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Abstract

A tree is called chemical if none of its vertices has a degree greater than four. The

general Randić index Rα(G) for a graph G is defined as
∑

(uv)(d(u)d(v))α, where uv is

an edge of G, α ∈ R and α 6= 0. This paper is contributed to the study of extremal

chemical trees with maximum general Randić index Rα for α < 0. It is proved that,

among the chemical trees of order n(n ≥ 10), the path Pn is the extremal one with

maximum Rα(α < 0) if and only if α ∈ (α̃(n), 0), where −0.909 < α̃(n) < −0.747

and α̃(n) depends on n. Moreover, we characterize, among the chemical trees of order

n = 5k + d, (k ≥ 3, k ∈ N, d = 0, 2, 4), the asymptotic result for the extremal chemical

trees with maximum Rα when α → −∞.

1 Introduction

In 1975, in order to measure the extent of branching of the carbon-atom skeleton of

saturated hydrocarbons, the chemist M. Randić proposed the following chemical index, later

named Randić index or connectivity index.
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Definition 1.1 Let uv be an edge connecting the vertices u and v. Then the connectivity

index of a graph G, also called the Randić index, is defined as

R(G) =
∑
uv

1√
d(u)d(v)

,

where d(u) and d(v) stand for the degrees of the vertices u and v, respectively, and the

summation goes over all edges uv of G.

It was demonstrated that the Randić index is well correlated with a variety of physico-

chemical properties of alkanes, such as boiling point, enthalpy of formation, surface area and

solubility in water [6, 7].

B. Bollobás and P. Erdös [2] later generalized the Randić index by replacing −1
2 with any

real number α 6= 0. It is called the general Randić index and denoted by Rα(G). That is,

Rα(G) =
∑
uv

(d(u)d(v))α. (1)

Trees are connected graphs that do not contain any cycle. The graphical representation

of the carbon-atom skeleton of an alkane is usually called a chemical tree. Hence, a chemical

tree is a tree in which no vertex has a degree greater than four. A vertex with degree one is

called a pendent vertex. As usual, we use Pn to denote the path with n vertices.

For terminology and notations not defined here, we refer the reader to [1].

The results in [3, 9, 11] are on the extremal unicyclic graphs and bicyclic graphs with

minimum or maximum Rα. There are several papers on upper and lower bounds for R−1 of the

extremal (chemical) trees [4, 12, 17]. The problem of finding the extremal trees with maximum

Rα among all trees of order n is discussed in [5]. It was proved that when α ∈ [−1
2 , 0), the

path Pn is the extremal one with maximum Rα. However, when α ∈ (−2,−1
2), the problem

is still open. In [13], the authors successfully characterized the extremal chemical trees with

maximum Rα for any α > 0. For more results on Rα, please refer to [8, 10, 14, 15, 16].

This paper focuses on the extremal chemical trees with maximum Rα for α < 0. In the

second section, it is proved that, for any integer n(n ≥ 10), there exists α̃(n), −0.909 <

α̃(n) < −0.747, such that among the chemical trees of order n, the path Pn is the extremal

one with maximum Rα(α < 0) if and only if α ∈ (α̃(n), 0). In the third section, we obtain
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that for any n = 5k + d, where k ≥ 3, k ∈ N, d = 0, 2, 4, there exists α̂(n) < 0 such that when

α ∈ (−∞, α̂(n)), each tree in T (n, d) (Definition 3.1) is extremal with maximum Rα among

the chemical trees of order n. The discussions in the last section show that, for any n ≥ 10

and any α < 0, to completely determine the extremal chemical trees with maximum Rα is

much more difficult.

Some data will be mentioned in the following discussion.

