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Abstract

The general Randić index Rα(G) of a graph G is defined as the sum

of the weights (d(u)d(v))α of all edges uv of G, where d(u) denotes the

degree of a vertex u in G. In this paper, we consider bicyclic graphs

with n vertices and give the structure of graphs with minimum general

Randić index for α ≤ −2.

1 Introduction

In 1975, M. Randić proposed a pair of chemical indices R(G) and R−1(G) for a

(chemical) graph G, i.e.,

R(G) =
∑

uv∈E(G)

(d(u)d(v))−1/2, R−1(G) =
∑

uv∈E(G)

(d(u)d(v))−1,
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where d(u) denotes the degree of a vertex u in G. Randić himself demonstrated that his

index was well correlated with a variety of physico-chemical properties of alkanes, such

as boiling point, enthalpy of formation, parameters in the Antoine equation (for vapor

pressure), surface area, and solubility in water. Eventually, this structure-descriptor

becomes one of the most popular topological indices, and scores of its chemical and

pharmacological applications have been reported. Like other successful chemical in-

dices, these two indices have received considerable attention from both chemists and

mathematicians. For a comprehensive survey of its mathematical properties see the

recent book of Li and Gutman on Mathematical Aspects of Randić-Type Molecular

Structure Descriptors [8].

In 1998 Bollobás and Erdös [1] generalized this index by replacing −1
2

by any

real number α, which is called the general Randić index. Hu, Li and Yuan [6, 7]

characterized the trees with extremal general Randić index. And there are also many

results on the unicyclic graphs. For n ≥ 3, let S+
n denote the unicyclic graph obtained

from the star Sn on n vertices by joining its two vertices of degree one. For α = −1
2
,

Gao and Lu [5] showed that for a unicyclic graph G, R− 1
2
(G) ≥ (n − 3)(n − 1)−

1
2 +

2(2n− 2)−
1
2 + 1

2
, and the equality holds if and only if G ∼= S+

n . For general α, Wu and

Zhang [12], Li, Wang and Zhang [10] gave the structure description of the unicyclic

graphs with the minimum general Randić index. Li, Shi and Xu [9] investigated the

unicyclic graphs with maximum general Randić index for α > 0. Caporossi et al. [4]

characterized the bicyclic graphs with maximum Randić index. Liu and Huang [11]

investigated the bicyclic graphs with the minimum value for α > 0. In this paper, we

focus on investigating the bicyclic graphs with minimum general Randić index.

For convenience, we need some additional notations and terminologies. A vertex of

degree 1 in a graph is called a leaf vertex (or simply, a leaf ). The class G of graphs is

defined as follows: a bicyclic graph G belongs to G, if and only if, G has three cycles

whose induced subgraph is K4\e (is also called kite), and the vertices not on the cycle

are leaves. The class H of graphs is defined as follows: a bicyclic graph H belongs to
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H, if and only if, H has three cycles whose induced subgraph is obtained from K4\e by

subdividing an edge whose two end vertices are degree 3, and the vertices not on the

cycle are leaves. The class K of graphs is defined as follows: a bicyclic graph K belongs

to K, if and only if, K has two triangles with a common vertex, and the vertices not

on the cycle are leaves. The class K′ (K′′) of graphs is defined as follows: a bicyclic

graph K ′ (K ′′) belongs to K′ (K′′), if and only if, K ′ (K ′′) has two triangles which are

connected by one path P1 (P2), and the vertices not on the cycle are leaves. We give an

example for each class of graphs in Figure 1.1. Undefined notations and terminologies

can be found in [2].

G H K

K' K''

Figure 1.1

2 Some Lemmas

Since the problem is trivial if the graphs under consideration have fewer than 8

vertices, we only consider bicyclic graphs with at least 8 vertices in the following.

If G is a bicyclic graph with three cycles, denote u and v the only two common

vertices of the three cycles. Denote P
(1)
uv , P

(2)
uv and P

(3)
uv the three paths connected u

and v on the cycles. If G is a bicyclic graph with two cycles, there must be a path
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connecting the two cycles. Denote u and v the two common vertices of the path and

two cycles, respectively, and Cu (Cv) the cycle which contains the vertex u (v).

