 Let T ∈ Tr(π). Suppose that u is the parent of v and dT (u) < dT (v).

Denote s = dT (v) − dT (u) > 0, and let T ′ be a tree with root r obtained from T by

deleting the s edges vxi and adding s edges uxi, i = 1, · · · , s, where {x1, · · · , xs} are

children of v. Then T ′ ∈ Tr(π) and f(T ) ≺w f(T ′).

Proof. Clearly, T ′ ∈ Tr(π). Let b =
∑s

i=1 fT (xi) > 0. Then fT ′(v) = fT (v) − b <

fT (v), which implies fT (v) ≺w fT ′(v). Moreover, for any y 6= v, we have fT ′(y) =

fT (y). Hence by Proposition 2.4, the assertion holds.

Now we present the main result in this section which is interesting in its own right.

Theorem 3.6 Let T ∈ Tr(π). Then

f(T ) ¹w f(T ∗)

with equality if and only if T is isomorphic to T ∗. In other words, Ω(π) has only one

maximum element which is T ∗ up to isomorphism.

Proof. Clearly, Ω(π) = {f(T ), T ∈ Tr(π)} is a partially ordered set with respect to

¹w. Let T be a rooted tree in Tr(π) with f(T ) being a maximal element in {f(T ), T ∈
Tr(π)}. We may assume that v0 = r is the root of tree T . Put Vi = {v : d(v, v0) = i}
for i = 0, · · · , p + 1 such that V (T ) =

⋃p+1
i=0 Vi. Denote by |Vi| = si for i = 1, · · · , p + 1

and s0 = 0. We now can relabel the vertices of V (T ) by the recursion method. For

V0, relabel v0 by v01 which is the root of tree T . For V1, which consists of all neighbors

of vertices in V0 can be relabeled

v11, · · · , v1,s1 ,

which satisfy the following conditions:

fT (v11) ≥ fT (v12) ≥ · · · ≥ fT (v1,s1)

and

fT (v1i) = fT (v1j) implies dT (v1i) ≥ dT (v1j) for 1 ≤ i < j ≤ s1.
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Moreover, s1 = dT (v01). Generally, we assume that all vertices of Vi are relabeled

{vi1, · · · , vi,si
} for i = 1, · · · , t. Now consider all vertices in Vt+1. Since T is tree, it is

easy to see that

st+1 = |Vt+1| = dT (vt1) + · · ·+ dT (vt,st)− st.

Hence for 1 ≤ r ≤ st, all neighbors in Vt+1 of vtr are relabeled

vt+1,dT (vt1)+···+dT (vt,r−1)−(r−1)+1, · · · , vt+1,dT (vt1)+···+dT (vt,r)−r,

which satisfy the conditions:

fT (vt+1,i) ≥ fT (vt+1,j)

and

fT (vt+1,i) = fT (vt+1,j) implies dT (vt+1,i) ≥ dT (vt+1,j)

for dT (vt1)+ · · ·+dT (vt,r−1)− (r− 1)+1 ≤ i < j ≤ dT (vt1)+ · · ·+dT (vt,r)− r. In this

way, we relabeled all vertices of V (T ) =
⋃p+1

i=0 Vi. Therefore, we are able to define a

well-ordering of vertices in V (T ) as follows:

vik £ vjl, if 0 ≤ i < j ≤ p + 1 or i = j and 1 ≤ k < l ≤ si.

We have the following

Claim: This well-ordering is a BFS-ordering of tree T . In other words, T is

isomorphic to T ∗ by Proposition 2.2.

Proof. of Claim From the construction of well-ordering, it only needs to show that

the following assertion holds:

fT (v01) ≥ fT (v11) ≥ · · · ≥ fT (v1,s1) ≥ fT (v21) ≥ · · · ≥ fT (v2,s2) ≥ · · · ≥ fT (vp+1,sp+1)

and

dT (v01) = d0, dT (v11) = ds0+1, · · · , dT (v1,s1) = ds0+s1 ,

dT (v21) = ds0+s1+1, · · · , dT (v2,s2) = ds0+s1+s2 , · · · ,

dT (vp+1,1) = ds0+···+sp+1, · · · , dT (vp+1,sp+1) = dn−1.
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Therefore, we only need to show that

fT (vh1) ≥ fT (vh2) ≥ · · · ≥ fT (vh,sh
) ≥ fT (vh+1,1) (1)

and

dT (vh1) ≥ dT (vh2) ≥ · · · ≥ dT (vh,sh
) ≥ dT (vh+1,1) (2)

for h = 0, · · · , p + 1.