Symbol Explanation: the root of the equation Value

α0 3× 4x − 3x − 2× 6x = 0 −3.082 < α0 < −3.081

α1 3× 4x + 8x − 2x − 2× 6x − 12x = 0 −0.748 < α1 < −0.747

α2 9x + 4× 6x + 2× 2x − 7× 4x = 0 −0.909 < α2 < −0.908

α3 4× 12x + 8× 6x + 6× 2x − 18× 4x = 0 −0.834 < α3 < −0.833

2 Pn as extremal chemical tree

We obtain the extremal chemical trees of order n (4 ≤ n ≤ 9) with maximum Rα when

α < 0 as the following tabular.

n α Extremal chemical tree Maximum value of Rα

n = 4 α < 0 r r r r 2× 2α + 4α

n = 5 α < 0 r r r r r 2× 2α + 2× 4α

n = 6 α0 ≤ α < 0 r r r r r r 3× 4α + 2× 2α

α ≤ α0
r r³³r

PPr
r
r 3α + 2× 6α + 2× 2α

n = 7 −1 ≤ α < 0 r r r r r r r 4× 4α + 2× 2α

α ≤ −1 r r r³³r
PPr

r
r 3× 6α + 3× 2α

n = 8 −1 ≤ α < 0 r r r r r r r r 5× 4α + 2× 2α

α ≤ −1 r r r r³³r
PPr

r
r 3× 6α + 3× 2α + 4α

n = 9 −1 ≤ α < 0 r r r r r r r r r 6× 4α + 2× 2α

α ≤ −1 r
r

r³³
rPPr³³PP

r
r

r
r 4× 8α + 4× 2α

Moreover, when n = 9 and α = −1, r r r r r³³r
PPr

r
r and r r r³³r

rPP
r
r

r
r are also

the extremal chemical trees with maximum Rα.
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The results in the above tabular suggest a conjecture that, for ∀ α ∈ [−1, 0), the path Pn

is extremal with maximum Rα among the chemical trees of order n.

Unfortunately, this conjecture is false. (See Theorem 2.2.)

Theorem 4.3 in [5] implies that for any α ∈ [−1
2 , 0), Pn is extremal with maximum Rα

among the chemical trees of order n. We will show that the result can be improved by

replacing −1
2 by α̃(n), where −0.909 < α̃(n) < −0.747.

Lemma 2.1 Among the chemical trees of order n(n ≥ 4), if T is the extremal one with

maximum Rα(−1 < α < 0), then the adjacent vertices of the pendent vertices in T are of

degree two.

Proof. Let v be a pendent vertex of a chemical tree T and v′ be the adjacent vertex of v.

1. If d(v′) = 3 and v1, v2 are adjacent vertices of v′, do the following operation to change

T to T ′.

¢
¢

¢

A
A

A

²
±

¯
°

²
±

¯
°

v v′

v1

v2

r r

r

r

-

T

©©©©©©

A
A

A

²
±

¯
°

²
±

¯
°

v v′

v1

v2

r r

r

r

T ′

Suppose d(v1) = a, d(v2) = b and a ≤ b. Then

Rα(T ′)−Rα(T ) = [4α + (2a)α + (2b)α]− [3α + (3a)α + (3b)α]. (2)

For any integers a, b, 1 ≤ a ≤ b ≤ 4, the result for (2) is positive when −1 < α < 0.

That is,

Rα(T ′) > Rα(T ).

2. If d(v′) = 4 and v1, v2, v3 are adjacent vertices of v′, do the following operation to

change T to T ′.
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¢
¢

¢

A
A

A

²
±

¯
°

²
±

¯
°

²
±

¯
°

v v′

v1

v2

v3

rr r

r

r

-

T

©©©©©©

A
A

A

²
±

¯
°

²
±

¯
°

²
±

¯
°

v v′

v1

v2

v3

rr r

r

r

T ′

Suppose d(v1) = a, d(v2) = b, d(v3) = c and a ≤ b ≤ c. Then

Rα(T ′)−Rα(T ) = [6α + (2a)α + (3b)α + (3c)α]− [4α + (4a)α + (4b)α + (4c)α]. (3)

For any integers a, b, c, 1 ≤ a ≤ b ≤ c ≤ 4, the result for (3) is positive when−1 < α < 0.

That is,

Rα(T ′) > Rα(T ).

Two cases are both contradictory to the condition that T is the extremal one with maximum

Rα(−1 < α < 0). So the lemma is proved.

