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Abstract

The Wiener index of a connected graph is the sum of distances for all pairs of

vertices. In this paper, we consider the trees with order n, diameter d or maximum

degree ∆, and extremal Wiener indices. We obtain the tree with minimum Wiener index

among all the trees of order n and with diameter d, and the trees with minimum and

maximum Wiener indices among all the caterpillar trees of order n and with diameter d.

We also obtain the tree with maximum Wiener index among all the trees of order n and

with maximum degree ∆, and the trees with the second and the third maximum Wiener

indices among all the trees of order n, whose vertices are of degree 1 or ∆.
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1 Introduction

The molecular-graph-based quantity W, introduced by Harold Wiener [1] in 1947, is

nowadays known as the name Wiener index or Wiener number. For a connected graph

G, let V (G) denote the set of vertices and E (G) the set of edges. Then the Wiener index

of G, denoted by W (G), is defined by

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) (1)

where d(u, v|G) is the distance between vertices of u and v in G, and the summation goes

over all pairs of vertices in V (G).

Let T be a tree and e = uv an edge of T . Denote by nu(e|T ) (resp. nv(e|T )) the

number of vertices of T lying on one side of the edge e, closer to vertex u (resp. v). Then

the Wiener index of T also satisfies the following relation [1]:

W (T ) =
∑
e=uv

nu(e|T ) · nv(e|T ) (2)

in which the summation goes over all edges of T .

There is a lot of mathematical and chemical literature on the Wiener index, especially

on the Wiener index of trees. A survey of known results and open problems was given by

Dobrynin et al. [2]. It is of great interest to identify the graphs with extremal Wiener

indices for both chemical applications and mathematics, and many results have been

obtained [3—11]. One of the most well known results is that [3,4] among all the trees of

order n, the Wiener index is maximized by the path Pn and minimized by the star Sn.

A maximal subtree of a tree T containing a vertex v as an end vertex will be called

a branch of T at v. A vertex of a tree T , having degree 3 or greater, is called a branching

point of T . A tree T is said to be a starlike tree if exactly one of its vertices has degree

greater than two, viz. T has exactly one branching point.

A rooted tree T has one of its vertices, called the root, distinguished from the others.

The dumbbell D(n, a, b) consists of the path Pn−a−b together with a independent

vertices adjacent to one pendent vertex of Pn−a−b and b independent vertices to the other

pendent vertex.

A caterpillar tree is a tree, the deletion of whose pendent vertices produces a path.

Let C∆(n) denote the caterpillar tree of order n, whose vertices are of degree 1 or ∆.

A dendrimer of degree ∆ on n vertices, Dn,∆, is a tree with maximum degree ∆

defined inductively as follows. The tree D1,∆ consists of a single vertex labelled 1. The
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tree Dn,∆ has vertex set {1, 2, . . . , n} and is obtained by attaching a leaf n to the smallest

numbered vertex of Dn−1,∆, which has degree < ∆.

The diameter of a graph is an important graph-theoretical parameter. Let G(n, d)

denote the set of all the connected graphs of order n and with diameter d. Plesnik

[11] obtained the graphs (may not be unique) with minimum Wiener index in G(n, d)

(d ≤ n−1). When d < n−1, they are cycle-containing graphs. Wagner [14] obtained the

trees with maximum Wiener index among all the trees with n edges and diameter ≤ 4.

Let T (n, ∆) denote the set of all the trees of order n and with maximum degree

∆, and T1,∆(n) the set of all the trees of order n, whose vertices are of degree 1 or ∆.

Liu et al. [5] showed that the dendrimer Dn,∆ is the unique tree with minimum Wiener

index in T (n, ∆). Later, by using different approaches, Fishermann et al. [6] and Jelen

et al. [7] independently characterized the tree with minimum Wiener index among all the

trees of order n and with maximum degree ≤ ∆. In fact, it is also the dendrimer Dn,∆.

Fishermann et al. [6] also showed that the tree C∆(n) is the unique tree with maximum

Wiener index in T1,∆(n).

Let T ∗(n, d) (resp. C∗(n, d)) denote the set of all the trees (resp. caterpillar trees) of

order n and with diameter d. Clearly, C∗(n, d) ⊆ T ∗(n, d).