Lemma 2.1 (Theorem 3.1 of [12]) Suppose the star Sn, n ≥ 2, is disjoint from a

graph G and v is its center. For a vertex u ∈ V (G), let G1 = G ∪ Sn + uv, and G2

be the graph obtained from G by attaching a star Sn+1 to the vertex u with u as its

center, as shown in Figure 2.1. If u is not an isolated vertex, then Rα(G1) > Rα(G2)

for α < 0.

G

G G

G

u
v

u

S S

n

1 2

n n+1

} }n-1

Figure 2.1

Lemma 2.2 (i) If ax ≥ 2, then for α < 0, the function

g(x, a) = x(x + 3)α + (x + 3)α(a + 2)α + a(a + 2)α − (x + a + 1)(x + a + 4)α > 0.

(ii) If xy ≥ 4, then for α < 0, the function

f(x, y) = x(x + 3)α + y(y + 3)α + (x + 3)α(y + 3)α − (x + y + 1)(x + y + 5)α > 0.

(iii) If x ≥ 0 and a ≥ 1, then for α < 0, the function

h(x, a) = x(x + 3)α + a(a + 2)α + (2x + 6)α + (2a + 4)α − (x + a + 2)(x + a + 5)α > 0.

Proof. (i) Since ax ≥ 2 and α < 0, we have

g(x, a) = x(x + 3)α + (x + 3)α(a + 2)α + a(a + 2)α − (x + a + 1)(x + a + 4)α

= x [(x + 3)α − (x + a + 4)α] + a [(a + 2)α − (x + a + 4)α]

+ [(ax + 2x + 3a + 6)a − (x + a + 4)a]

= −α
[
ξα−1
1 x(a + 1) + ξα−1

2 a(x + 2)− ξα−1
3 (ax + x + 2a + 2)

]

> −αξα−1
3 (ax− 2) ≥ 0,
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where ξ1 ∈ (x + 3, x + a + 4), ξ2 ∈ (a + 2, x + a + 4), ξ3 ∈ (x + a + 4, ax + 2x + 3a + 6)

and ξ1, ξ2 < ξ3.

(ii) Similar to the proof of (i).

(iii) We have h(x, a) = x[(x + 3)α − (x + a + 5)α] + a[(a + 2)α − (x + a + 5)α] +

[(2x + 6)α − (x + a + 5)α] + [(2a + 4)α − (x + a + 5)α].

If x ≥ a− 1, then 2x + 6 ≥ x + a + 5, 2a + 4 ≤ x + a + 5. So

h(x, a) ≥ x[(x + 3)α − (x + a + 5)α] + a[(a + 2)α − (x + a + 5)α]

+[(2x + 6)α − (x + a + 5)α]

= −α[ξα−1
1 x(a + 2) + ξα−1

2 a(x + 3)− ξα−1
3 (x− a + 1)]

> −αξα−1
3 [x(a + 2) + a(x + 3)− x + a− 1] > 0,

where ξ1 ∈ (x + 3, x + a + 5), ξ2 ∈ (a + 2, x + a + 5), ξ3 ∈ (x + a + 5, 2x + 6) and

ξ1, ξ2 < ξ3. If x < a− 1, then 2x + 6 < x + a + 5, 2a + 4 > x + a + 5. We have

h(x, a) > x[(x + 3)α − (x + a + 5)α] + a[(a + 2)α − (x + a + 5)α]

+[(2a + 4)α − (x + a + 5)α]

= −α[ξα−1
1 x(a + 2) + ξα−1

2 a(x + 3)− ξα−1
3 (a− x− 1)]

> −αξα−1
3 [x(a + 2) + a(x + 3)− a + x + 1] > 0,

where ξ1 ∈ (x + 3, x + a + 5), ξ2 ∈ (a + 2, x + a + 5), ξ3 ∈ (x + a + 5, 2a + 4) and

ξ1, ξ2 < ξ3.

