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Abstract

The general Randi¢ index R,(G) of a (chemical) graph G, which is
also called the connectivity index, is defined as the sum of the weights
(d(u)d(v))™ of all edges uv of G, where d(u) denotes the degree of a
vertex u in G and « is an arbitrary real number. In this paper, we
consider chemical trees (with maximum degree at most 4) with a given
order and number of pendent vertices and determine the extremal trees
with the minimum general Randi¢ index for arbitrary a among this
class of trees. For @ > 1 we also give a sharp lower bound of the general
Randi¢ index for general trees (without degree restriction) with a given

order and number of pendent vertices.

Keywords: chemical tree, pendent vertex, linear programming

1 Introduction

For a (chemical) graph G = (V, E), the general Randié index R,(G) of G is defined
as the sum of (d(u)d(v))* over all edges uv of G, where d(u) denotes the degree of a
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vertex u of G, i.e., Ry(G) = Y, cp (d(u)d(v))*, where « is an arbitrary real number.

This index was extensively studied in mathematical chemistry.

In 1975, chemist Milan Randié¢ proposed a topological index R_ 1 under the name
“branching indez” , suitable for measuring the extent of branching of the carbon-atom
skeleton of saturated hydrocarbons. Later, in 1998 Bollobds and Erdds [2] generalized
this index by replacing —% with any real number «, which is called the general Randi¢
index. The research background of Randi¢ index together with its generalization ap-
pears in chemistry or mathematical chemistry and can be found in the literature [1]-[3],
[5]-[19]. There are also many results about trees with given order and number of pen-
dent vertices, see [1, 9, 16]. For a comprehensive survey of its mathematical properties,
see the book of Li and Gutman [14].

A chemical tree T' is a tree with maximum degree at most 4. A vertex with degree
one is called a pendent vertez. In [§8], Gutman et al characterized the chemical trees
with minimum, second-minimum, third-minimum, maximum, second-maximum and
third-maximum values of the Randi¢ index. There are also some results for extremal
general Randi¢ index values of chemical trees, see [15, 17, 19]. For chemical trees with
both a given order and a given number of pendent vertices, Araujo and de la Pefa [1]
established the lower and upper bounds for Rfé(T), ie., for a = —%. Later, Hansen
and Mélot [9] improved this result. In the present paper, we determine the sharp lower
bound for arbitrary a and give the extremal chemical trees. In addition, for o > 1 we
give a sharp lower bound for general trees (without degree restriction) with a given

order and number of pendent vertices.

Let P, = vpv; ... vs be a path of a tree T with d(v;) = d(vg) = -+ = d(vs_1) = 2
(unless s = 1). If d(vy) = 1 and d(vs) > 3, then P is called a pendent path of T and
s is the length of this pendent path. If d(vy), d(vs) > 3, then P is called an internal
path of T. A tree T is called a generalized star, if there is a unique vertex u € V(T),
such that d(u) > 3 and for any other vertex v, d(v) < 2. If v € V, we denote
N(v) = {u : u is the neighbor of v}. Similarly, if S C V, we denote N(S) = UgN(v).

vEL

Undefined notations and terminologies can be found in [4].

If ny = 2, T is a path; on the other hand, if n; = n—1, then T is a star. Therefore,

we can always assume 3 <n; <n — 2.
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2 Fora<-1

Let 3 <n; <n—2and a < —1. Denote ¢(n,n;) := n~4"‘+%(8"+3~6a—40‘“)n1+
5-4% — 6oFL,

Lemma 1 Fora < -1, 3-9%—8%—3-64—2-4*+3-3 > 0, 3-6*—8*—=5-4*4+3-3* > 0,
3-8 +5-2°-2-4*-6-3and 2-4*—-3-3*4+2 > 0.

Proof. By the Lagrange mean-value theorem, there exist £ € (3,4) and ¢ € (2, 3) such

that 3% — 4% = —af® and 2* — 3* = —a(®, respectively. Hence for a < —1, we have
= :ggi = (g)a > 2% ie., 3% — 4% > 2%(2* — 3%). Thus,

3-9% -8 —3.6 —2-4% +3-3% > 3[(3* — 4%) — 3%(2* — 39)]
3[27(2* — 3%) — 3%(2* — 3%)] = 3(2* — 3*)? > 0.

3.6% — 8% —5-4% +3.3% > 3(3* — 4%) — 2*T1(2% — 3%)

> 3.2%(2% —3%) — 2T (2% — 3%) = 2%(2* - 3*) > 0.
3-8%45-2%—2.4% —6-3% = (2* —3%)(5 — 3-2%) — (3% —4%)(3-2° + 1)
(2% —3%)(5—3-2%) — (2% = 3%)(3- 2% + 1) = 2(2* — 3*)(2 — 3-2%) > 0.