In this paper, by using some tree transformations which strictly increase or decrease

the Wiener index of trees, we obtain the tree with minimum Wiener index in T ∗(n, d)

(2 ≤ d ≤ n− 1), the trees with minimum and maximum Wiener indices in C∗(n, d), and

additionally the tree with minimum Wiener index among all the trees of order n and with

diameter ≥ d. And we also obtain the tree with maximum Wiener index in T (n, ∆), and

the trees with the second and the third maximum Wiener indices in T1,∆(n).

The structures of the trees with maximum Wiener indices in T ∗(n, d) might be quite

different according to different values of n and d, and so we can’t characterize them in a

general way. However, for some special values of d, 2 ≤ d ≤ 4 or n− 3 ≤ d ≤ n− 1, the

trees with maximum Wiener indices in T ∗(n, d) are also determined in this paper.
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2 Wiener index versus diameter in trees

In this section, we will characterize the trees with extremal Wiener indices in T ∗(n, d)

and in C∗(n, d). In addition, we also obtain the trees with extremal Wiener indices among

all the trees of order n and with diameter at least d.

Figure 1: The trees Tn,d and T
′
n,d.

Let n and d be two integers satisfying n > d ≥ 2. Let Tn,d be the tree consisting of

a path P = v0v1 . . . vd together with n− d− 1 independent vertices all adjacent to vbd/2c.

When d is odd, let T
′
n,d be the tree consisting of a path P = v0v1 . . . vd together with

s independent vertices adjacent to vbd/2c and t independent vertices adjacent to vdd/2e,

where s ≥ 0, t ≥ 0 and s+ t = n−d−1 (see figure 1). When d is odd, bd/2c+1 = dd/2e.
So if s = 0 or t = 0, then Tn,d

∼= T
′
n,d (d is odd).

The following theorem presents the tree with minimum Wiener index in T ∗(n, d).

Theorem 2.1 If T is a tree in T ∗(n, d) (2 ≤ d ≤ n− 1), then

W (T ) ≥ W (Tn,d).

The equality holds if and only if T ∼= Tn,d.

In order to prove this conclusion, some preparations are needed.

Lemma 2.2 [12] Let T be a tree of order n and e = v0v1 ∈ E(T ). Let Ti, i=0,1, be the

components of T − e containing vi with |V (Ti)| = ni, and let u1, u2, . . . , ut be pendent

vertices of T , which is adjacent to v1. Then, W (T +
∑t

j=1(−v1uj + v0uj)) − W (T ) =

t(n1 − n0 − t).

By lemma 2.2, the following is immediate.

Lemma 2.3 Let d ≥ 3 be an odd number. And let Tn,d and T
′
n,d be the trees described

as above. Then, W (T
′
n,d) ≥ W (Tn,d), with the equality if and only if T

′
n,d
∼= Tn,d.

Here, we need to use two tree transformations. The first one is the inner-moving

transformation.

Definition 2.4 Let T11 be the tree consist of a path u0u1u2 · · ·ut of length t and rooted
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trees Xi with roots ui, l ≤ i ≤ t − 1, 1 ≤ l < bt/2c, |V (Xl)| > 1, and |V (Xi)| ≥ 1 for

l + 1 ≤ i ≤ t− 1. Let T12 be the tree obtained from T11 by moving the rooted tree Xl to

ul+1 such that the root of Xl is identified with ul+1 (see figure 2). Then T12 is said to be

obtained from T11 by a step of inner-moving transformation or i.m.t. for short.

Figure 2: The inner-moving transformation of the tree T11.

Lemma 2.5 The inner-moving transformation decreases the Wiener index, viz.

W (T11) > W (T12).

Proof. Set ai = |V (Xi)\ui| (l ≤ i ≤ t−1). Then, al > 0 and ai ≥ 0 for l+1 ≤ i ≤ t−1.

