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Abstract

The Wiener index of a connected graph is the sum of distances for all pairs of
vertices. In this paper, we consider the trees with order n, diameter d or maximum
degree A, and extremal Wiener indices. We obtain the tree with minimum Wiener index
among all the trees of order n and with diameter d, and the trees with minimum and
maximum Wiener indices among all the caterpillar trees of order n and with diameter d.
We also obtain the tree with maximum Wiener index among all the trees of order n and
with maximum degree A, and the trees with the second and the third maximum Wiener

indices among all the trees of order n, whose vertices are of degree 1 or A.
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1 Introduction

The molecular-graph-based quantity W, introduced by Harold Wiener [1] in 1947, is
nowadays known as the name Wiener index or Wiener number. For a connected graph
G, let V(G) denote the set of vertices and E(G) the set of edges. Then the Wiener index
of G, denoted by W (@), is defined by

wWE) = Y. dwlG) M
{u0}CV(G)
where d(u, v|G) is the distance between vertices of v and v in G, and the summation goes

over all pairs of vertices in V(G).

Let T be a tree and e = uv an edge of T. Denote by n,(e|T) (resp. n,(e|T)) the
number of vertices of T" lying on one side of the edge e, closer to vertex u (resp. v). Then
the Wiener index of T" also satisfies the following relation [1]:

W(T) = 3 nulelT) - ny(e|T) (2)

e=uv

in which the summation goes over all edges of T.

There is a lot of mathematical and chemical literature on the Wiener index, especially
on the Wiener index of trees. A survey of known results and open problems was given by
Dobrynin et al. [2]. It is of great interest to identify the graphs with extremal Wiener
indices for both chemical applications and mathematics, and many results have been
obtained [3—11]. One of the most well known results is that [3,4] among all the trees of

order n, the Wiener index is maximized by the path P, and minimized by the star .S,,.

A maximal subtree of a tree T' containing a vertex v as an end vertex will be called
a branch of T at v. A vertex of a tree T', having degree 3 or greater, is called a branching
point of T. A tree T is said to be a starlike tree if exactly one of its vertices has degree
greater than two, viz. T has exactly one branching point.

A rooted tree T has one of its vertices, called the root, distinguished from the others.

The dumbbell D(n,a,b) consists of the path P,_,_, together with a independent
vertices adjacent to one pendent vertex of P,_,_, and b independent vertices to the other
pendent vertex.

A caterpillar tree is a tree, the deletion of whose pendent vertices produces a path.
Let Ca(n) denote the caterpillar tree of order n, whose vertices are of degree 1 or A.

A dendrimer of degree A on n vertices, D, a, is a tree with maximum degree A

defined inductively as follows. The tree Dy o consists of a single vertex labelled 1. The
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tree D, A has vertex set {1,2,...,n} and is obtained by attaching a leaf n to the smallest

numbered vertex of D,_; o, which has degree < A.

The diameter of a graph is an important graph-theoretical parameter. Let G(n,d)
denote the set of all the connected graphs of order n and with diameter d. Plesnik
[11] obtained the graphs (may not be unique) with minimum Wiener index in G(n,d)
(d <n-—1). When d < n—1, they are cycle-containing graphs. Wagner [14] obtained the
trees with maximum Wiener index among all the trees with n edges and diameter < 4.

Let T(n,A) denote the set of all the trees of order n and with maximum degree
A, and Ty A(n) the set of all the trees of order n, whose vertices are of degree 1 or A.
Liu et al. [5] showed that the dendrimer D, A is the unique tree with minimum Wiener
index in 7 (n,A). Later, by using different approaches, Fishermann et al. [6] and Jelen
et al. [7] independently characterized the tree with minimum Wiener index among all the
trees of order n and with maximum degree < A. In fact, it is also the dendrimer D, a.
Fishermann et al. [6] also showed that the tree Ca(n) is the unique tree with maximum

Wiener index in 7; a(n).

Let 7%(n,d) (resp. C*(n,d)) denote the set of all the trees (resp. caterpillar trees) of
order n and with diameter d. Clearly, C*(n,d) C 7*(n,d).

In this paper, by using some tree transformations which strictly increase or decrease
the Wiener index of trees, we obtain the tree with minimum Wiener index in 7*(n,d)
(2 <d < n—1), the trees with minimum and maximum Wiener indices in C*(n,d), and
additionally the tree with minimum Wiener index among all the trees of order n and with
diameter > d. And we also obtain the tree with maximum Wiener index in 7 (n, A), and
the trees with the second and the third maximum Wiener indices in 73 A(n).

