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Abstract

The Merrifield-Simmons index of a graph is defined as the total
number of its independent sets. In this paper, we give the minimal
Merrifield-Simmons index of trees of order n with at least [n2 ] + 1
pendent vertices and characterize the extremal trees.

1 Introduction

The Merrifield-Simmons index i(G) of a graph G is one of prominent ex-

amples of many topological indices which are of interest in combinatorial

chemistry. It is defined as the total number of independent vertex subsets

of a graph. The Merrifield-Simmons index was introduced by Merrifield and
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Simmons [1-3], and it turned out to be applicable to several questions of

molecular chemistry; in [2] it was shown that i(G) is correlated with boiling

points. For further details on the Merrifield-Simmons index, we refer to [2-9].

Similar connections are known for the Hosoya index or Z-index z(G) intro-

duced in [10]. Several papers deal with the characterization of the extremal

graphs with respect to these two indices in several given graph classes, usu-

ally, trees, unicyclic graphs and certain structures involving pentagonal and

hexagonal cycles are of major interest [8-9,12-18].

For the Merrifield-Simmons index, bounds for several classes of graphs

were given. For instance, it was observed in [3,8] that the star Sn and the

path Pn have the largest and the minimal Merrifield-Simmons index among

all trees with n vertices, respectively. [9] gave upper and lower bounds for

those two indices in unicyclic graphs in terms of order and characterized

the extremal graphs. These results show that typically the graphs of min-

imal Hosoya index coincide with those of maximal Merrifield-Simmons in-

dex and vice versa. In view of the similar definitions, this might not be

too surprising; however, the correlations between these two indices are not

fully understood yet. [14] determined the extremal graph with the maxi-

mal Merrifield-Simmons index among all (n, n + 1)-graphs. [15] determined

the extremal graphs with the maximal and minimal Hosoya index among all

(n, n + 1)-graphs.

Let G = (V, E) be a simple connected graph with vertex set V and edge

set E. For any v ∈ V , NG(v) denotes the neighbors of v, and dG(v) = |N(v)|
is the degree of v, NG[v] = {v} ∪ {u|uv ∈ E(G)}. A pendent vertex is a

vertex of degree one and a pendent edge is an edge incident to a pendent

vertex.

Let Tn be the set of trees of order n ≥ 4 with at least [n
2
] + 1 pendent

vertices. If n = 2k is even, then T (n) is the tree of order n ≥ 4 which is

obtained from the path Pk+1 of order k + 1 by attaching a pendent edge to
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every vertex of degree 2 in Pk+1; if n = 2k + 1 is odd, then T (n) is one which

is obtained from the path Pk+1 of order k + 1 by attaching a pendent edge

to every vertex of degree 2 and one of pendent vertices in Pk+1, see Figure 1.

...
1 2 k

...
1 2 3 k

(a) T (2k+1) (b) T (2k)

Figure 1. The trees T (2k+1) and T (2k).

Recently, Yan and Ye [17] showed that if T ∈ Tn then E(T ) ≤ E(T (n)) and

z(T ) ≤ z(T (n)) with two equalities if and only if T = T (n); Using this result,

they proved that if T is a tree of order n then per(L(T )) ≤ per(L(T (n))), a

result obtained by Brualdi et al (Discrete Math., 48(1984)1-21), where E(T )

is the energy of T and per(L(T )) is the permanent of the Laplacian matrix

L(T ) of T . In this paper, we will also find that T (n) is the tree with the

minimal Merrifield-Simmons index in Tn.

2 The tree with the minimal

Merrifield-Simmons index in Tn

Let G be a graph and v a vertex of G, W ⊆ V (G), then G − v and G −W

denote the subgraphs obtained from G obtained by deleting the vertex v and

the vertices of W , respectively. If a graph G has components G1, G2, · · · , Gt,

then G is denoted by G1 ∪G2 ∪ · · · ∪Gt.

The following basic results are immediate and will be used.

Lemma 2.1. (i) If v is a vertex of G, then

i(G) = i(G− v) + i(G−NG[v])
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(ii) If G is a graph with components G1, G2, · · ·, Gk, then

i(G) =
k∏

i=1

i(Gi)

(iii) If G′ is a spanning subgraph (resp. a proper spanning subgraph) of

a simple graph G, then i(G) ≤ i(G′) (resp. i(G) < i(G′)).

Theorem 2.2. Let T be a tree of order n ≥ 4 with at least [n
2
] + 1

pendent vertices, i.e., T ∈ Tn. Then

i(T ) ≥ i(T (n))

with equality if and only if T = T (n).

Proof. We prove the result by induction on n. If n = 4, then there is a

unique tree T (4) = S4 in T4, and the result holds. If n = 5, then there are

two trees T (5) and S5 in T5. Obviously, i(T (5)) = 14 < i(S5) = 17, and the

result holds. Now we assume inductively that the result holds for a tree in

Tn with n < m and m ≥ 6. We need to prove that if T ∈ Tm and T 6= T (m)

then i(T ) > i(T (m)).

Case 1. m = 2k is even. Then T is a tree of order 2k with at least

[2k
2
] + 1 = k + 1 pendent vertices. If T is a star S2k, it is obvious that

i(T ) > i(T (m)) since S2k is the unique tree with the maximal Merrifield-

Simmons index among all trees of order 2k. Hence we may assume that T is

not a star. Note that T must have a vertex v such that there are at least two

pendent vertices in its neighbors N(v), otherwise T has at most k pendent

vertices. Let v1, v2, · · · , vr (r ≥ 2) be the pendent vertices in N(v). Also,

there must exist a non-pendent vertex u ∈ N(v) since T is not a star. Hence

T has the form showed in Figure 2(a), where |V (T3)| > 1. By Lemma 2.1,

i(T ) = i(T1) + i(T2)

i(T (2k)) = i(T (2k−1)) + 2i(T (2k−3))

where T1 = T−v1 and T2 = T−v1−v. T1 is a tree of order m−1 = 2k−1 with

at least k = [2k−1
2

] + 1 pendent vertices. By induction, i(T (2k−1)) ≤ i(T1).
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Now we only need to show that i(T (2k−1)) ≤ i(T1) and 2i(T (2k−3)) < i(T2),

or i(T (2k−1)) < i(T1) and 2i(T (2k−3)) ≤ i(T2).

