MATCH Communications in Mathematical and in Computer Chemistry

Two Results on Extremal Chemical Trees with Maximum General Randić Index R_{α} for $\alpha < 0$

Jie Zheng

Department of Applied Mathematics Donghua University, Shanghai 201620, P.R. China Email: jzheng@dhu.edu.cn

(Received September 18, 2007)

Abstract

A tree is called chemical if none of its vertices has a degree greater than four. The general Randić index $R_{\alpha}(G)$ for a graph G is defined as $\sum_{(uv)} (d(u)d(v))^{\alpha}$, where uv is an edge of G, $\alpha \in \mathbb{R}$ and $\alpha \neq 0$. This paper is contributed to the study of extremal chemical trees with maximum general Randić index R_{α} for $\alpha < 0$. It is proved that, among the chemical trees of order $n(n \geq 10)$, the path P_n is the extremal one with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\tilde{\alpha}(n), 0)$, where $-0.909 < \tilde{\alpha}(n) < -0.747$ and $\tilde{\alpha}(n)$ depends on n. Moreover, we characterize, among the chemical trees of order n = 5k + d, $(k \geq 3, k \in \mathbb{N}, d = 0, 2, 4)$, the asymptotic result for the extremal chemical trees with maximum R_{α} when $\alpha \to -\infty$.

1 Introduction

In 1975, in order to measure the extent of branching of the carbon-atom skeleton of saturated hydrocarbons, the chemist M. Randić proposed the following chemical index, later named *Randić index* or *connectivity index*.

Definition 1.1 Let uv be an edge connecting the vertices u and v. Then the connectivity index of a graph G, also called the Randić index, is defined as

$$R(G) = \sum_{uv} \frac{1}{\sqrt{d(u)d(v)}},$$

where d(u) and d(v) stand for the degrees of the vertices u and v, respectively, and the summation goes over all edges uv of G.

It was demonstrated that the Randić index is well correlated with a variety of physicochemical properties of alkanes, such as boiling point, enthalpy of formation, surface area and solubility in water [6, 7].

B. Bollobás and P. Erdös [2] later generalized the Randić index by replacing $-\frac{1}{2}$ with any real number $\alpha \neq 0$. It is called the *general Randić index* and denoted by $R_{\alpha}(G)$. That is,

$$R_{\alpha}(G) = \sum_{uv} (d(u)d(v))^{\alpha}.$$
 (1)

Trees are connected graphs that do not contain any cycle. The graphical representation of the carbon-atom skeleton of an alkane is usually called a chemical tree. Hence, a *chemical* tree is a tree in which no vertex has a degree greater than four. A vertex with degree one is called a *pendent vertex*. As usual, we use P_n to denote the *path* with *n* vertices.

For terminology and notations not defined here, we refer the reader to [1].

The results in [3, 9, 11] are on the extremal unicyclic graphs and bicyclic graphs with minimum or maximum R_{α} . There are several papers on upper and lower bounds for R_{-1} of the extremal (chemical) trees [4, 12, 17]. The problem of finding the extremal trees with maximum R_{α} among all trees of order *n* is discussed in [5]. It was proved that when $\alpha \in [-\frac{1}{2}, 0)$, the path P_n is the extremal one with maximum R_{α} . However, when $\alpha \in (-2, -\frac{1}{2})$, the problem is still open. In [13], the authors successfully characterized the extremal chemical trees with maximum R_{α} for any $\alpha > 0$. For more results on R_{α} , please refer to [8, 10, 14, 15, 16].

This paper focuses on the extremal chemical trees with maximum R_{α} for $\alpha < 0$. In the second section, it is proved that, for any integer $n(n \ge 10)$, there exists $\tilde{\alpha}(n)$, $-0.909 < \tilde{\alpha}(n) < -0.747$, such that among the chemical trees of order n, the path P_n is the extremal one with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\tilde{\alpha}(n), 0)$. In the third section, we obtain

that for any n = 5k + d, where $k \ge 3, k \in \mathbb{N}, d = 0, 2, 4$, there exists $\hat{\alpha}(n) < 0$ such that when $\alpha \in (-\infty, \hat{\alpha}(n))$, each tree in $\mathcal{T}(n, d)$ (Definition 3.1) is extremal with maximum R_{α} among the chemical trees of order n. The discussions in the last section show that, for **any** $n \ge 10$ and **any** $\alpha < 0$, to completely determine the extremal chemical trees with maximum R_{α} is much more difficult.