Using formula (2), we consider the difference W (T11)−W (T12). Comparing the structures

of T11 and T12, we can get that nu(e|T11) · nv(e|T11) = nu(e|T12) · nv(e|T12) holds for every

edge e = uv in E(T11) and E(T12), except that of e = ulul+1. Therefore,

W (T11)−W (T12)

= nul
(e|T11) · nul+1

(e|T11)− nul
(e|T12) · nul+1

(e|T12) (where e = ulul+1)

= nul
(e|T11) · nul+1

(e|T11)− (nul
(e|T11)− al) · (nul+1

(e|T11) + al)

= al · (nul+1
(e|T11)− nul

(e|T11) + al)

Clearly, nul
(e|T11) − al = l + 1. Noticing that ai ≥ 0 (l + 1 ≤ i ≤ t − 1), we have

nul+1
(e|T11) ≥ t− l. So, nul+1

(e|T11)− nul
(e|T11) + al ≥ (t− l)− (l + 1) = t− 2l − 1.

As 1 ≤ l < bt/2c ≤ t/2, we have l ≤ t/2 − 1. Then, t − 2l − 1 ≥ 1 > 0. And so

nul+1
(e|T11)−nul

(e|T11) + al > 0. Note that al > 0. Therefore, W (T11) > W (T12). ¥

The second tree transformation we need is the edge-growing transformation, which

had been used by Dong and Guo [12] for ordering trees by their Wiener indices.

Definition 2.6 Let T21 be a tree of order n and T21 6= Sn. Let e = uv be a non-pendent

edge of T21, and T1 and T2 be the two components of T21 − e, u ∈ T1, v ∈ T2. T22 is the

tree obtained from T21 in the following way:
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(1) Contract the edge e = uv;

(2) Add a pendent edge to the vertex u(= v);

The procedures (1) and (2) are called the edge-growing transformation of T21 (on edge e)

or e.g.t. of T21 (on edge e) for short (see figure 3).

Figure 3: The edge-growing transformation of the tree T21.

Lemma 2.7 [12] The edge-growing transformation decreases the Wiener index, viz.

W (T21) > W (T22).

Now we come to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let T be a tree in T ∗(n, d), and let P = v0v1 · · · vd be a longest

path in T . Clearly, dT (v0) = dT (vd) = 1. Let Xi be the component of T−E(P ) containing

vi, i = 1, 2, · · · , d− 1, which is a rooted tree with root vi.

By e.g.t. for all the non-pendent edges of T not on P , T can be transformed to a

caterpillar tree T ∗ such that every rooted tree Xi becomes a star (see figure 4). By lemma

2.7, W (T ) ≥ W (T ∗), with the equality if and only if T ∼= T ∗.

Figure 4: A caterpillar tree in the proof of theorem 2.1.

In addition, by i.m.t., T ∗ can be transformed into either Tn,d or T ′
n,d (if d is odd). Now

it follows from lemmas 2.3 and 2.5 that W (T ) ≥ W (T ∗) ≥ W (Tn,d), with the equality if

and only if T ∼= T ∗ ∼= Tn,d. ¥

Corollary 2.8 If T is a tree of order n and with diameter at least d (2 ≤ d < n), then

W (Tn,d) ≤ W (T ) ≤ W (Pn). (∗)
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The lower bound is realized if and only if T ∼= Tn,d and the upper bound if and only if

T ∼= Pn.

Proof. Note that the diameter of the path Pn is n− 1 ≥ d. As Pn maximizes the Wiener

index among all the trees of order n, the right-hand side inequality in (∗) holds obviously.

Now we prove the left-hand side inequality in (∗). If T is a tree with diameter greater

than d, then T can be transformed into a tree (say T
′
) with diameter d by a number of

e.g.t.. By lemma 2.7, W (T ) > W (T
′
). So, we can conclude that if T minimizes the

Wiener index among all the trees of order n and with diameter ≥ d, then T must be a

tree of order n and with diameter d. Then, the left-hand side inequality in (∗) follows

from theorem 2.1. ¥

Now, we consider the trees in C∗(n, d). Clearly, C∗(n, d) ⊆ T ∗(n, d), and Tn,d ∈
C∗(n, d). The tree with minimum Wiener index in C∗(n, d) is also the tree Tn,d. In

addition, the tree with maximum Wiener index in C∗(n, d) can also be characterized.