\%

\%

1
2. 404 _ 3 . 3a 4 204 — 5(4&4»1 —92. 3a+1 + 2a+1)
1
— 5 ((2a+1 _ 3a+1) _ (3a+1 _ 4(x+1)) > 0. 1
Theorem 1 Fora < —1 and3 <ny <n—2, let T be a chemical tree of order n with

ny pendent vertices. Then Ry (T) > (n,ny).

Proof. We give our proof by induction on 7.

If ny = 3, by easy calculations we can get the result. We assume that the result
is valid for smaller values of n; > 4. Let u be a pendent vertex of T' and uwv € E(T).
Then d(v) > 2.

Case 1. d(v) = 2.

We assume N (v) = {u,v1}. Let P = v_juyv1 ... vsw (u = v_1, v = vy) be a pendent
path with d(w) =¢ > 3. Let 7" = T\ {v_1,v0,v1, . .., Us—1}. Then T is a chemical tree
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of order n — s — 1 with n; pendent vertices, thus
Ro(T) = Ro(T')+2%+s-4°+ (2% — 1)t°

1
(n—s—1)4% + g(ga +3-6% —4°T)py 4+ 5.4% — got!
2%+ 5-4%+ (2% — )Y = Y(n,ng) + (1 —2%)(2% — %) > ¢(n,nq).

\

Case 2. d(v) = 3.

Let N(v) = {u,z,y} and 1 = d(u) < d(z) < d(y) < 4.

Subcase 2.1. d(z) =1, d(y) > 3.

Let 7" =T\ {u,z} and d(y) = ¢t. Then 7" is a chemical tree of order n — 2 with
ny — 1 pendent vertices, thus we have
Ro(T) = Ro(T") +2- 3% + (3% — 1)t*
(n —2)4* + %(8“ +3:6% =4 (ng — 1) +5-4% —6°T $2.3% 4 (3% — 1)*

A%

%

1
(n—2)4”‘+§(8a+3~6”‘—4a“)(n1 —1)4+5-4* -6t £ 2.3% 4 (3¢ —1)3°

1
P(n,ny) + §(3~9a —8%—3-6%—2-4%4+3-3% > (n,n).
The latter inequality follows from Lemma 1.

Subcase 2.2. d(z) =1, d(y) = 2.

Let P = vy ... vs_10s be an internal path of T with v = vg, y = v; and d(vs) = ¢ >
3and let 7" =T\ {u,x,vg,v1,...,0s_a}. Then T" is a chemical tree of order n — s — 1

with n; — 1 pendent vertices, thus we have

R, (T) Ro(T') +2-3% + 6%+ (5 — 2)4% + (2% — 1)1*
1
> (n—s—1)4a+§(8"+3~6a—4““)(711 —1)+5-4* —¢6>t!
+2-3%+ 6%+ (s —2)4* + (2* — 1)3°

1
w(n,ny) + 5(3 <6 — 8% —5-4%+3-3%) > ¢(n,n).

The latter inequality follows from Lemma 1.

Subcase 2.3. d(z) =r>2,d(y) =t > 2.
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Let 7" = T — u. Then T" is a chemical tree of order n — 1 with n; — 1 pendent
vertices, thus we have
1
Ro(T) =Ro(T') + 3% + (3* = 2*)(r* + t*) > (n — 1)4* + 5(8‘k +3-6%—4*"(n; — 1)
540 — 67T 4 3% (3% — 27) (2 + 27)

=(n,ny) + %(3 <64 — 8% —5-4% +3-3%) > (n,n).
The latter inequality follows from Lemma 1.
Case 3. d(v) = 4.
Let N(v) = {z,y,z,u} and 1 = d(u) < d(z) < d(y) < d(z) <4.
Subcase 3.1. d(z) = d(y) = 1,d(z) > 2.

If d(z) = 2, let P = vy ...vs-10s be an internal path of 7' with v = vy, 2 = v; and

d(vs) > 3. Now we consider two cases:

(a) If d(vs) = 3, by Case 2 we can assume that N(vs) = {vs_1, w1, we} with d(w;) =
r > 2,d(wp) =t > 2. Construct 7" = T \ {u,z,y,vo,v1,...,0s-1}. Then T" is a

chemical tree of order n — s — 3 with ny; — 3 pendent vertices, so we have

Ro(T) = Ro(T')+ (s+1)4% + 8% + 6%+ (3% — 2%)(r* + t%)
1
> (n—s—3)4a+§(8a+3-6"‘—40‘“)(n1 —3)+5-4% —¢6t!
+(s 4+ 1)4% 4+ 8% + 6% + (3% — 2%)(2* + 2%) = ¢(n,nq).