The structures of the trees with maximum Wiener indices in 7*(n, d) might be quite
different according to different values of n and d, and so we can’t characterize them in a
general way. However, for some special values of d, 2 <d<4orn—3<d<n-—1, the

trees with maximum Wiener indices in 7*(n,d) are also determined in this paper.
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2 Wiener index versus diameter in trees

In this section, we will characterize the trees with extremal Wiener indices in 7*(n, d)
and in C*(n, d). In addition, we also obtain the trees with extremal Wiener indices among

all the trees of order n and with diameter at least d.

_.L ﬂﬁ

Vlarz) Viarm "a‘ V9ar2) Viam Ya

Figure 1: The trees T, 4 and T,’Ld

Let n and d be two integers satisfying n > d > 2. Let T,, 4 be the tree consisting of
a path P = vgv; ... vy together with n — d — 1 independent vertices all adjacent to v|q/2).
When d is odd, let T;L,d be the tree consisting of a path P = vyv; ... vy together with
s independent vertices adjacent to v|4/2) and ¢ independent vertices adjacent to vqyaq,
where s > 0,¢t > 0and s+t =n—d—1 (see figure 1). When d is odd, |d/2| +1 = [d/2].
Soif s=0ort=0, then T, 4 = ' 4 (dis odd).

The following theorem presents the tree with minimum Wiener index in 7*(n, d).
Theorem 2.1 If T is a tree in 7*(n,d) (2 < d <n —1), then
W(T) > W(Th.q)-
The equality holds if and only if T'= T, 4.
In order to prove this conclusion, some preparations are needed.

Lemma 2.2 [12] Let T be a tree of order n and e = vov; € E(T). Let T;, i=0,1, be the
components of T — e containing v; with |V(T;)| = n;, and let uy, ug, ..., u; be pendent
vertices of T, which is adjacent to v;. Then, W (T + Z;Zl(—vluj +vouy)) — W(T) =
t(m — Ng — t)

By lemma 2.2, the following is immediate.

Lemma 2.3 Let d > 3 be an odd number. And let T, ; and T,;d be the trees described
as above. Then, W(T,, (1) > W(T,.4), with the equality if and only if T, a=Tha

Here, we need to use two tree transformations. The first one is the inner-moving

transformation.

Definition 2.4 Let T1; be the tree consist of a path uguyus - - - u; of length ¢ and rooted
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trees X; with roots w;, [ < ¢ <t—1,1<1<[t/2], |[V(X;)| > 1, and |V(X;)| > 1 for
l+1<i<t—1. Let Ti5 be the tree obtained from 77; by moving the rooted tree X; to
w41 such that the root of X is identified with u;;; (see figure 2). Then T}, is said to be
obtained from T1; by a step of inner-moving transformation or i.m.t. for short.

I+
4

1
Hy M ¥ Mg My Uy iy M ey ¥

G Tz

Figure 2: The inner-moving transformation of the tree 77;.

Lemma 2.5 The inner-moving transformation decreases the Wiener index, viz.

W (T11) > W (T1a).

Proof. Set a; = |V(X;)\w;] I <i<t—1). Then,q; >0and a; > 0forl+1<i<t—1.
Using formula (2), we consider the difference W (T11) — W (T32). Comparing the structures
of T11 and Tha, we can get that n,(e|T11) - ny(e|T11) = nu(e]T12) - ny(€]T12) holds for every

edge e = wv in E(Ty;) and E(T}2), except that of e = wju;41. Therefore,
W(Ty) — W(T2)

= Ny (e|T11) - Ny, (€| T11) — Ny (€|T12) - Ny, (€] Th2) (where e = wjuyy1)

= 1y, (e|Tn) - 1y, (€| Tn) — (g (€] Tin) = ar) - (g, (€l T11) + )

= a; (N, (€|T11) — ny, (e Th1) + ar)

Clearly, n,,(e|T11) — ay = I + 1. Noticing that a; > 0 (I +1 < i <t — 1), we have
Ny, (€]T11) >t = 1. So, 1y, (e[T1) — ny(e[T11) +ar > (t=1) = (I +1) =t =20 - 1.