Symbol	Explanation: the root of the equation	Value
α_0	$3 \times 4^x - 3^x - 2 \times 6^x = 0$	$-3.082 < \alpha_0 < -3.081$
α_1	$3 \times 4^x + 8^x - 2^x - 2 \times 6^x - 12^x = 0$	$-0.748 < \alpha_1 < -0.747$
α_2	$9^x + 4 \times 6^x + 2 \times 2^x - 7 \times 4^x = 0$	$-0.909 < \alpha_2 < -0.908$
α_3	$4 \times 12^{x} + 8 \times 6^{x} + 6 \times 2^{x} - 18 \times 4^{x} = 0$	$-0.834 < \alpha_3 < -0.833$

Some data will be mentioned in the following discussion.

2 P_n as extremal chemical tree

We obtain the extremal chemical trees of order $n \ (4 \le n \le 9)$ with maximum R_{α} when $\alpha < 0$ as the following tabular.

n	α	Extremal chemical tree	Maximum value of R_{α}
n = 4	$\alpha < 0$	• • • •	$2 \times 2^{\alpha} + 4^{\alpha}$
n = 5	$\alpha < 0$	• • • • • •	$2\times 2^\alpha + 2\times 4^\alpha$
n = 6	$\alpha_0 \le \alpha < 0$	• • • • • • •	$3\times 4^\alpha + 2\times 2^\alpha$
	$\alpha \le \alpha_0$		$3^\alpha + 2 \times 6^\alpha + 2 \times 2^\alpha$
n = 7	$-1 \leq \alpha < 0$	• • • • • • •	$4\times 4^\alpha + 2\times 2^\alpha$
	$\alpha \leq -1$		$3\times 6^\alpha + 3\times 2^\alpha$
n = 8	$-1 \leq \alpha < 0$	• • • • • • • •	$5 \times 4^{\alpha} + 2 \times 2^{\alpha}$
	$\alpha \leq -1$		$3\times 6^{\alpha} + 3\times 2^{\alpha} + 4^{\alpha}$
n = 9	$-1 \leq \alpha < 0$	•••••	$6 \times 4^{\alpha} + 2 \times 2^{\alpha}$
	$\alpha \leq -1$		$4\times8^{\alpha}+4\times2^{\alpha}$

The results in the above tabular suggest a conjecture that, for $\forall \alpha \in [-1, 0)$, the path P_n is extremal with maximum R_{α} among the chemical trees of order n.

Unfortunately, this conjecture is false. (See Theorem 2.2.)

Theorem 4.3 in [5] implies that for any $\alpha \in [-\frac{1}{2}, 0)$, P_n is extremal with maximum R_{α} among the chemical trees of order n. We will show that the result can be improved by replacing $-\frac{1}{2}$ by $\tilde{\alpha}(n)$, where $-0.909 < \tilde{\alpha}(n) < -0.747$.

Lemma 2.1 Among the chemical trees of order $n(n \ge 4)$, if T is the extremal one with maximum $R_{\alpha}(-1 < \alpha < 0)$, then the adjacent vertices of the pendent vertices in T are of degree two.

Proof. Let v be a pendent vertex of a chemical tree T and v' be the adjacent vertex of v.

1. If d(v') = 3 and v_1, v_2 are adjacent vertices of v', do the following operation to change T to T'.

Suppose $d(v_1) = a, d(v_2) = b$ and $a \le b$. Then

$$R_{\alpha}(T') - R_{\alpha}(T) = [4^{\alpha} + (2a)^{\alpha} + (2b)^{\alpha}] - [3^{\alpha} + (3a)^{\alpha} + (3b)^{\alpha}].$$
(2)