Let L(n, l) (2 ≤ l ≤ n − 1) denote the set of all the trees of order n and with l

pendent vertices. The following lemma gives the tree with maximum Wiener index in

L(n, l), which was obtained by Shi [8] and later independently by Entringer [9].

Lemma 2.9 [8,9] If T is a tree in L(n, l) (2 ≤ l ≤ n− 1), then

W (T ) ≤ W (D(n, bl/2c, dl/2e)).
The equality holds if and only if T ∼= D(n, bl/2c, dl/2e).

The above lemma can be used to obtain the tree with maximum Wiener index in

C∗(n, d).

Theorem 2.10 If T is a tree in C∗(n, d) (2 ≤ d ≤ n− 1), then

W (Tn,d) ≤ W (T ) ≤ W (D(n, b(n− d + 1)/2c, d(n− d + 1)/2e)). (?)

The lower bound is realized if and only if T ∼= Tn,d and the upper bound if and only if

T ∼= D(n, b(n− d + 1)/2c, d(n− d + 1)/2e).
Proof. The left-hand side inequality in (?) follows immediately from theorem 2.1.

Now we prove the right-hand side inequality in (?). By lemma 2.9, D(n, b(n − d +

1)/2c, d(n−d+1)/2e) is the unique tree with maximum Wiener index in L(n, n−d+1). It

is not difficult to see that D(n, b(n−d+1)/2c, d(n−d+1)/2e) ∈ C∗(n, d) ⊆ L(n, n−d+1).

So, D(n, b(n− d + 1)/2c, d(n− d + 1)/2e) is also the unique tree with maximum Wiener

index in C∗(n, d). Thus, the right-hand side inequality in (?) also holds. ¥

Now we consider the trees with maximum Wiener index in T ∗(n, d) (2 ≤ d ≤ n− 1).
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Here, the trees with maximum Wiener index in T ∗(n, d) are determined for 2 ≤ d ≤ 4 or

n− 3 ≤ d ≤ n− 1.

When the diameter d = d̄ ∈ {2, 3, n−1, n−2}, the trees in T ∗(n, d̄) are all caterpillar

trees, viz. T ∗(n, d̄) = C∗(n, d̄). Then, by theorem 2.10, the unique tree with maximum

Wiener index in T ∗(n, d̄) is the tree D(n, b(n− d̄ + 1)/2c, d(n− d̄ + 1)/2e).
When d = 4, the trees with maximum Wiener index in T ∗(n, 4) can be obtained from

the result of Theorem 3 in Wagner [14]. But there is a little mistake in it (see the remark

after Theorem 2.12). Here, we will restate the result as Theorem 2.12.

Definition 2.11 [14] Let (c1, c2, . . . , ct) be a partition of n − 1 (n > 1). A tree with

diameter ≤ 4 assigned to this partition is the tree

where v1, v2, . . . , vt have degrees c1, c2, . . . , ct respectively. It has exactly n− 1 edges (viz.

n vertices). The tree itself is denoted by S(c1, c2, . . . , ct).

Set k = b√n− 1c (n > 1). If k2 + k ≥ n− 1, set Tm = S( k, . . . k︸ ︷︷ ︸
k2+k−n+1

, k + 1, . . . , k + 1︸ ︷︷ ︸
n−k2−1

).

If k2+k ≤ n−1, set T ′
m = S( k, . . . , k︸ ︷︷ ︸

k2+2k−n+2

, k + 1, . . . , k + 1︸ ︷︷ ︸
n−k2−k−1

). Notice that when k2+k = n−1,

Tm and T ′
m are non-isomorphic trees with W (Tm) = W (T ′

m) = 2k3(k + 1) .

Theorem 2.12 [14] Let T be a tree with n vertices and diameter ≤ 4. Set k = b√n− 1c.
(1) If k2 + k > n− 1, then W (T ) ≤ W (Tm), with the equality if and only if T ∼= Tm.

(2) If k2 + k < n− 1, then W (T ) ≤ W (T ′
m), with the equality if and only if T ∼= T ′

m.