Lemma 2.3 For α ≤ −2,

(i) (x + 2α)(x + 3)α − (x + 1)(x + 4)α > 0 for x ≥ 3;

(ii) (x + 2 · 3α)(x + 2)α − (x + 1 + 3α)(x + 4)α > 0 for x ≥ 1;

(iii) (x + 3α)(x + 3)α − (x + 1)(x + 5)α > 0 for x ≥ 1;

(iv)(x + 3α)(x + 2)α − (x + 1 + 3α)(x + 3)α > 0 for x ≥ 2.
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Proof. (1).We have (x+3
x+4

)α > (x+3
x+4

)−2 > x+1
x

, since x(x + 4)2 − (x + 1)(x + 3)2 =

x2 + x − 9 > 0 for x ≥ 3. That implies (x + 2α)(x + 3)α − (x + 1)(x + 4)α >

x(x + 3)α − (x + 1)(x + 4)α > 0.

(ii), (iii), (iv) can be proved similarly to the proof of (i).

3 The main results for α ≤ −2

From Lemma 2.1, we have the following result:

Lemma 3.1 For α < 0, assume G is the minimum bicyclic graph with order n. If T

is a tree attached to a vertex w, which is in some cycle of G, then T must be a star

with w as its center.

Lemma 3.2 Let G be a bicyclic graph with order n. If G has three cycles and G /∈
G⋃H, then there exists a graph G′ ∈ G⋃H with the same order of G, satisfying that

Rα(G) ≥ Rα(G′) for α < 0.

Proof. Let G be a bicyclic graph with order n, having three cycles, but G /∈ G⋃H.

In the following, we will find a graph G′ ∈ G⋃H with the same order of G satisfying

Rα(G) > Rα(G′). By Lemma 3.1, we only consider the following three cases.

Case 1. In path P
(i)
uv (for some i ∈ {1, 2, 3}), there are two vertices w1 and w2

(w1, w2 /∈ {u, v}), such that Sa+1, Sb+1 (a, b ≥ 1) are the two stars attached to w1, w2,

respectively.

Without loss of generality, suppose the degrees of all vertices in the path Pw1w2 are

two (if there exists such vertex) in G and |E(Pw1w2)| = c. Now transform G into a new

bicyclic graph G′ as follows: contracting the path Pw1w2 into one vertex w1(w2), and

attaching a star Sa+b+c+1 to it (see Figure 3.1). Similarly to the proof of Lemma 3.5

of [12], we can prove Rα(G) > Rα(G′) for α < 0.
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}

c {

u

w }

Pw1w2

a

b

G

} a+b+c

u

G'

v v1

w2

w1

(w2)

Figure 3.1

Case 2. In path P
(i)
uv (for some i ∈ {1, 2, 3}, without loss of generality, assume

i = 3), there is only one vertex w /∈ {u, v}, such that Sa+1 (a ≥ 1) is a star attached

to w.

Suppose |E(P
(i)
uv )| ≥ 3 and |Pwv| ≥ |Puw| = c. Let u1, u2, u3 be the only three

neighbors of u on cycles and d(ui) = yi ≥ 2. Let d(u) = x + 3. Now transform G into

a new bicyclic graph G′ as follows: contracting the path Puw into one vertex u(w), and

attaching a star Sx+a+c to it (see Figure 3.2).

G

} a

u

G'

v

w

x+a+c

u

v

} }

x

(w)
u1

u2

u3 u1

u2

Figure 3.2

If c = 1, that is uw ∈ E(G), then

Rα(G)−Rα(G′)

= x(x + 3)α + (x + 3)α(a + 2)α + a(a + 2)α + (yα
1 + yα

2 )(x + 3)α + 2α(a + 2)α

−[(x + a + 1)(x + a + 4)α + (yα
1 + yα

2 )(x + a + 4)α + 2α(x + a + 4)α].
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If ax ≥ 2, by Lemma 2.2 (i), we have Rα(G)−Rα(G′) > g(x, a) > 0.

If a = x = 1, we have

Rα(G)−Rα(G′) > 4α + 12α + 3α − 3 · 6α

= (3α − 6α) + (4α − 6α)− (6α − 12α)

= (3α − 6α)(1− 2α) + (4α − 6α) > 0.

If x = 0 and a ≥ 2, we have

Rα(G)−Rα(G′)

> 3α(a + 2)α + a(a + 2)α + 2α(a + 2)α − (a + 1)(a + 4)α − 2α(a + 4)α

= a[(a + 2)α − (a + 4)α] + [(2a + 4)a − (a + 4)a] + [(3a + 6)a − (2a + 8)a]

= −α[2aξα−1
1 − aξα−1

2 − (a− 2)ξα−1
3 ] > −αξα−1

2 [2a− a− (a− 2)] > 0,

where ξ1 ∈ (a + 2, a + 4), ξ2 ∈ (a + 4, 2a + 4), ξ3 ∈ (2a + 8, 3a + 6) and ξ1 < ξ2 < ξ3.