Theorem 2.2 Among the chemical trees of order n(n ≥ 10), the path Pn is the extremal one

with maximum Rα(α < 0) if and only if α ∈ (α̃(n), 0), where −0.909 < α̃(n) < −0.747 and

α̃(n) depends on n.

Proof. Let T be an extremal chemical tree with maximum Rα(−1 < α < 0). By Lemma 2.1,

the adjacent vertices of the pendent vertices in T are of degree two. If T is not Pn, there

exists a vertex v in T and T has one of the following structures.

r r
r

r

r

r

r

r

¡¡

@@

¡¡

@@

p p p

p p p

u1

us

v1

vt

u v²
±

¯
°

Structure A

d(ui) = d(vj) = 2
1 ≤ i ≤ s, 1 ≤ j ≤ t

r r
r

r

r

r

r

r

¡¡

@@

¡¡

@@

p p p

p p p

u1

us

w1

wp

u v²
±

¯
°

Structure B

d(ui) = d(vj) = d(wk) = 2
1 ≤ i ≤ s, 1 ≤ j ≤ t, 1 ≤ k ≤ p

rv1̀` ` rvt r
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1. If T is of Structure A, change T to T ′ as follows:

r r
r

r

r

r

r

r

¡¡

@@

¡¡

@@

p p p

p p p

u1

us

v1

vt

u v²
±

¯
°

- r ru v²
±

¯
°

rv1̀` ` rvt r rp p p r ru1 us

T T ′

Assume d(u) = a and 2 ≤ a ≤ 4. (Lemma 2.1 implies a 6= 1.) Then

Rα(T ′)−Rα(T ) = 3× 4α + (2a)α − 2α − 2× 6α − (3a)α (4)

For any α ∈ (α1, 0), the result for (4) is positive. It means if T is an extremal chemical

tree with maximum Rα when α ∈ (α1, 0), T can not be Structure A.

2. If T is of Structure B, change T to T ′ as follows:

r r rv1p p p rvt r
r

r

r

r

r

r

¡¡

@@

¡¡

@@

p p p

p p p

u1

us

w1

wp

u v²
±

¯
°

- r ru v²
±

¯
°

rv1̀` ` rvt r r p p p r rw1 wprp p p rru1 us

T T ′

By similar discussion as case 1, we can obtain that if T is an extremal chemical tree

with maximum Rα when α ∈ (α1, 0), T can not be Structure B.

Thus we prove that when α ∈ (α1, 0), the path Pn is the extremal one with maximum Rα

among all chemical trees of order n.

For any n ≥ 10 and α < α2, each chemical tree with the following structure has a greater

Rα than that of Pn. So the path Pn is not the extremal chemical with maximum Rα when

α ∈ (−∞, α2).
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r

r
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r

r

¡¡
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¡¡

@@

p p p

p p p

@@

¡¡

@@

¡¡

ppp

ppp

u1

us

v1

vt

w1

wp

x1

xq

s, t, p, q ≥ 1

s + t + p + q = n− 6

Since −0.909 < α2 < α1 < −0.747, we get that when α ∈ [−0.747, 0), Pn is the extremal

one with maximum Rα among the chemical trees of order n and when α ∈ (−∞,−0.909], Pn

is not the extremal one with maximum Rα.

For any n ≥ 10, suppose T ′ is the chemical tree of order n with maximum Rα(α < 0)

satisfying the following two conditions: (1) T ′ is not Pn and (2) As an extremal chemical

tree with maximum Rα, the α of T ′ is nearest to 0. The function Rα(T ′) − Rα(Pn) is

obviously a continue function on the variable α. Moreover, Rα(T ′) − Rα(Pn) < 0 when

−0.747 ≤ α < 0 and Rα(T ′) − Rα(Pn) > 0 when α is equal to some value smaller than

−0.747. So by the Intermediate Value Theorem and the above discussion, there exists some

α̃(n), −0.909 < α̃(n) < −0.747, such that Pn is the extremal one with maximum Rα(α < 0)

if and only if α ∈ (α̃(n), 0).