We show (1) and (2) by the induction on h. For h = 0, clearly, (1) holds since

fT (v01) = n ≥ fT (v11). By Lemma 3.5, (2) holds. Assume that (1) and (2) hold

for h = t. We consider h = t + 1 and using the contradiction method. Suppose

that fT (vt+1,i) < fT (vt+1,j) for 1 ≤ i < j ≤ st+1. Then by the construction of

vertex labeling, there exist two internal paths P (vt+1,i, vt−k,ik+1
) = {vt+1,i, vt,i1 , · · · ,

vt−k+1,ik , vt−k,ik+1
} and P (vt+1,j, vt−k,ik+1

) = {vt+1,j, vt,j1 , · · · , vt−k+1,jk
, vt−k,ik+1

} with

il ≤ jl for l = 1, · · · , k. Hence, fT (vt−l+1,il) ≥ fT (vt−l+1,jl
) by the induction hypothesis.

Let T ′ be a tree with root v01 from T by adding the edges vt,i1vt+1,j and vt,j1vt+1,i and

deleting the edges vt,i1vt+1,i and vt,j1vt+1,j. By Lemmas 3.1 and 3.2, T ′ is a rooted

tree with the same degree sequence π and f(T ) ≺w f(T ′). This contradicts T being

a maximal element in Ω(π). So

fT (vt+1,1) ≥ fT (vt+1,2) ≥ · · · ≥ fT (vt+1,st+1).

Moreover, we will prove that fT (vt+1,st+1) ≥ fT (vt+2,1). In fact, if fT (vt+1, st+1) <

fT (vt+2,1), then by the induction prothesis and the construction of the vertex labeling,

there are two paths P (vt+1,st+1 , v01) = {vt+1,st+1 , · · · , v1,s1 , v01} and P (vt+2,1, · · · , v11,

v01} such that fT (vi,si
) ≥ fT (vi+1, 1) for i = 1, · · · , t. Therefore, by Lemmas 3.1 and

3.2, f(T ) is not a maximal element in Ω(π). It is a contradiction. Hence (1) holds

for h = t + 1.

Suppose that d(vt+1,i) < d(vt+1,j) for 1 ≤ i < j ≤ st+1. Then by (1) and the

construction of vertex labeling of tree T , we have fT (vt+1,i) ≥ fT (vt+1,j) and let b =

d(vt+1,j)− d(vt+1,j) > 0. By the induction hypothesis, there are two internal disjoint

paths P (vt+1,i, vt−k,ik+1
) = {vt+1,i, vt,i1 , · · · , vt−k+1,ik , vt−k,ik+1

} and P (vt+1,j, vt−k,ik+1
) =

{vt+1,j, vt,j1 , · · · , vt−k+1,jk
, vt−k,ik+1

} such that fT (vt−h,il) ≥ fT (vt−h,jl
) for l = 1, · · · , k.
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Denote by s = d(vt+1,j) − d(vt+1,i). Let T ′ be a tree with root r obtained from

T by deleting the s edges vt+1,jxl and adding edges vt+1,ixi, l = 1, · · · , s, where

{x1, · · · , xs} are children of vt+1,j. Then by Lemmas 3.3 and 3.4, we have T ′ ∈ Tr(π)

and f(T ) ≺w f(T ′) which contradicts to f(T ) being a maximal element in Ω(π).

Therefore

dT (vt+1,1) ≥ dT (vt+1,2) ≥ · · · ≥ dT (vt+1,st+1).