If x = 0 and a = 1, we have Rα(G)−Rα(G′) > 9α + 3α + 6α − 2 · 5α − 10α > 0.

If c ≥ 2, then by Lemma 2.2 (iii), we have

Rα(G)−Rα(G′)

= x(x + 3)α + 2α(x + 3)α + a(a + 2)α + 2 · (2a + 4)α + (c− 2)4α

+(yα
1 + yα

2 )(x + 3)α − (x + a + c)(x + a + c + 3)α − (yα
1 + yα

2 )(x + a + c + 3)α

−2α(x + a + c + 3)α

> x(x + 3)α + a(a + 2)α + (2x + 6)α + (2a + 4)α + (c− 2)4α

−(x + a + c)(x + a + c + 3)α

> x(x + 3)α + a(a + 2)α + (2x + 6)α + (2a + 4)α − (x + a + 2)(x + a + 5)α

= h(x, a) > 0.

Case 3. In path P
(i)
uv (for some i ∈ {1, 2, 3}, without loss of generality, suppose

i = 3 ), each vertex except u and v has degree two.
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Let u1, u2, u3 be the only three neighbors of u on cycles and d(ui) = yi ≥ 2. Let

d(u) = x + 3. Now transform G into a new bicyclic graph G′ as follows: contracting

the path uu3 into one vertex u(u3), and attaching a star Sx+1 to it.

We have

Rα(G)−Rα(G′) = x(x + 3)α + (yα
1 + yα

2 + 2α)(x + 3)α + 4α

−[(x + 1)(x + 4)α + (yα
1 + yα

2 + 2α)(x + 4)α]

= x[(x + 3)α − (x + 4)α] + [4α − (x + 4)α] > 0.

Thus, we complete the proof.

By the same method, we have

Lemma 3.3 Let G be a bicyclic graph with order n. If G has two cycles and G /∈
K⋃K′ ⋃K′′, then there exists a graph G′ ∈ K⋃K′ ⋃K′′ with the same order of G,

satisfying that Rα(G) > Rα(G′) for α < 0.

Lemma 3.4 If G ∈ H is a bicyclic graph with order n, then there exists a graph G′ ∈ G
with the same order of G, satisfying that Rα(G) ≥ Rα(G′) for α ≤ −2.

Proof. Let G ∈ H be a bicyclic graph with order n. Set d(v) = x+3 and d(u) = y +3.

Without loss of generality, we suppose y ≥ x ≥ 0. Let u1, u2 and u3 be the only three

neighbors of u on cycles with degree a + 2, b + 2 and c + 2, respectively (see Figure

3.3).

Case 1. y ≥ 1

Now transform G into a new bicyclic graph G′ as follows: contracting edge uu3 into

one vertex u(u3), and attaching a star Sy+c+1 to it (see Figure 3.3). We have

Rα(G)−Rα(G′)

= c(c + 2)α + y(y + 3)α + (c + 2)α(x + 3)α + [(a + 2)α + (b + 2)α + (c + 2)α](y + 3)α

−(y + c + 1)(y + c + 4)α − [(x + 3)α + (a + 2)α + (b + 2)α](y + c + 4)α. (3.1)
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G'

u

v

G

u (   )

u1

u3

u2 u2

}

y

}

x

v

u1

u3

}

y+c+1

}
x

Figure 3.3

Subcase 1.1. cy ≥ 2

Since cy ≥ 2, by Lemma 2.2 (i), Rα(G)−Rα(G′) ≥ g(y, c) > 0.