(3) If k2 + k = n − 1, then W (T ) ≤ W (Tm) = W (T ′
m), with the equality if and only if

T ∼= Tm or T ∼= T ′
m.

Remark : From the result of Theorem 3 in [14], we get that when k2 + k = n − 1, the

tree with maximum Wiener index among all the trees with n vertices and diameter ≤ 4

is the tree T ′
m. But, in fact, when k2 + k = n − 1, Tm and T ′

m are both the trees with

maximum Wiener index. In other words, Theorem 3 of [14] misses out the tree Tm for

the case when k2 + k = n− 1.

It is not difficult to see that, if n ≥ 5, k = b√n− 1c ≥ 2, and Tm and T ′
m are trees

with diameter 4. From theorem 2.12, we can conclude that the trees with maximum

Wiener index in T ∗(n, 4) are either the tree Tm if k2 + k > n − 1, or the tree T ′
m if
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k2 + k < n− 1, or the trees Tm and T ′
m if k2 + k = n− 1.

For a tree T in T ∗(n, n − 3) with diameter d = n − 3 ≥ 5, let P be a path of

length n − 3 in T . Then, there are only two vertices in T , say u and v, that are not on

the path P . We partition the trees in T ∗(n, n − 3) into two classes: C∗(n, n − 3) and

C∗(n, n− 3) = T ∗(n, n− 3) \ C∗(n, n− 3). Then any tree in C∗(n, n− 3) must be the tree

T i
n−3 (for some 2 ≤ i ≤ n− 5) shown in figure 5.

Figure 5: The tree T i
n−3 in C∗(n, n− 3).

By theorem 2.10, we know that the tree with maximum Wiener index in C∗(n, n− 3)

is the tree D(n, 2, 2). By the inverse i.m.t., we can get that the tree with maximum

Wiener index in C∗(n, n− 3) is the tree T 2
n−3 (isomorphic to T n−5

n−3 ). Therefore, in order to

obtained the tree with maximum Wiener index in T ∗(n, n− 3), we only need to compare

W (D(n, 2, 2)) and W (T 2
n−3). By formula (1) or (2), we have W (D(n, 2, 2))−W (T 2

n−3) =

2n− 14 > 0 for n− 3 ≥ 5, and so the tree with maximum Wiener index in T ∗(n, n− 3)

(n ≥ 8) is the tree D(n, 2, 2).

Now, the trees with maximum Wiener indices in T ∗(n, d) (2 ≤ d ≤ 4 or 5 ≤ n− 3 ≤
d ≤ n− 1) have all been determined.

For the cases 5 ≤ d ≤ n − 4, it is difficult to characterize the trees with maximum

Wiener indices in T ∗(n, d). For a fixed value of d and different values of n, the trees with

maximum Wiener indices may have different structures. To illustrate this fact, we list the

trees with maximum Wiener indices in T ∗(n, d) for some values of n and d.

Let T i
n,d (i = 1, 2, . . .) denote the trees with maximum Wiener indices in T ∗(n, d). Fig-

ure 6 shows the trees with maximum Wiener indices in T ∗(10, 5), T ∗(10, 6), T ∗(11, 5) and

T ∗(11, 6), the Wiener indices of which are respectively as follows, W (T 1
10,5) = W (T 2

10,5) =

127, W (T 1
10,6) = 139, W (T 1

11,5) = W (T 2
11,5) = 160, W (T 1

11,6) = W (T 2
11,6) = 176.

From the above examples, it seems to be impossible to give a universal characteriza-

tion for the trees with maximum Wiener indices in T ∗(n, d) for 5 ≤ d ≤ n− 4.
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Figure 6: Some trees with maximum Wiener indices in T ∗(n, d), 5 ≤ d ≤ n− 4.

3 Wiener index versus maximum degree in trees

In this section, we will characterize the tree with maximum Wiener index in T (n, ∆),

and the trees with the second and the third maximum Wiener indices in T1,∆(n).

In order to obtain the tree with maximum Wiener index in T (n, ∆), we need the

following tree transformation, which had been used by Gutman et al. [13].

Figure 7: The lengthening transformation of the tree T31.