Similarly, we also show that dT (vt+1,st+1) ≥ dT (vt+2,1). Hence (2) holds for h = t + 1

also. Therefore by the induction method, (1) and (2) hold for h = 0, · · · , p+1, which

implies the claim holding.

Hence by Claim, T has a BFS-ordering. By Proposition 2.2, T is isomorphic to

T ∗ and f(T ) = f(T ∗). So T ∗ is only one tree in Tr(π) up to isomorphism such that

f(T ∗) is only one maximum element in Ω(π). Then we complete the proof.

Corollary 3.7 Let T be a rooted tree in Tr(π). Then the following conditions are

equivalent:

(1) T has a BFS-ordering;

(2) f(T )↑ = f(T ∗)↑;

(3) T is isomorphic to T ∗.

4 The minimum Wiener index in T (π)

In order to prove our main results in this paper, we also need some notations and

lemmas. For any vertex v of a tree T = (V,E), denote by WT (v) =
∑

u∈V (T ) dT (v, u)

and which is called the distance of the vertex v. A centroid vertex of T is defined to

be such that its distance is no more than the distance of any other vertex in T . In

other words, v is called a centroid of T if WT (v) ≤ WT (u) for all u 6= v.

Lemma 4.1 Let r be both the root and a centroid of a rooted tree T of order n in

Tr(π). Then for any vertex u other than r, fT (u) ≤ n
2
.
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Proof. Let v (which may be r) be the parent of vertex u. Since r is a centroid of the

tree T , WT (r) ≤ WT (u). By Exercise 6.22 in [14], WT (v) ≤ WT (u). By the definition

of WT (u) and fT (u), we have

0 ≤ WT (u)−WT (v) = (n− fT (u))− fT (u).

Hence fT (u) ≤ n
2
.

Lemma 4.2 Let r be both the root and a centroid of a rooted tree T of order n in

Tr(π). Denote by ϕ(x) = t(n− t). Then

W (T ) =
∑

u∈V (T )−{r}
ϕ(fT (u))

Proof. By [21] (see [3] also), it is easy to see that

W (T ) =
∑

e=uv∈E(T )

n1(e)n2(e),

where n1(e) and n2(e)) are the number of the vertices of two connected components

of T containing u and v respectively. Then n1(e) + n2(e) = n. Since for each edge

e = uv ∈ E(T ), one vertex of {u, v} must is the parent of the other vertex, say v

is the parent of u. Hence each edge e = uv ∈ E(T ) we can see that there exists a

1-to-1 correspondence between the edge set E(T ) = {e = uv, v is the parent of u}
and V (T ) − {r}. Therefore for e = uv with v being the parent of u, n1(e) = fT (u)

and n2(e) = n− fT (u). Then

W (T ) =
∑

e=uv∈E(T )

n1(e)n2(e) =
∑

u∈V (T )−{r}
fT (u)(n− fT (u)) =

∑

u∈V (T )−{r}
ϕ(fT (u)).

The following Lemma from Proposition 4.B.2 in [17].

Lemma 4.3 ([17]) Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two nonnegative in-

teger sequences. If x ¹w y, then
∑n

i=1 φ(xi) ≥ ∑n
i=1 φ(yi) for all continuous increasing

concave functions with equality if and only if x↑ = y↑.
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Theorem 4.4 Let r be both the root and a centroid of a rooted tree T of order n.

Let r′ be both the root and a centroid of a tree T ′ of order n. If f(T ) ¹w f(T ′), then

W (T ) ≥ W (T ′) with equality if and only if f(T )↑ = f(T ′)↑.

Proof. Clearly ϕ(t) = t(n− t) is continuous increasing concave functions for 0 ≤ t ≤
n
2
. By Lemma 4.1, fT (u) ≤ n

2
for u ∈ V (T )−{r} and fT ′(u) ≤ n

2
for u ∈ V (T ′)−{r′}.

Note that fT (r) = fT ′(r
′) = n. Thus (fT (u), u ∈ V (T ) \ {r}) ¹w (fT ′(u

′), u′ ∈
V (T ′) \ {r′}). Hence the assertion follows from Lemmas 4.2 and 4.3.