As1 <1< [t/2] <t/2, we have | < /2 —1. Then, t —2l—1>1> 0. And so
Ny, (€]T11) — 1y, (€|T11) + @ > 0. Note that a; > 0. Therefore, W (T11) > W (T1s). |

The second tree transformation we need is the edge-growing transformation, which
had been used by Dong and Guo [12] for ordering trees by their Wiener indices.
Definition 2.6 Let T5; be a tree of order n and Ty # S,,. Let e = uv be a non-pendent

edge of Ty1, and T} and T be the two components of Ty — e, u € Ty, v € Ty. Tys is the
tree obtained from 7%; in the following way:
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(1) Contract the edge e = uv;

(2) Add a pendent edge to the vertex u(= v);

The procedures (1) and (2) are called the edge-growing transformation of Ty (on edge €)
or e.g.t. of Ty (on edge e) for short (see figure 3).

Figure 3: The edge-growing transformation of the tree Ts;.

Lemma 2.7 [12] The edge-growing transformation decreases the Wiener index, viz.
W (Te1) > W (T3).

Now we come to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let T be a tree in 7*(n,d), and let P = vyv; - - - vg be a longest
path in T'. Clearly, dr(vo) = dr(vg) = 1. Let X; be the component of T'— E(P) containing
vi, t=1,2,--- ,d—1, which is a rooted tree with root v;.

By e.g.t. for all the non-pendent edges of T" not on P, T can be transformed to a
caterpillar tree 7 such that every rooted tree X; becomes a star (see figure 4). By lemma
2.7, W(T) > W(T*), with the equality if and only if 7" = T™*.

W Vi V-1

Figure 4: A caterpillar tree in the proof of theorem 2.1.

In addition, by i.m.t., T* can be transformed into either T,, 4 or T, , (if d is odd). Now
it follows from lemmas 2.3 and 2.5 that W(T') > W(T™) > W (T, 4), with the equality if
and only if T'=T* =T, 4. | |

Corollary 2.8 If T is a tree of order n and with diameter at least d (2 < d < n), then

W (Toa) < W(T) < W(P,). (+)
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The lower bound is realized if and only if T = T,, ; and the upper bound if and only if
T=p,
Proof. Note that the diameter of the path P, isn—1 > d. As P, maximizes the Wiener
index among all the trees of order n, the right-hand side inequality in (*) holds obviously.

Now we prove the left-hand side inequality in (). If T" is a tree with diameter greater
than d, then T can be transformed into a tree (say T’) with diameter d by a number of
e.g.t.. By lemma 2.7, W(T) > W(T'). So, we can conclude that if T minimizes the
Wiener index among all the trees of order n and with diameter > d, then 7" must be a
tree of order n and with diameter d. Then, the left-hand side inequality in (x) follows
from theorem 2.1. [

Now, we consider the trees in C*(n,d). Clearly, C*(n,d) € T7*(n,d), and T, 4 €
C*(n,d). The tree with minimum Wiener index in C*(n,d) is also the tree T, 4. In
addition, the tree with maximum Wiener index in C*(n, d) can also be characterized.

Let £(n,l) (2 <1 < n —1) denote the set of all the trees of order n and with [
pendent vertices. The following lemma gives the tree with maximum Wiener index in
L(n, 1), which was obtained by Shi [8] and later independently by Entringer [9].
Lemma 2.9 [8,9] If T is a tree in £(n,l) (2 <1<n—1), then

W(T) < W(D(n, [1/2],11/21))-

The equality holds if and only if T'= D(n, |1/2], [1/2]).

The above lemma can be used to obtain the tree with maximum Wiener index in
C*(n,d).
Theorem 2.10 If T' is a tree in C*(n,d) (2 < d <n —1), then

W(Tha) <W(T) <W(D(n, [(n —d+1)/2], [(n — d+1)/2])). ()

The lower bound is realized if and only if T = T, ; and the upper bound if and only if
T=D(n,|(n—d+1)/2],[(n—d+1)/2]).
Proof. The left-hand side inequality in (x) follows immediately from theorem 2.1.

Now we prove the right-hand side inequality in (x). By lemma 2.9, D(n, |[(n — d +
1)/2], [(n—d+1)/2]) is the unique tree with maximum Wiener index in £L(n,n—d+1). It
is not difficult to see that D(n, [ (n—d+1)/2], [(n—d+1)/2]) € C*(n,d) C L(n,n—d+1).
So, D(n, |(n —d+1)/2],[(n — d+1)/2]) is also the unique tree with maximum Wiener
index in C*(n,d). Thus, the right-hand side inequality in (x) also holds. |

Now we consider the trees with maximum Wiener index in 7*(n,d) (2 <d <n-—1).
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Here, the trees with maximum Wiener index in 7*(n, d) are determined for 2 < d < 4 or
n—3<d<n-1.