For any integers $a, b, 1 \le a \le b \le 4$, the result for (2) is positive when $-1 < \alpha < 0$. That is,

$$R_{\alpha}(T') > R_{\alpha}(T).$$

2. If d(v') = 4 and v_1, v_2, v_3 are adjacent vertices of v', do the following operation to change T to T'.

Suppose $d(v_1) = a, d(v_2) = b, d(v_3) = c$ and $a \le b \le c$. Then

$$R_{\alpha}(T') - R_{\alpha}(T) = [6^{\alpha} + (2a)^{\alpha} + (3b)^{\alpha} + (3c)^{\alpha}] - [4^{\alpha} + (4a)^{\alpha} + (4b)^{\alpha} + (4c)^{\alpha}].$$
 (3)

For any integers $a, b, c, 1 \le a \le b \le c \le 4$, the result for (3) is positive when $-1 < \alpha < 0$. That is,

$$R_{\alpha}(T') > R_{\alpha}(T).$$

Two cases are both contradictory to the condition that T is the extremal one with maximum $R_{\alpha}(-1 < \alpha < 0)$. So the lemma is proved.

Theorem 2.2 Among the chemical trees of order $n(n \ge 10)$, the path P_n is the extremal one with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\tilde{\alpha}(n), 0)$, where $-0.909 < \tilde{\alpha}(n) < -0.747$ and $\tilde{\alpha}(n)$ depends on n.

Proof. Let T be an extremal chemical tree with maximum $R_{\alpha}(-1 < \alpha < 0)$. By Lemma 2.1, the adjacent vertices of the pendent vertices in T are of degree two. If T is not P_n , there exists a vertex v in T and T has one of the following structures.

Structure A

Structure B

1. If T is of Structure A, change T to T' as follows:

Assume d(u) = a and $2 \le a \le 4$. (Lemma 2.1 implies $a \ne 1$.) Then

$$R_{\alpha}(T') - R_{\alpha}(T) = 3 \times 4^{\alpha} + (2a)^{\alpha} - 2^{\alpha} - 2 \times 6^{\alpha} - (3a)^{\alpha}$$
(4)

For any $\alpha \in (\alpha_1, 0)$, the result for (4) is positive. It means if T is an extremal chemical tree with maximum R_{α} when $\alpha \in (\alpha_1, 0)$, T can not be Structure A.

2. If T is of Structure B, change T to T' as follows:

By similar discussion as case 1, we can obtain that if T is an extremal chemical tree with maximum R_{α} when $\alpha \in (\alpha_1, 0), T$ can not be Structure B.

Thus we prove that when $\alpha \in (\alpha_1, 0)$, the path P_n is the extremal one with maximum R_{α} among all chemical trees of order n.

For any $n \ge 10$ and $\alpha < \alpha_2$, each chemical tree with the following structure has a greater R_{α} than that of P_n . So the path P_n is not the extremal chemical with maximum R_{α} when $\alpha \in (-\infty, \alpha_2)$.

- 561 -

Since $-0.909 < \alpha_2 < \alpha_1 < -0.747$, we get that when $\alpha \in [-0.747, 0)$, P_n is the extremal one with maximum R_{α} among the chemical trees of order n and when $\alpha \in (-\infty, -0.909]$, P_n is not the extremal one with maximum R_{α} .

For any $n \ge 10$, suppose T' is the chemical tree of order n with maximum $R_{\alpha}(\alpha < 0)$ satisfying the following two conditions: (1) T' is not P_n and (2) As an extremal chemical tree with maximum R_{α} , the α of T' is nearest to 0. The function $R_{\alpha}(T') - R_{\alpha}(P_n)$ is obviously a continue function on the variable α . Moreover, $R_{\alpha}(T') - R_{\alpha}(P_n) < 0$ when $-0.747 \le \alpha < 0$ and $R_{\alpha}(T') - R_{\alpha}(P_n) > 0$ when α is equal to some value smaller than -0.747. So by the Intermediate Value Theorem and the above discussion, there exists some $\tilde{\alpha}(n)$, $-0.909 < \tilde{\alpha}(n) < -0.747$, such that P_n is the extremal one with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\tilde{\alpha}(n), 0)$.