Let T31 and T32 be the trees depicted in figure 7, where a and b are two integers

satisfying b > a ≥ 0, and R is a rooted tree with root r and of order greater than 1. For

convenience, we call the transformation T31 → T32 the lengthening transformation of T31,

or the l.t. of T31 for short.

The following lemma is an immediate result of Theorem 2 in Gutman et al. [13].

Lemma 3.1 [13] The lengthening transformation increases the Wiener index, viz.

W (T31) < W (T32).

Theorem 3.2 If T is a tree in T (n, ∆) (∆ ≥ 3), then

W (T ) ≤ W (D(n, ∆− 1, 1))
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The equality holds if and only if T ∼= D(n, ∆− 1, 1).

Proof. As T ∈ T (n, ∆), there is at least one vertex, say v, such that dT (v) = ∆. Viz.

there are ∆ branches of T at the vertex v. Suppose T � D(n, ∆ − 1, 1). If T is not

a starlike tree, then there exist some branches of T at v that are not paths. Then, by

repeatedly carrying out the l.t. on each of such branches, one can transform T into a

starlike tree (say S∗) with v as the unique branching point. If S∗ � D(n, ∆− 1, 1), then

S∗ can be transformed into D(n, ∆− 1, 1) by a number of l.t. between different branches

of S∗ at v. By lemma 3.1, W (T ) < W (D(n, ∆−1, 1)). Thus, the result holds. ¥

As referred above, Fishermann et al. [6] showed that the tree C∆(n) is the unique

tree with maximum Wiener index in T1,∆(n). Now, we define a tree transformation that

can be used to obtain the trees with the second and the third maximum Wiener indices

in T1,∆(n).

Definition 3.3 Let ∆, a, b be integers satisfying ∆ ≥ 3, b > a ≥ 0. And let T41 be the

tree depicted in figure 8, where T0 is a rooted tree with root r0 and |V (T0)| > ∆− 1. T42

is the tree obtained from T41 in the following way:

(1)Delete all the edges xxi (1 ≤ i ≤ ∆− 1);

(2)Add all the edges yxi (1 ≤ i ≤ ∆− 1).

The procedures (1) and (2) are called the (∆ − 1)-regular-lengthening transformation of

T41 or (∆− 1)-r.l.t. of T41 for short.

Figure 8: The (∆− 1)-regular-lengthening transformation of the tree T41.

Lemma 3.4 The (∆− 1)-r.l.t. increases the Wiener index, viz.

W (T41) < W (T42).

Proof. Let E1 (resp. E2) denote the set of all the pendent edges of T41 (resp. T42)

not in T0. Then, |E1| = |E2| = (a + b)(∆ − 2) + ∆. Set the paths P 1
1 = u1u2 · · · x and
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P 2
1 = r0v1 · · · vb in T41. And set P 1

2 = r0u1 · · · ua and P 2
2 = v1v2 · · · y in T42. Comparing

the structures of T41 and T42, we can get the following equalities:
∑

e=uv∈E(T0)

nu(e|T41) · nv(e|T41) =
∑

e=uv∈E(T0)

nu(e|T42) · nv(e|T42);

∑
e=uv∈E1

nu(e|T41) · nv(e|T41) =
∑

e=uv∈E2

nu(e|T42) · nv(e|T42);

∑

e=uv∈E(P 1
1 )

nu(e|T41) · nv(e|T41) =
∑

e=uv∈E(P 1
2 )

nu(e|T42) · nv(e|T42);

∑

e=uv∈E(P 2
1 )

nu(e|T41) · nv(e|T41) =
∑

e=uv∈E(P 2
2 )

nu(e|T42) · nv(e|T42).

The edges not involved in the above equalities are the edges r0u1 in T41 and r0v1 in T42.