Now we are ready to prove the main result in this paper.

Proof. of Theorem 1.2. Let T = (V,E) be any tree in T (π) and let T be rooted at

its a centroid r. By Theorem 3.6, f(T ) ¹w f(T ∗). For the root r of T and the root v01

of T ∗, we have fT (r) = fT (v01) = n. Hence (fT (u), u ∈ V (T )− {r}) ¹w (fT ∗(u), u ∈
V (T ∗) − {v01}). Moreover, it is easy to see that v01 is a centroid of T ∗. Hence by

Lemma 4.1, fT (u) ≤ n
2

for u ∈ V (T ) − {r} and fT ∗(u) ≤ n
2

for u ∈ V (T ∗) − {v01}.
Clearly ϕ(t) = t(n− t) is continuous increasing concave functions for 0 ≤ t ≤ n

2
. By

Lemmas 4.2 and 4.3, we have

W (T ) =
∑

u∈V (T )−{r}
ϕ(fT (u)) ≥ ∑

u∈V (T ∗)−{v01}
ϕ(fT ∗(u)) = W (T ∗)

with equality if and only if (fT (u), u ∈ V (T )− {r})↑ = (fT ∗(u), u ∈ V (T ∗)− {v01})↑.
By Theorem 3.6, T must be isomorphic to T ∗.

¿From the proof of Theorems 1.2 and 3.6, it is easy to see that we have the

following

Corollary 4.5 For a given tree degree sequence π, A tree T has the minimum Wiener

index in T (π) if and only if T has a BFS-ordering. Moreover, the BFS-ordering is

consistent with the vector f(T ) of T with a centroid as the root in such a way that

fT (u) ≥ fT (v) implies u £ v.
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5 The minimum Wiener index in some classes of

trees

Before we derive the minimum Wiener index in some classes of trees, we need the

following result

Proposition 5.1 Let π = (d0, · · · dn−1) and π′ = (d′0, · · · , d′n−1) be two nonincreasing

graphic degree sequences. If π ¹ π′, then there exists a series of graphic degree

sequences π1, · · · , πk such that π ¹ π1 ¹ · · · ¹ πk ¹ π′, and only two components of

πi and πi+1 are different from 1.

Proof. Since π ¹ π′ and π 6= π′, we may assume that di = d′i for i = 0, · · · , p − 1;

dp < d′p; di ≤ d′i for i = p + 1, · · · , q − 1 and dq > d′q, where 0 ≤ p < q ≤ n − 1. Let

π1 = (d
(1)
0 , · · · , d(1)

n−1) with d
(1)
i = d′i for i 6= p, q, d(1)

p = d′p − 1 and d(1)
q = d′q + 1. Thus

π ¹ π1 ¹ π′. Moreover, there are only two components of π1 and π′ which are different

from 1. Observe that min{p, d′p}+ min{q, d′q}− (min{p, d(1)
p }+ min{q, d(1)

q }) ≤ 0 and

min{q, d′q} −min{q, d(1)
q } ≤ 0. By [5] (see also [1]), π′ is graphic if and only if

k∑

i=0

d′i ≤ k(k + 1) +
n−1∑

k+1

min{k + 1, d′i}, for k = 0, · · · , n− 1.

Hence it is easy to show that

k∑

i=0

d
(1)
i ≤ k(k + 1) +

n−1∑

k+1

min{k + 1, d
(1)
i }, for k = 0, · · · , n− 1.

Then π1 is graphic degree sequence. By repeating the above procedures, the assertion

holds.

Lemma 5.2 Let T be a rooted tree with root r. Suppose that u and v are successors of

w and there are two internal disjoint paths P (u,w) = (u, u1, · · · , uk, w) and P (v, w) =

(v, v1, · · · , vl, w) with 0 ≤ k ≤ l. If dT (u) ≥ dT (v) ≥ 2; and fT (u) ≥ fT (v) and

fT (ui) ≥ fT (vi) for i = 1, · · · , k. Let x be a child of v and let T ′ be the root tree with

root r obtained from T by deleting the edge vx and adding the edge ux.
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(1) Let π and π′ be the degree sequences of T and T ′ respectively. Then π ¹ π′

and only two components of π and π′ are different from 1.