Subcase 1.2. c = y = 1

By (3.1), we have

Rα(G)−Rα(G′) > 4α + 3α + 12α + 3α(x + 3)α + [(a + 2)α + (b + 2)α]4α

−3 · 6α − [(x + 3)α + (a + 2)α + (b + 2)α]6α

> 4α + 3α + 12α − 3 · 6α > 0

Subcase 1.3. c = 0, y ≥ 1

We only consider the case of a = b = c = 0. Since otherwise, if a 6= 0, we can

construct G′ by contracting the edge uu1 and do as above. Then by (3.1), we have

Rα(G)−Rα(G′)

= y(y + 3)α + 2α(x + 3)α + 3 · 2α(y + 3)α − (y + 1)(y + 4)α

−2 · 2α(y + 4)α − (y + 4)α(x + 3)α

> [y(y + 3)α + 2α(y + 3)α − (y + 1)(y + 4)α] + [2α − (y + 4)α](x + 3)α

> (y + 2α)(y + 3)α − (y + 1)(y + 4)α.
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By Lemma 2.3 (i), we have Rα(G)−Rα(G′) > 0 for y ≥ 3. For y = 1, 2, we can verify

Rα(G)−Rα(G′) > 0 by simple calculation.

Case 2. y = 0

G'

u

v

G

u (    )

u1

u3

u2

u2

v

u1

u3

}

  c+1

Figure 3.4

Since y ≥ x ≥ 0, x = 0. By our assumption, the order of G is at least 8, then one

of a, b and c is not zero. Without loss of generality, assume c ≥ 1. Now transform G

into a new bicyclic graph G′ as follows: contracting edge uu3 into one vertex u(u3),

and attaching a star Sc+1 to it (see Figure 3.4). Then, by Lemma 2.3 (ii), we have

Rα(G)−Rα(G′)

= c(c + 2)α + 2 · 3α(c + 2)α + [(a + 2)α + (b + 2)α] · 3α

−(c + 1)(c + 4)α − [3α + (a + 2)α + (b + 2)α](c + 4)α

> (c + 2 · 3α)(c + 2)α − (c + 1 + 3α)(c + 4)α > 0.

We complete the proof.

Lemma 3.5 If G ∈ K′ ⋃K′′ is a bicyclic graph with order n, then there exists a graph

G′ ∈ K with the same order of G, satisfying that Rα(G) > Rα(G′) for α ≤ −2.

Proof. Suppose G be a bicyclic graph with order n and G ∈ K′ ⋃K′′. Let d(u) = x+3,

d(v) = y + 3 and suppose x ≥ y ≥ 0.
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If G ∈ K′, we will find a new graph G′ ∈ K with the same order of G, such that

Rα(G) > Rα(G′). G′ is constructed from G by contracting edge uv to a vertex u(v)

and attaching a star Sx+y+1 to the vertex u (see Figure 3.5). We have

G'

u v

x y

} }

G

x+y+1

} u(v)

Figure 3.5

Rα(G)−Rα(G′) > x(x + 3)α + y(y + 3)α + (x + 3)α(y + 3)α

−(x + y + 1)(x + y + 5)α. (3.2)

If xy ≥ 4, by Lemma 2.2 (ii), Rα(G)−Rα(G′) > f(x, y) > 0.

Therefore, we only consider the following five cases other than xy ≥ 4.

(1). if x = 3 and y = 1,

Rα(G)−Rα(G′) > 4α + 24α + 3 · 6α − 5 · 9α

> (4α − 4 · 8α) + (6α − 9α) + 24α + 2 · 6α

> 4α − 4 · 2α · 4α ≥ 0;

(2). if x = 2 and y = 1, similarly, Rα(G)−Rα(G′) > 4α + 20α + 2 · 5α − 4 · 8α > 0;

(3). if x = 1 and y = 1,

Rα(G)−Rα(G′) > 2 · 4α + 16α − 3 · 7α

= (2− 3 · (7
4
)α) · 4α + 16α > 0;

(4). if y = 0 and x > 0, by Lemma 2.3 (iii), we have

Rα(G)−Rα(G′) > (x + 3α)(x + 3)α − (x + 1)(x + 5)α > 0;
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(5). if x = y = 0, we find another new graph G′′ ∈ K with the same order of G

(see Figure 3.6). Without loss of generality, we suppose a = max{a, b, c, d}. By our

assumption, the order of G is at least 8, then we have a ≥ 1.