The following example shows that $\tilde{\alpha}(n)$ depends heavily on n. When n = 10, P_{10} is the extremal chemical tree with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\alpha_2, 0)$ and when $\alpha \in U^-(\alpha_2, \delta)$, where $\delta > 0$ and δ is small enough, the following chemical tree T_1 is the extremal one with maximum R_{α} . So $\tilde{\alpha}(10) = \alpha_2$. When n = 21, P_{21} is the extremal chemical tree with maximum $R_{\alpha}(\alpha < 0)$ if and only if $\alpha \in (\alpha_3, 0)$ and when $\alpha \in U^-(\alpha_3, \delta)$, where $\delta > 0$ and δ is small enough, the following chemical tree T_2 is the extremal one with maximum R_{α} . So $\tilde{\alpha}(21) = \alpha_3$.

Corollary 2.3 Among the chemical trees of order n, the path P_n is the extremal one with maximum Randić index and the maximum value is equal to $2 \times 2^{\alpha} + (n-3) \times 4^{\alpha}$.

3 Asymptotic result when $\alpha \to -\infty$

Definition 3.1 For any n = 5k + d ($k > 1, k \in \mathbb{N}, d = 0, 2, 4$), let $\mathcal{T}(n, d)$ be the set of trees that have the following structure

Furthermore, w_k is a pendent vertex in the subtree induced by the vertices w_1, w_2, \cdots, w_k .

Theorem 3.2 Among the chemical trees of order n = 5k + d ($k \ge 3, k \in \mathbb{N}, d = 0, 2, 4$), there exists $\hat{\alpha}(n) < 0$ such that when $\alpha \in (-\infty, \hat{\alpha}(n))$, each tree in $\mathcal{T}(n, d)$ is extremal with maximum R_{α} and the maximum value is equal to

$$(2k + \frac{d}{2}) \times 2^{\alpha} + (2k + \frac{d}{2} - 1) \times 8^{\alpha} + (k - 2) \times 16^{\alpha} + (1 + 2^{\alpha}) \times (4 + d)^{\alpha}.$$

Proof. Here we only prove the theorem when d = 0, the other two cases are completely similar.

Firstly, if a chemical tree T with n = 5k vertices has 2k + p (p > 0) edges (u, v) satisfying d(u) = 2 and d(v) = 1, then the average degree of the other vertices is

$$\bar{d} = \frac{2(5k-1) - (2k+p) - 2(2k+p)}{5k - 2(2k+p)} = \frac{4k - 2 - 3p}{k - 2p} > 4.$$

It is a contradiction to that T is a chemical tree. So a chemical tree with n = 5k vertices has at most 2k edges (u, v) satisfying d(u) = 2 and d(v) = 1.

Secondly, if T' is a chemical tree with n = 5k vertices and less than 2k edges (u, v)satisfying d(u) = 2 and d(v) = 1, then T' can not be the asymptotic extremal chemical tree with maximum R_{α} when $\alpha \to -\infty$. Choose an element T from the set $\mathcal{T}(5k, 0)$, then

$$\frac{R_{\alpha}(T')}{R_{\alpha}(T)} \le \frac{(2k-1)(1\times2)^{\alpha} + (3k)(1\times3)^{\alpha}}{(2k)(1\times2)^{\alpha} + (3k-1)(4\times4)^{\alpha}} \to \frac{2k-1}{2k} < 1 \qquad (\alpha \to -\infty)$$

So T' can not be the asymptotic extremal chemical tree with maximum $R_\alpha.$

Thirdly, let T be a chemical tree with n = 5k vertices and 2k edges (u, v) satisfying d(u) = 2 and d(v) = 1. Suppose there are still p_i vertices of degree *i* among the other $5k - 2 \times 2k = k$ vertices, i = 1, 2, 3, 4. Then we have the following two equations

$$\begin{cases} p_1 + p_2 + p_3 + p_4 = k \\ p_1 + p_2 + p_3 + p_4 = 2(5k - 1) - 2k - 2(2k) \end{cases}$$
(5)

and (5) has the following two solutions,

$$\begin{cases} p_1 = 0 \\ p_2 = 0 \\ p_3 = 2 \\ p_4 = k - 2 \end{cases} \begin{cases} p_1 = 0 \\ p_2 = 1 \\ p_3 = 0 \\ p_4 = k - 1. \end{cases}$$

There are four classes of chemical trees corresponding to the first solution and we can compute their R_{α} , respectively.