...
...

vu

v1 vr
v3 vr

v(u)T3 T4 T3 T4

(a) T (b) T ′
2

Figure 2. The trees T and T ′
2.

Subcase 1.1. T1 = T (2k−1).

By the definition of T1 and T 6= T (2k), T must be a tree obtained from

T (2k−1) by attaching a pendent edge to some vertex i (1 < i < k) of degree 3,

see Figure 3. Then T2 = T − v1− v = K1 ∪T ′ ∪T ′′, where K1, T ′ and T ′′ are

the components of T−v1−v. Note that T ′∪T ′′ is a proper spanning subgraph

of T (2k−3) since we can obtain T (2k−3) by adding an edge between the vertices

i−1 and i+1 in T ′∪T ′′. By Lemma 2.1, i(T ′∪T ′′) > i(T (2k−3)) and i(T2) =

i(K1∪T ′∪T ′′) > 2i(T (2k−3)). So, we have proved that i(T (2k−1)) ≤ i(T1) and

2i(T (2k−3)) < i(T2).

. . . . . .
1 2 ii-1 i+1 k-1 k

Figure 3. The tree T in the subcase 1.1.

Subcase 1.2. T1 6= T (2k−1).

By induction, i(T1) > i(T (2k−1)). Let T ′
2 be the tree obtained from T

by deleting vertices v1 and v2 and contracting the edge uv, see Figure 2(b).

Then T ′
2 is a tree of order 2k − 3 with at least k − 1 = [2k−3

2
] + 1 pendent

vertices. By induction, i(T ′
2) ≥ i(T (2k−3)). Note that T2 = T − v1 − v =
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T3 ∪ (T4− v)∪ (r− 1)K1 is a spanning subgraph of K1 ∪ T ′
2. By Lemma 2.1,

i(T2) ≥ 2i(T ′
2) ≥ 2i(T (2k−3)). Hence we have proved that i(T (2k−1)) < i(T1)

and 2i(T (2k−3)) ≤ i(T2).

Case 2. m = 2k + 1 is odd. T ∈ Tm.

If T has at least k + 2 pendent vertices, then we can prove that i(T ) >

i(T (2k+1)) by the same reason as in Case 1.

If T has exactly k+1 pendent vertices, then T has at least one vertex with

degree 2. Hence T has the form showed in Figure 4(a). Let T ′ be the tree

from T by contracting the edge uw and T ′′ the tree from T ′ by contracting

the edge uv, showed in Figure 4. We have T ′ ∈ Tm−1 and T ′′ ∈ Tm−2. By

Lemma 2.1,

i(T ) = i(T − w) + i(T −NT [w])
= i(T1 ∪ T2) + i((T1 − u) ∪ (T2 − v))
= (i(T ′) + i((T1 −NT1 [u]) ∪ (T2 −NT2 [v]))) + i((T1 − u) ∪ (T2 − v))
= i(T ′) + (i((T1 − u) ∪ (T2 − v)) + i((T1 −NT1 [u]) ∪ (T2 −NT2 [v])))
= i(T ′) + [i(T ′′ − x) + i(T ′′ −NT ′′ [x])]
= i(T ′) + i(T ′′)
≥ i(T (2k)) + i(T (2k−1)) (by induction)
= i(T (2k+1).

with the equality if and only if T ′ = T (2k) and T ′′ = T (2k−1), i.e., T = T (2k+1).

Thus, the theorem follows.

T1 T2u vw u vT1 T2 T1 T2x

(a) T (b) T ′ (c) T ′′

Figure 4. The trees T , T ′ and T ′′ in the case 2.

3 The minimal Merrifield-Simmons index in

Tn

In the following, we give the minimal Merrifield-Simmons index in Tn, i.e.,

the Merrifield-Simmoms index of the tree T (n).
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Theorem 3.1. i(T (2k+1)) = 1
2
(2 +

√
3)(1 +

√
3)k + 1

2
(2−√3)(1−√3)k

i(T (2k)) = 1
2
(3 + 2

√
3)(1 +

√
3)k−1 + 1

2
(3− 2

√
3)(1−√3)k−1.

Proof. By Lemma 2.1, we have

i(T (2k+1)) = i(T (2k)) + i(T (2k−1))

i(T (2k)) = i(T (2k−1)) + i(K1 ∪ T (2k−3)) = i(T (2k−1)) + 2i(T (2k−3)).

Let f(k) = i(T (2k+1)). Then {f(k)} satisfies the following recurrence

relation





f(k) = 2f(k − 1) + 2f(k − 2);
f(1) = 5;
f(2) = 14.

The solution f(k) of the recurrence relation above is

f(k) =
1

2
(2 +

√
3)(1 +

√
3)k +

1

2
(2−

√
3)(1−

√
3)k.

And

i(T (2k+1)) = 1
2
(2 +

√
3)(1 +

√
3)k + 1

2
(2−√3)(1−√3)k

i(T (2k)) = f(k)− f(k − 1)

= 1
2
(3 + 2

√
3)(1 +

√
3)k−1 + 1

2
(3− 2

√
3)(1−√3)k−1.
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