Therefore, we have

W (T42)−W (T41)

= nr0(r0v1|T42) · nv1(r0v1|T42)− nr0(r0u1|T41) · nu1(r0u1|T41)

= [b(∆− 1) + ∆][n− b(∆− 1)−∆]− [a(∆− 1) + ∆][n− a(∆− 1)−∆]

= (∆− 1)(b− a)[n− (a + b)(∆− 1)− 2∆]

Note that |V (T0)| > ∆− 1. n = |V (T0)|+ (a+ b)(∆− 1)+ ∆ + 1 > (∆− 1)+ (a+ b)(∆−
1) + ∆ + 1 = (a + b)(∆ − 1) + 2∆. That is n − (a + b)(∆ − 1) − 2∆ > 0. Furthermore,

∆ ≥ 3 and b > a. So, W (T42)−W (T41) > 0, viz. W (T41) < W (T42). ¥

Figure 9: The trees C∆(n) and T∆(n) in T1,∆(n).

From the definition of C∆(n), we can easily get that C∆(n) ∈ T1,∆(n) is the tree

shown in figure 9, where d0 = n−2
∆−1

+1. Let T∆(n) ∈ T1,∆(n) be the tree depicted in figure

9, where d = d0 − 1 = n−2
∆−1

≥ 4. The following theorem gives the tree with the second

maximum Wiener index in T1,∆(n).

Theorem 3.5 If T is a tree in T1,∆(n) \ {C∆(n), T∆(n)} (∆ ≥ 3, n ≥ 4∆− 2), then

W (T ) < W (T∆(n)) < W (C∆(n)).
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Proof. Note that T 6= C∆(n) and T 6= T∆(n). By a number of (∆ − 1)-r.l.t., T can

be transformed into the tree T∆(n). By lemma 3.4, W (T ) < W (T∆(n)). Furthermore,

T∆(n) can be transformed into C∆(n) by a step of (∆ − 1)-r.l.t.. So by lemma 3.4,

W (T∆(n)) < W (C∆(n)). Therefore, the result holds. ¥

Let T
′
∆(n), T

′′
∆(n) ∈ T1,∆(n) be the trees depicted in figure 10, where d = n−2

∆−1
≥ 6.

The following theorem presents the tree with the third maximum Wiener index in T1,∆(n).

Theorem 3.6 If T is a tree in T1,∆(n) \ {C∆(n), T∆(n)} (∆ ≥ 3, n ≥ 6∆ − 4), then

W (T ) ≤ W (T
′
∆(n)). The equality holds if and only if T ∼= T

′
∆(n).

Figure 10: The trees T
′
∆(n) and T

′′
∆(n) in T1,∆(n).

Proof. Note that T ∈ T1,∆(n) \ {C∆(n), T∆(n)}. If T � T
′
∆(n) and T � T

′′
∆(n), then T

can be transformed into T
′
∆(n) by a number of (∆ − 1) − r.l.t.. By lemma 3.4, W (T ) <

W (T
′
∆(n)).

Let P ′ (resp. P ′′) be the (v3 − vd−4)-path in T
′
∆(n) (resp. T

′′
∆(n)), and let E1 (resp.

E2) be the set of all the pendent edges of T
′
∆(n) (resp. T

′′
∆(n)). Clearly,∑

e=uv∈E(P ′) nu(e|T ′
∆(n)) · nv(e|T ′

∆(n)) =
∑

e=uv∈E(P ′′) nu(e|T ′′
∆(n)) · nv(e|T ′′

∆(n)),∑
e=uv∈E1

nu(e|T ′
∆(n)) · nv(e|T ′

∆(n)) =
∑

e=uv∈E2
nu(e|T ′′

∆(n)) · nv(e|T ′′
∆(n)).

Comparing the other edges in T
′
∆(n) and T

′′
∆(n), we have that W (T

′
∆(n))−W (T

′′
∆(n)) =

2(2∆ − 1)[n − (2∆ − 1)] − ∆(n − ∆) − (3∆ − 2)[n − (3∆ − 2)] = 2(∆ − 1)2 > 0. So

W (T
′
∆(n)) > W (T

′′
∆(n)).

Thus, the result holds. ¥

It becomes more and more complicated to determine the trees with the 4th, 5th, . . .,

maximum Wiener indices in T1,∆(n). Other than the (∆ − 1) − r.l.t., much discussion

and comparison are also needed for determining the tree with the 4th maximum Wiener

index in T1,∆(n). Here, we would not discuss it any more.
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