(2) f(T ) ≺w f(T ′).

(3) If r is a centroid of T and T ′, respectively, then W (T ) > W (T ′).

Proof. (1) Clearly dT ′(u) = dT (u)+1, dT ′(v) = dT (u)−1 and dT ′(y) = dT (y) for any

y ∈ V \{u, v}. Since dT (u) ≥ dT (v), we have π ¹ π′. Moreover, only two components

of π and π′ are different from 1.

(2) Put b = fT (x) > 0. By the definition, we have fT ′(u) = fT (u) + b, fT ′(ui) =

fT (ui)+ b for i = 1, · · · , k; fT ′(v) = fT (v)− b, and fT ′(vi) = fT (vi)− b for i = 1, · · · , l.
Since fT (u) ≥ fT (v) and fT (ui) ≥ fT (vi) for i = 1, · · · , k, by Proposition 2.3, we have

(fT (u), fT (u1), · · · , fT (uk), fT (v), fT (v1), · · · , fT (vl)) ≺w (fT ′(u), fT ′(u1), · · · , fT ′(uk),

fT ′(v), fT ′(v1), · · · , fT ′(vl)). On the other hand, fT (y) = fT ′(y) for any y ∈ V (T ) \
{u, u1, · · · , uk, v, v1, · · · , vl}. Hence by Proposition 2.4, f(T ) ≺w f(T ′)

(3) It follows from (2) and Theorem 4.4.

Theorem 5.3 Let π and π′ be two tree degree sequences. Let T ∗(π) and T ∗(π′) be two

trees with the minimum Wiener indices in T (π) and T (π′), respectively. If π ¹ π′,

then W (T ∗(π)) ≥ W (T ∗(π′)) with equality if and only if π = π′.

Proof. By Proposition 5.1, without loss of generality, we may assume that π 6= π′ and

π = (d0, · · · , dn−1) and π′ = (d′0, · · · , d′n−1) with di = d′i for i 6= p, q, and dp = d′p − 1,

dq = d′q + 1, 0 ≤ p < q ≤ n − 1. By Corollary 4.5, the BFS-ordering of a rooted

T ∗ is consistent with the vector f(T ∗(π)) of T ∗(π) in such a way that fT ∗(π)(u) >

fT ∗(π)(v) implies u £ v. Hence we may assume that the vertices of T ∗(π) are ordered

{v0, · · · , vn−1} such that d(vi) = di for i = 0, · · · , n− 1 and fT ∗(π)(v0) ≥ fT ∗(π)(v1) ≥
· · · ≥ fT ∗(π)(vn−1) with r being a root of T ∗(π). Moreover, since dq = d′q + 1 ≥ 2,

there exists a vertex vk with k > q such that vkvq ∈ E(T ∗(π)) and vkvp /∈ E(T ∗(π)).

Let T1 be a root tree obtained from T ∗(π) by adding the edge vkvp and deleting the

vkvq. Then the degree sequence of T1 is π′and T1 ∈ Tr(π
′). From the construction

of T ∗(π), it is easy to prove that T1 satisfies the condition of Lemma 5.2. Hence by

(2) in Lemma 5.2, we have f(T ∗(π)) ≺w f(T1). By Theorem 3.6, we have f(T1) ¹w
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f(T ∗(π′)). Since the root of tree T ∗(π′) is also an its centroid, we have f(T1) ¹w

f(T ∗(π′)). Hence f(T ∗(π)) ≺w f(T ∗(π′)). By Theorem 4.4, W (T ∗(π)) ≥ W ((T ∗(π′))

with equality if and only if π = π′.

¿From Theorems 1.2 and 5.3, we may deduce extremal graphs with the mimimum

Wiener index in some class of graphs. For example, let T (1)
n,s be the set of all trees of

order n with s leaves, T (2)
n,∆ be the set of all trees of order n with the maximum degree

∆, T (3)
n,α be the set of all trees of order n with the independence number α and T (4)

n,β

be the set of all trees of order n with the matching number β.