The following example shows that α̃(n) depends heavily on n. When n = 10, P10 is

the extremal chemical tree with maximum Rα(α < 0) if and only if α ∈ (α2, 0) and when

α ∈ U−(α2, δ), where δ > 0 and δ is small enough, the following chemical tree T1 is the

extremal one with maximum Rα. So α̃(10) = α2. When n = 21, P21 is the extremal chemical

tree with maximum Rα(α < 0) if and only if α ∈ (α3, 0) and when α ∈ U−(α3, δ), where

δ > 0 and δ is small enough, the following chemical tree T2 is the extremal one with maximum

Rα. So α̃(21) = α3.
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Corollary 2.3 Among the chemical trees of order n, the path Pn is the extremal one with

maximum Randić index and the maximum value is equal to 2× 2α + (n− 3)× 4α.

3 Asymptotic result when α → −∞

Definition 3.1 For any n = 5k + d (k > 1, k ∈ N, d = 0, 2, 4), let T (n, d) be the set of trees

that have the following structure

r r r p p p r b

r

r

r

r

r

r

r

r p p p p p p

r

r

v1 v2 v3 v4 v2k+ d
2

u1 u2 u3 u4 u2k+ d
2

w1 w2 w3 wk−1 wk

d(v1) = d(v2) = · · · = d(v2k+ d
2
) = 1

d(u1) = d(u2) = · · · = d(u2k+ d
2
) = 2

d(w1) = d(w2) = · · · = d(wk−1) = 4

d(wk) = 2 + d
2

Furthermore, wk is a pendent vertex in the subtree induced by the vertices w1, w2, · · · , wk.

Theorem 3.2 Among the chemical trees of order n = 5k + d (k ≥ 3, k ∈ N, d = 0, 2, 4),

there exists α̂(n) < 0 such that when α ∈ (−∞, α̂(n)), each tree in T (n, d) is extremal with

maximum Rα and the maximum value is equal to

(2k +
d

2
)× 2α + (2k +

d

2
− 1)× 8α + (k − 2)× 16α + (1 + 2α)× (4 + d)α.

Proof. Here we only prove the theorem when d = 0, the other two cases are completely

similar.

Firstly, if a chemical tree T with n = 5k vertices has 2k + p (p > 0) edges (u, v) satisfying

d(u) = 2 and d(v) = 1, then the average degree of the other vertices is

d̄ =
2(5k − 1)− (2k + p)− 2(2k + p)

5k − 2(2k + p)
=

4k − 2− 3p

k − 2p
> 4.

It is a contradiction to that T is a chemical tree. So a chemical tree with n = 5k vertices has

at most 2k edges (u, v) satisfying d(u) = 2 and d(v) = 1.

Secondly, if T ′ is a chemical tree with n = 5k vertices and less than 2k edges (u, v)

satisfying d(u) = 2 and d(v) = 1, then T ′ can not be the asymptotic extremal chemical tree

with maximum Rα when α → −∞. Choose an element T from the set T (5k, 0), then

Rα(T ′)
Rα(T )

≤ (2k − 1)(1× 2)α + (3k)(1× 3)α

(2k)(1× 2)α + (3k − 1)(4× 4)α
→ 2k − 1

2k
< 1 (α → −∞)
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So T ′ can not be the asymptotic extremal chemical tree with maximum Rα.

Thirdly, let T be a chemical tree with n = 5k vertices and 2k edges (u, v) satisfying

d(u) = 2 and d(v) = 1. Suppose there are still pi vertices of degree i among the other

5k − 2× 2k = k vertices, i = 1, 2, 3, 4. Then we have the following two equations




p1 + p2 + p3 + p4 = k

p1 + p2 + p3 + p4 = 2(5k − 1)− 2k − 2(2k)
(5)

and (5) has the following two solutions,




p1 = 0

p2 = 0

p3 = 2

p4 = k − 2





p1 = 0

p2 = 1

p3 = 0

p4 = k − 1.

There are four classes of chemical trees corresponding to the first solution and we can

compute their Rα, respectively.