1.

$$\begin{array}{c}
 v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{2k-2} \quad v_{2k-1} \quad v_{2k} \\
 u_{1} \quad u_{2} \quad u_{3} \quad u_{4} \quad \dots \quad u_{2k-2} \quad u_{2k-1} \quad u_{2k} \\
 u_{2k} \quad u_$$

The following two classes of chemical trees correspond to the second solution and we can compute their R_{α} , respectively.

Compare the Randić indices R_{α} of the above six classes of chemical trees when $\alpha \to -\infty$. We obtain that there must exists $\hat{\alpha}(n) < 0$ such that when $\alpha \in (-\infty, \hat{\alpha}(n))$, the fifth class of chemical trees are extremal with maximum R_{α} . In fact, they are exactly the trees in $\mathcal{T}(5k, 0)$. Thus we finish the proof.

4 Further discussions

During the study of extremal chemical trees with maximum general Randić index R_{α} for $\alpha < 0$, we meet much more difficulty than that for $\alpha > 0$. The reason is for any $\alpha < 0$, the values of $(1 \times 2)^{\alpha}$, $(1 \times 3)^{\alpha}$, $(1 \times 4)^{\alpha}$, $(2 \times 2)^{\alpha}$, $(2 \times 3)^{\alpha}$, $(2 \times 4)^{\alpha}$, $(3 \times 3)^{\alpha}$, $(3 \times 4)^{\alpha}$, $(4 \times 4)^{\alpha}$ have small minus. So for **any** $\alpha < 0$ and **any** $n \in \mathbb{N}$, (for example, $\hat{\alpha}(n) < \alpha < \tilde{\alpha}(n)$,) to determine the extremal chemical tree with maximum R_{α} is of much more difficulty.

In fact, $\tilde{\alpha}(n)$ is an increasing function of n. That is $\tilde{\alpha}(n_1) \leq \tilde{\alpha}(n_2)$ if $n_1 \leq n_2$. There is a conjecture that $\tilde{\alpha}(n) \to \alpha_1$ when $n \to \infty$.

References

- [1] A. Bond, U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [2] B. Bollobás, P. Erdös, Graphs with extremal weights, Ars Combin. 50 (1998) 225-233.
- [3] R. Guji, E. Vumar, Bicyclic graphs with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 58 (2007) 683-697.
- [4] Y. Hu, Y. Jin, X. Li, L. Wang, Maximum tree and maximum value for the Randić index *R*₋₁ of trees of order *n* < 102, *MATCH Commun. Math. Comput. Chem.* 55 (2006) 119-136.
- [5] Y. Hu, X. Li, Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 129-146.
- [6] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [7] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
- [8] X. Li, I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.

- [9] X. Li, Y. Shi, T. Xu, Unicyclic graphs with maximum general Randić index for α > 0, MATCH Commun. Math. Comput. Chem. 56 (2006) 557-570.
- [10] X. Li, X. Wang, B. Wei, On the lower and upper bounds for general Randić index of chemical (n,m)-graphs, MATCH Commun. Math. Comput. Chem. 52 (2004) 157-166.
- [11] X. Li, L. Wang, Y. Zhang, Complete solution for unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 55 (2006) 391-408.
- [12] X. Li, Y. Yang, Best lower and upper bounds for the general Randić index R₋₁ of chemical trees, MATCH Commun. Math. Comput. Chem. 52 (2004) 147-156.
- [13] X. Li, J. Zheng, Extremal chemical trees with minimum or maximum general Randić index, MATCH Commun. Math. Comput. Chem. 55 (2006) 381-390.
- [14] B. Liu, I. Gutman, On general Randić indices, MATCH Commun. Math. Comput. Chem. 58 (2007) 147-154.
- [15] H. Liu, M. Lu, F. Tian, On the ordering of trees with the general Randić index of the Nordhaus-Gaddum type, MATCH Commun. Math. Comput. Chem. 55 (2006) 419-426.
- [16] H. Liu, X. Yan, Z. Yan, Bounds on the general Randić index of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 58 (2007) 155-166.
- [17] L. Pavlovic, M. Stojanovic, X. Li, More on "Solutions to two unsolved questions on the best upper bound for the Randić index R₋₁ of trees", MATCH Commun. Math. Comput. Chem. 58 (2007) 167-182.