Corollary 5.4 Let T (1)
n,s be the set of all trees of order n with s leaves (i.e., pendent

vertices). A tree T1 has the minimum Wiener index in T (1)
n,s if and only if T1 is a

star with paths of almost the same length to each of its s leaves (in other words, let

n − 1 = sq + t, 0 ≤ t < s and T1 is obtained from t paths of order q + 2 and s − t

paths of order q + 1 by identifying one end of the s paths).

Proof. Let T1 be a tree in T (1)
n,s having the minimum Wiener index in T (1)

n,s . We

assume that the nonincreasing degree sequence of T1 is π = (d0, · · · , dn−1). Thus

dn−s−1 > 1 and dn−s = · · · = dn−1 = 1. Let T ∗(π) have a BFS ordering in the set

T (π). Then by Theorem 3.6, we have f(T1) ¹w f(T ∗(π)). Hence by Theorem 1.2,

W (T1) ≥ W (T ∗(π)) with equality if and only if T1 is isomorphic to T ∗(π). Let T ∗(π)

have a BFS ordering tree with the degree sequence π′ = (s, 2, · · · , 2, 1, · · · , 1), where

there are a number s of 1s in π′. By Proposition 2.2, T ∗(π′) is a star with paths

of almost the same length to each of its s leaves. Moreover, it is easy to see that

π ¹w π′. By Theorem 5.3, we have W (T ∗(π)) ≥ W (T ∗(π′)) with equality if and only

if π = π′. Note that T ∗(π′) ∈ T (1)
n,s , then

W (T1) ≥ W (T ∗(π)) ≥ W (T ∗(π)) ≥ W (T ∗(π′)) ≥ W (T1).

Hence W (T1) = W (T ∗(π)) = W (T ∗(π)) = W (T ∗(π′)) = W (T1) and T1 is isomorphic

to T ∗(π′).

The following result has been proved by Fischermann et al. [6] and Jelen and Triesch

[13] independently.
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Corollary 5.5 ([6], [13]) Let T (2)
n,∆ be the set of all trees of order n with the maximum

degree ∆. A tree T2 has the minimum Wiener index in T (2)
n,∆ with ∆ ≥ 3 if and only

if T2 is T ∗(π′) in Theorem 1.2 with degree sequence π′ which is as follows: Denote

p = dlog(∆−1)
n(∆−2)+2

∆
e − 1 and n− ∆(∆−1)p−2

∆−2
= (∆− 1)r + q for 0 ≤ q < ∆− 1. If

q = 0, put π′ = (∆, · · · , ∆, 1, · · · , 1) with the number ∆(∆−1)p−1−2
∆−2

+ r of degree ∆. If

1 ≤ q, put π′ = (∆, · · · , ∆, q, 1, · · · , 1) with the number ∆(∆−1)p−1−2
∆−2

+ r of degree ∆.

Proof. Let T2 be a tree of order n with the maximum degree ∆ such that T2 has

the minimum Wiener index in T (2)
n,∆. Then W (T ) ≥ W (T2) for any tree T ∈ T (2)

n,∆.

Denoted by π = (d0, · · · , dn−1) the nonincreasing degree sequence of T2. Let T ∗(π)

have a BFS-ordering in the set T (π). Then by Corollary 4.5, W (T2) ≥ W (T ∗(π)).

Assume that T ∗(π′) has p + 2 layers. Then there is a vertex in layer 0 (i.e., root),

there are exactly ∆ vertices in layer 1, there are exactly ∆(∆− 1) vertices in layer 2,

· · ·, there are exactly ∆(∆−1)p−1 vertices in layer p and there are at most ∆(∆−1)p

vertices in layer p + 1. Hence

1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)p−1 < n ≤ 1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)p.

Thus

∆(∆− 1)p − 2

∆− 2
< n ≤ ∆(∆− 1)p+1 − 2

∆− 2
.