1.
b r r p p p p p r r b

r

r

r

r
­

­
­­

r

r

r

r p p p p p p

r

r

r

r
@

@
@@

r

r

v1 v2 v3 v4 v2k−1v2k−2

u1 u2 u3 u4 u2k−1u2k−2

w1 w2 w3 wk−2 wk−1 wk

v2k

u2k

d(w2) = d(w3) = · · · = d(wk−1) = 4

Rα = (2k)× 2α + 4× 6α + 2× 12α + (2k − 4)× 8α + (k − 3)× 16α.

2.
b r r p p p p p r r b

r

r

r

r

r

r

r

r p p p p p p

r

r

r

r
@

@
@@

r

r

v1 v2 v3 v4 v2k−1v2k−2

u1 u2 u3 u4 u2k−1u2k−2

w1 w2 w3 wk−2 wk−1 wk

v2k

u2k

d(w2) = d(w3) = · · · = d(wk−1) = 4

Rα = (2k)× 2α + 3× 6α + 3× 12α + (2k − 3)× 8α + (k − 4)× 16α.

3.
b r r p p p p p r r b

r

r

r

r

r

r

r

r p p p p p p

r

r

r

r

r

r

v1 v2 v3 v4 v2k−1v2k−2

u1 u2 u3 u4 u2k−1u2k−2

w1 w2 w3 wk−2 wk−1 wk

v2k

u2k

d(w2) = d(w3) = · · · = d(wk−1) = 4
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Rα = (2k)× 2α + 2× 6α + 4× 12α + (2k − 2)× 8α + (k − 5)× 16α.

4.
b r r p p p p p r r b

r

r

r

r

r

r

r

r p p p p p p

r

r

r

r

r

r

v1 v2 v3 v4 v2k−1v2k−2

u1 u2 u3 u4 u2k−1u2k−2

w1 w2 w3 wk−2 wk−1 wk

v2k

u2k

d(w2) = d(w3) = · · · = d(wk−1) = 4

Rα = (2k)× 2α + 2× 6α + 2× 12α + 9α + (2k − 2)× 8α + (k − 4)× 16α.

The following two classes of chemical trees correspond to the second solution and we can

compute their Rα, respectively.

5
r r r p p p p p r r b

r

r

r

r

r

r

r

r p p p p p p

r

r

r

r

r

r

v1 v2 v3 v4 v2k−1v2k−2

u1 u2 u3 u4 u2k−1u2k−2

w1 w2 w3 wk−2 wk−1 wk

v2k

u2k

d(w1) = d(w2) = · · · = d(wk−1) = 4

Rα = (2k)× 2α + 4α + (2k)× 8α + (k − 2)× 16α.

6
r r r p p p p p r r b

r

r

r

r

r

r

r

r p p p p p p

r

r

r

r

v1 v2 v3 v4 v2kv2k−1

u1 u2 u3 u4 u2ku2k−1

w1 w2 w3 wk−2 wk−1 wk

d(w1) = d(w2) = · · · = d(wk−1) = 4

Rα = (2k)× 2α + (2k + 2)× 8α + (k − 3)× 16α.

Compare the Randić indices Rα of the above six classes of chemical trees when α → −∞.

We obtain that there must exists α̂(n) < 0 such that when α ∈ (−∞, α̂(n)), the fifth class of

chemical trees are extremal with maximum Rα. In fact, they are exactly the trees in T (5k, 0).

Thus we finish the proof.
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4 Further discussions

During the study of extremal chemical trees with maximum general Randić index Rα for

α < 0, we meet much more difficulty than that for α > 0. The reason is for any α < 0, the

values of (1× 2)α, (1× 3)α, (1× 4)α, (2× 2)α, (2× 3)α, (2× 4)α, (3× 3)α, (3× 4)α, (4× 4)α

have small minus. So for any α < 0 and any n ∈ N, (for example, α̂(n) < α < α̃(n),) to

determine the extremal chemical tree with maximum Rα is of much more difficulty.

In fact, α̃(n) is an increasing function of n. That is α̃(n1) ≤ α̃(n2) if n1 ≤ n2. There is a

conjecture that α̃(n) → α1 when n →∞.
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