When the diameter d = d € {2,3,n—1,n—2}, the trees in 7*(n, d) are all caterpillar

trees, viz. T*(n,d) = C*(n,d). Then, by theorem 2.10, the unique tree with maximum
Wiener index in 7*(n,d) is the tree D(n, |(n —d +1)/2],[(n —d +1)/2]).

When d = 4, the trees with maximum Wiener index in 7*(n,4) can be obtained from
the result of Theorem 3 in Wagner [14]. But there is a little mistake in it (see the remark

after Theorem 2.12). Here, we will restate the result as Theorem 2.12.

Definition 2.11 [14] Let (c1,¢2,...,¢) be a partition of n —1 (n > 1). A tree with

diameter < 4 assigned to this partition is the tree

where vy, vg, ..., v; have degrees ¢y, o, . .., ¢; respectively. It has exactly n — 1 edges (viz.
n vertices). The tree itself is denoted by S(ci,cay. .., ¢p).
Setk=|vVn—1] (n>1). fk2+k>n—1,set T,,=S(k,...k ,k+1,....k+1).
—— —
k2+k—n+1 n—k2—1

m

Ifk>+k <n—1,setT) =S(k,....k , k+1,...,k+1). Notice that when k*+k =n—1,
—_———  ————

k24+2k—n+2 n—k2—k—1

T,, and T}, are non-isomorphic trees with W(T,,,) = W(T) = 2k3(k + 1) .

m

Theorem 2.12 [14] Let T be a tree with n vertices and diameter < 4. Set k = [v/n — 1].
(1) If k + k >n — 1, then W(T) < W(T,,), with the equality if and only if T2 T,,.

(2) If kK + k <n — 1, then W(T) < W(T,), with the equality if and only if T = T/, .

(3) If k2 +k = n — 1, then W(T) < W(T,,) = W(T},), with the equality if and only if
T=T,orT=T).

Remark: From the result of Theorem 3 in [14], we get that when k2 + k = n — 1, the
tree with maximum Wiener index among all the trees with n vertices and diameter < 4
is the tree T',. But, in fact, when k* +k = n — 1, T,,, and T/, are both the trees with
maximum Wiener index. In other words, Theorem 3 of [14] misses out the tree T}, for
the case when k*> + k =n — 1.

It is not difficult to see that, if n > 5, k = [v/n — 1| > 2, and T, and T, are trees
with diameter 4. From theorem 2.12, we can conclude that the trees with maximum
Wiener index in 7*(n,4) are either the tree 7, if k* + k > n — 1, or the tree T, if
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k*+k <n—1, or the trees T, and T}, if kK> +k=n — 1.

For a tree T in T*(n,n — 3) with diameter d = n — 3 > 5, let P be a path of
length n — 3 in 7. Then, there are only two vertices in T, say v and v, that are not on
the path P. We partition the trees in 7*(n,n — 3) into two classes: C*(n,n — 3) and
C'(n,n—3)=T*(n,n—3)\C*(n,n —3). Then any tree in C (n,n — 3) must be the tree
T};73 (for some 2 < ¢ < n —5) shown in figure 5.

i
G
VoW v,

—e—e
Vit Ve-z

T

Figure 5: The tree T , in C (n,n — 3).

By theorem 2.10, we know that the tree with maximum Wiener index in C*(n,n — 3)
is the tree D(n,2,2). By the inverse i.m.t., we can get that the tree with maximum
Wiener index in C" (n,n — 3) is the tree T2, (isomorphic to T"=9). Therefore, in order to
obtained the tree with maximum Wiener index in 7*(n,n — 3), we only need to compare
W(D(n,2,2)) and W(T?_,). By formula (1) or (2), we have W(D(n,2,2)) — W(T2_,) =
2n — 14 > 0 for n — 3 > 5, and so the tree with maximum Wiener index in 7*(n,n — 3)
(n > 8) is the tree D(n,2,2).

Now, the trees with maximum Wiener indices in 7*(n,d) (2<d<4or5<n-—-3<

d < n — 1) have all been determined.