Hence

p = dlog(∆−1)

n(∆− 2) + 2

∆
e − 1

and there exist integers r and 0 ≤ q < ∆− 1 such that

n− ∆(∆− 1)p − 2

∆− 2
= (∆− 1)r + q.

Therefore degrees of all vertices from layer 0 to layer p − 1 are ∆ and there are r

vertices in layer p with degree ∆. Denote by m = ∆(∆−1)p−1−2
∆−2

+ r−1. Then there are

m + 1 vertices with degree ∆ in T ∗(π′). Hence the degree sequence of T ∗(π′) ∈ Tn,∆

is π′ = (d′0, · · · , d′n−1) with d′0 = · · · = d′m = ∆, d′m+1 = · · · = d′n−1 = 1 for q = 0; and

is π′ = (d′0, · · · , d′n−1) with d′0 = · · · = d′m = ∆, d′m+1 = q, d′m+2 = · · · = d′n−1 = 1.
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Then W (T ∗(π′) ≥ W (T2). Further, it follows from d0 ≤ ∆ that
∑k

i=0 di ≤ ∑k
i=0 d′i for

k = 0, · · · , m. Moreover, by d′i = 1 ≤ di for k = m + 2, · · · , n− 1, we have

k∑

i=0

di = 2(n− 1)−
n−1∑

i=k+1

di ≤ 2(n− 1)−
n−1∑

i=k+1

d′i =
k∑

i=0

d′i

for k = m+1, · · ·n−1. Thus π ¹ π′. Hence by Theorems 5.3, W (T (π)) ≥ W (T ∗(π′))

with equality if and only if T = T ∗. Therefore

W (T2) ≥ W (T ∗(π)) ≥ W (T ∗(π′)) ≥ W (T2).

So the assertion holds.

Dankelmann [2] presented a lower bound for the Wiener index of graphs in terms

of the independence number and order. Here, we present a sharp lower bound for the

Wiener index of trees in terms of the independence number and order.

Corollary 5.6 Let T (3)
n,α be the set of all trees of order n with the independence number

α. A tree T3 has the minimum Wiener index in T (3)
n,α if and only if T3 is T ∗(π′) in

Theorem 1.2 with degree sequence π′ = (α, 2, · · · , 2, 1, · · · , 1) the numbers n−α− 1 of

2 and α of 1 (i.e., T3 is obtained from the star graph K1,α by adding a pendent edge

to each of n− α− 1 pendent vertices of K1,α).

Proof. Let T3 have the minimum Wiener index in T (3)
n,α . Denote by π = (d0, · · · , dn−1)

be the nonincreasing degree sequence of T3. Then by Theorem 1.2, W (T3) ≥ W (T ∗(π)).

Let I be an independent set of T3 with the independence number α If there ex-

ists a pendent vertex u of degree 1 with u /∈ I, then there exists a vertex v ∈ I

with (u, v) ∈ E(T3). Hence I
⋃{u} \ {v} is an independent set of T3 with the size

α. Therefore, there exists an independent set of T3 with size α which contains all

pendent vertices of T3. Hence T3 has at most α pendent vertices, which implies

dn−α−1 ≥ 2. Hence it is easy to see that π ¹ π′. Therefore by Theorem 5.3, we have

W (T ∗(π)) ≥ W (T ∗(π′)) with equality if and only if π = π′. By T ∗(π′) ∈ T (3)
n,α , we

have W (T ∗(π′)) ≥ W (T3). Therefore

W (T3) ≥ W (T ∗(π) ≥ W (T ∗(π′)) ≥ W (T3).

So the assertion holds.
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Corollary 5.7 Let T (4)
n,β be the set of all trees of order n with the matching number β.

A tree T4 has the minimum Wiener index in T (4)
n,β if and only if T4 is T ∗ in Theorem 1.2

with degree sequence π∗ = (n − β, 2, · · · , 2, 1, · · · , 1) and the number n − β of 1(i.e.,

T4 is obtained from the star graph K1,n−β by adding a pendent edge to each of β − 1

pendent vertices of K1,n−β).

Proof. The proof is similar to that of Corollary 5.6 and is omitted.
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