G''

u v

}

G

} u(v)

}

}
} }}}

a

b c

d d

cb

a+1

Figure 3.6

Rα(G)−Rα(G′′)

= a(a + 2)α + (a + 2)α[3α + (b + 2)α] + 3α[(b + 2)α + (c + 2)α + (d + 2)α] + 9α

−(a + 1)(a + 3)α − (a + 3)α[4α + (b + 2)α]− 4α[(b + 2)α + (c + 2)α + (d + 2)α]

> a(a + 2)α + (a + 2)α[3α + (b + 2)α] + 3α(b + 2)α + 9α

−(a + 1)(a + 3)α − (a + 3)α[4α + (b + 2)α]− 4α(b + 2)α.

If a ≥ 2, by Lemma 2.3 (iv), we have

Rα(G)−Rα(G′′) > 9α + (a + 3α)(a + 2)α − (a + 1 + 4α)(a + 3)α

> (a + 3α)(a + 2)α − (a + 1)(a + 3)α > 0.

For a = 1, we consider all the possible values of b, then we can verify that Rα(G)−
Rα(G′′) > 0.

If G ∈ K′′, we will find a new graph G′ ∈ K′ with the same order of G, such that

Rα(G) ≥ Rα(G′). Denote w the common neighbor vertex of u and v and d(w) = t + 2.

G′ is constructed from G by contracting edge uw to a vertex u(w) and attaching a star

Sx+t+1 to the vertex u (see Figure 3.7). We have

Rα(G)−Rα(G′) > x(x + 3)α + t(t + 2)α + [(x + 3)α + (y + 3)α](t + 2)α

−(x + t + 1)(x + t + 4)α − (y + 3)α(x + t + 4)α
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G'

u v

x y

} }

G

w

}

t

u(w) v

x+t+1 y

} }
Figure 3.7

If tx ≥ 2, then by Lemma 2.2 (i), Rα(G)−Rα(G′) ≥ g(x, t) > 0.

If t = x = 1, then Rα(G)−Rα(G′) > 4α + 3α + 12α − 3 · 6α > 0.

If t = 0 and x > 0, since x ≥ y, we have

Rα(G)−Rα(G′)

> x(x + 3)α + 2α[(x + 3)α + (y + 3)α]− (x + 1)(x + 4)α − (y + 3)α(x + 4)α

> (x + 2α)(x + 3)α − (x + 1)(x + 4)α + (x + 3)α[2α − (x + 4)α].

By Lemma 2.3 (i), Rα(G) − Rα(G′) > 0 for x ≥ 3. For x = 1, 2, we can verify

Rα(G)−Rα(G′) > 0 by simple calculation.

If x = 0 and t > 0, then y = 0. By Lemma 2.3 (ii), we have

Rα(G)−Rα(G′) > t(t + 2)α + 2 · 3α(t + 2)α − (t + 1)(t + 4)α − 3α(t + 4)α > 0.

If t = x = y = 0, we find another new graph G′′ ∈ K′ with the same order of G

(see Figure 3.8). Without loss of generality, we suppose a = max{a, b, c, d}. By our

assumption, the order of G is at least 8, then we have a ≥ 1.

G''

u v

}

G

}
u(w)

}

}

} }}}

a

b c

d d

cb

a+1

w v

Figure 3.8
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Rα(G)−Rα(G′′) = a(a + 2)α + (a + 2)α[3α + (b + 2)α] + 2× 6α

−(a + 1)(a + 3)α − (a + 3)α[3α + (b + 2)α]− 9α.

Since a ≥ b, we have

Rα(G)−Rα(G′′) ≥ 2 · 6α − 9α + (a + 3α)(a + 2)α − (a + 1 + 3α)(a + 3)α

+(a + 2)α[(a + 2)α − (a + 3)α]

By Lemma 2.3 (iv), Rα(G) − Rα(G′′) > 0 for a ≥ 2. For a = 1, we can verify that

Rα(G)−Rα(G′′) > 0 by calculation.

Thus, we complete the proof.

By Lemma 3.2, 3.3, 3.4 and 3.5, we have the following theorem.

Theorem 3.6 For α ≤ −2, the minimum bicyclic graph must be in G or K.
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[5] J. Gao, M. Lu, On the Randić index of unicyclic graphs, MATCH Commun. Math.

Comput. Chem. 53 (2005) 377–384.

- 599 -



[6] Y. Hu, X. Li, Y. Yuan, Trees with minimum general Randić index, MATCH Com-
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