For the cases 5 < d < n — 4, it is difficult to characterize the trees with maximum
Wiener indices in 7*(n, d). For a fixed value of d and different values of n, the trees with
maximum Wiener indices may have different structures. To illustrate this fact, we list the

trees with maximum Wiener indices in 7*(n,d) for some values of n and d.

Let T ; (i = 1,2,...) denote the trees with maximum Wiener indices in 7*(n, d). Fig-
ure 6 shows the trees with maximum Wiener indices in 7*(10,5), 7*(10,6), 7*(11,5) and
T*(11,6), the Wiener indices of which are respectively as follows, W (T}, 5) = W(T%,5) =
127, W(Tllo,()') =139, W(Tlll,s) = W(TIZI,S) = 160, W(Tlll,()') = W(TIQI,G) = 176.

From the above examples, it seems to be impossible to give a universal characteriza-

tion for the trees with maximum Wiener indices in 7*(n,d) for 5 < d <n —4.
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Figure 6: Some trees with maximum Wiener indices in 7*(n,d), 5 <d <n —4.

3 Wiener index versus maximum degree in trees
In this section, we will characterize the tree with maximum Wiener index in 7 (n, A),
and the trees with the second and the third maximum Wiener indices in 7y A(n).

In order to obtain the tree with maximum Wiener index in 7 (n,A), we need the

following tree transformation, which had been used by Gutman et al. [13].

o u, X Iy S 1,
bt
LU Y Yoz Vaa Vs oW Vag Vea Ve X
Ty e

Figure 7: The lengthening transformation of the tree T3;.

Let T3, and T39 be the trees depicted in figure 7, where a and b are two integers
satisfying b > a > 0, and R is a rooted tree with root r and of order greater than 1. For
convenience, we call the transformation T3, — T35 the lengthening transformation of Ty,
or the L.t. of T3; for short.

The following lemma is an immediate result of Theorem 2 in Gutman et al. [13].

Lemma 3.1 [13] The lengthening transformation increases the Wiener index, viz.

V[/(Tgl) < W(T32)

Theorem 3.2 If T is a tree in 7 (n, A) (A > 3), then

W(T) <W(D(n,A —1,1))
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The equality holds if and only if T = D(n, A —1,1).

Proof. As T € T (n,A), there is at least one vertex, say v, such that dr(v) = A. Viz.
there are A branches of T at the vertex v. Suppose T' 2 D(n,A —1,1). If T is not
a starlike tree, then there exist some branches of T' at v that are not paths. Then, by
repeatedly carrying out the [.z. on each of such branches, one can transform 7" into a
starlike tree (say S*) with v as the unique branching point. If S* 2 D(n, A —1,1), then
S* can be transformed into D(n, A — 1,1) by a number of L.t. between different branches
of S* at v. By lemma 3.1, W(T') < W(D(n, A—1,1)). Thus, the result holds. |

As referred above, Fishermann et al. [6] showed that the tree Ca(n) is the unique
tree with maximum Wiener index in 77 o(n). Now, we define a tree transformation that
can be used to obtain the trees with the second and the third maximum Wiener indices

in 7y a(n).

Definition 3.3 Let A, a, b be integers satisfying A > 3, b > a > 0. And let Ty; be the
tree depicted in figure 8, where T is a rooted tree with root ro and |V (Tp)| > A — 1. Ty
is the tree obtained from 7y in the following way:

(1)Delete all the edges zx; (1 <i< A —1);

(2)Add all the edges yx; (1 <i<A-—1).

The procedures (1) and (2) are called the (A — 1)-regular-lengthening transformation of
Ty or (A —1)-r.Lt. of Ty for short.

Figure 8: The (A — 1)-regular-lengthening transformation of the tree Ty;.

Lemma 3.4 The (A — 1)-r.l.t. increases the Wiener index, viz.

W(T41) < W(T42)

Proof. Let E; (resp. FEs) denote the set of all the pendent edges of Ty (resp. Tyo)
not in Ty. Then, |Ei| = |Es] = (a + b)(A —2) + A. Set the paths P} = ujuy---x and
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P =rov; vy in Tyy. And set P} = rouy -+ - u, and P? = vjvg -+ y in Tys. Comparing

the structures of Ty; and Ts, we can get the following equalities:

ST malelTn) no(elTn) = > nulelTi) - nu(e|Ti);

e=uveE(Tp) e=uveE(Tp)
Z Tlu(€|T41) . ’nv((i‘T41) = Z TLu((i‘T42) . TLv(€|T42)',
e=uveE} e=uvEky
Z nu(e|Tu) - ny(e|Tn) = Z nu(eTaz) - ny(e|Ta);
e=uwveE(P}) e=uveE(P})
Z ny(e|Tu) - ny(e|Ty) = Z ny(e|Taa) - ny(e|Ta).
e=uveE(P2) e=uveE(P2)

The edges not involved in the above equalities are the edges rou; in Ty and rovy in Tys.
Therefore, we have
W (Ty) — W(Tn)
= Ny (1o1]Th2) - My (rov1|Th2) — My (roun | Tar) - 1y (rous | Ta1)
=bA-1)+Aln—bA-1)—A]—[a(A—=1)+ Al]n —a(A —1) — A]
=(A=1(b—-a)n—(a+b)(A—-1)—24]

Note that |V(Tp)| > A—=1. n=|V(To)| +(a+b)(A—1)+A+1> (A—=1)+(a+b)(A—
1)+ A+1=(a+0b)(A—1)+2A. That is n — (a+ b)(A — 1) — 2A > 0. Furthermore,
A >3 and b > a. SO7 W(T42) — VV(T41) > O, viz. W(T41) < W(T42) | |

Woow Yy ¥

W“‘ﬁ‘v‘%

ho2 wo2 a-2 a2

4”2 a-3 a2 a2
Cylm) T

Figure 9: The trees Ca(n) and Ta(n) in 71 a(n).

From the definition of Ca(n), we can easily get that Ca(n) € 7y a(n) is the tree

shown in figure 9, where dg = 2=2 + 1. Let Ta(n) € T;,a(n) be the tree depicted in figure

9, where d = dy — 1 = Z;j > 4. The following theorem gives the tree with the second

maximum Wiener index in 73 A(n).
Theorem 3.5 If T' is a tree in 7y a(n) \ {Ca(n), Ta(n)} (A >3, n > 4A — 2), then
W(T) < W(Ta(n)) < W(Ca(n)).
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Proof. Note that T' # Ca(n) and T # Ta(n). By a number of (A — 1)-r.Lt., T can
be transformed into the tree Ta(n). By lemma 3.4, W(T) < W(Ta(n)). Furthermore,
Ta(n) can be transformed into Ca(n) by a step of (A — 1)-r.l.t.. So by lemma 3.4,
W(Ta(n)) < W(Ca(n)). Therefore, the result holds. [ ]

Let Tx(n), Ta(n) € Ti,a(n) be the trees depicted in figure 10, where d = 2=2 > 6.
The following theorem presents the tree with the third maximum Wiener index in 7; a(n).

Theorem 3.6 If T is a tree in Ty a(n) \ {Ca(n),Ta(n)} (A > 3, n > 6A —4), then
W(T) < W(Tx(n)). The equality holds if and only if T = T} (n).

wo2 w2 i3 a-z W2 %-2 %413 Wl2 a2 AZ3 Az
TA(H) T);(”)

Figure 10: The trees T (n) and Tix(n) in Ty a(n).

Proof. Note that T € T3 a(n) \ {Ca(n), Ta(n)}. If T 2 Ta(n) and T % Tx(n), then T
can be transformed into Ty (n) by a number of (A — 1) — r.l.t.. By lemma 3.4, W(T) <
W(Ta(n).

Let P’ (resp. P") be the (v3 — vg_4)-path in T (n) (resp. Ta(n)), and let E; (resp.
E,) be the set of all the pendent edges of Ty (n) (resp. Ta(n)). Clearly,
Y emuern(pry (el Ta(n) - (e Th (1)) = X pwerpry mulelTA (1)) - nu(elTo (),
Y emuwer, Mul(e[Ta() - nu(el Ta(n) = X e, mu(el Ta () - nu(e|Tx (n)).
Comparing the other edges in T (n) and Ta (n), we have that W(Th(n)) — W (Tx(n)) =
202A — Dn — (2A = 1)] — A(n — A) — (3A —2)[n — (3A —2)] = 2(A - 1) > 0. So
W(Ta(n)) > W(Tx(n)).

Thus, the result holds. |

It becomes more and more complicated to determine the trees with the 4th, 5th, .. .,
maximum Wiener indices in 73 o(n). Other than the (A — 1) — r.l.¢., much discussion
and comparison are also needed for determining the tree with the 4¢th maximum Wiener

index in 77 A(n). Here, we would not discuss it any more.
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