(b) If d(vs) = 4, let T" = T\ {u, x,y, vp, v1, . ..,Vs—2}, then T" is a chemical tree of

order n — s — 2 with n; — 2 pendent vertices, thus we have

Ro(T) = Ro(T')+3-4%+8%+ (s —2)4* +8* — 4

1
> (n—s—2)4a+§(8a+3-6“—40‘“)(n1—2)+5~4‘*—6““
+3.4%+ 8% + (s — 2)4% + 8% — 4
1
> (n,my) + 3 20712 4% — 3.3% 4 2%) > h(n, ny).

The latter inequality follows from Lemma 1.
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If d(z) = 3, by Case 2 we can assume that N(z) = {v,wy,ws} with d(w,) = r >
2,d(wg) =t >2. Let T/ =T\ {u,v,z,y}, then

Ro(T) = Ro(T')+3-4%+12% 4 (3% — 2%)(r* + %)

1
(n—4)47 + (8" +3-6" - 490 (g — 3) 4+ 5 - 4% — 6o+
+3-4% +12% + (3" — 2%)(2% 4 2%)

P(n,ny) +2%(1 — 2%)(2% = 3%) > ¢¥(n,n1).

Y

Y

If d(z) = 4, construct 7" =T \ {z,y,u}, then

Ry (T) =R (T') + 3 - 4% +16* — 4%
1
>(n — 3)4" + g(sa +3-6% — 4 (n; —2) +5-4% —6°T1 2. 4% + 16*

o

2
>i(n,ny) + 3(3 8% 452 —2-4%—6-3%) > p(n,ny).
The latter inequality follows from Lemma 1.
Subcase 3.2. d(z) =1,d(y) =r>2,d(z) =t > 2.

Let 7" =T\ {u,z}. Then 7" is a chemical tree of order n — 2 with n; — 2 pendent

vertices, thus we have

Ro(T) = Ro(T')+2-4% + (4% = 2%)(r™ + 1)
> (n—2)4" + %(8“ +3-6% =4t (ny — 2) +5- 4% — 6!
+2 4% + (4% = 29)(r* 4 t%)
> (n—2)4%+ %(sa +3-6% =42 (ny —2) 4+ 5- 4% — 62!

+2-4% 4 (4% — 2%)(2* + 29)
1
= (n,ny) + 3 202 4% — 3. 3% 4+ 2%) > 2h(n,ny).

The latter inequality follows from Lemma 1.

Subcase 3.3. d(z) =r>2,d(y) =t>2,d(z) ={ > 2.
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Let 7" = T — u. Then T" is a chemical tree of order n — 1 with n; — 1 pendent

vertices, thus we have

R, (T) = Ru(T')+ 4%+ (4% = 39)(r* +t* + (%)

1
(n — 1)4* + 5(80 +3-6%—4*") (ng — 1) + 5 4% — g
F4Y (4% =3 (r* + Y + L)

1
(n —1)4* + 5(8‘1 +3-6% -4t (ng — 1) + 5. 4% — ™!
4% 4 (4% — 3%) (2 4 2% +2%)

1

= 1/;(7),7 nl) + g . 2a+2(2 4o _3.3% 4 2a) > '1/)(n,n1).

(A%

Y

The latter inequality follows from Lemma 1. The proof is now complete. 1

Figure 2.1 An extremal chemical tree for Theorem 1.

Remark. In Figure 2.1, we give a graph for showing that the bound in Theorem 1

is sharp.

3 Fora>1

Let 7, ,,,={T": T is a tree with n vertices and n; pendent vertices, 3 <mn; <n—2}.
Denote 7,,={T: T € T,,, and T is a generalized star}. A comet CS(n,n;1) of order
n with n; pendent vertices is a tree formed by a path P,_,, of which one end vertex

coincides with a pendent vertex of a star S, ;1.

For T' € T, ,, denote Vo(T') := {v : v is a pendent vertex of T'}. Let P(T) be the
set of pendent paths in 7. Let Zi::{T is a tree with n; pendent vertices and for
any vertex v in V(T)\Vo(T), dr(v) = 3}. Denote by 7,2, the set of trees of order n

n,n1
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obtained from T € 'Z:fl by replacing each non-pendent edge by a path of length at least
2.

Lemma 2 Fora > 1, if T € T,,, and Ro(T) is as small as possible, then |P(T)| < 1.

Proof. Assume P = ugu; ... us and Q = vgvy ... v; (s, > 2) are two pendent paths of T’
with ug,vg € Vo(T). Let T" = T —us_qus—o+ugvg. Then T" € 7, ,,,. Let d(uy) =r > 3,
then

Ro(T") = Ra(T) = (1 - 2)(r" = 2°) < 0,

a contradiction. 1

Lemma 3 Fora > 1, if T € T, ,,\T,, and R,(T) is as small as possible, then P(T) =
0.

Proof. By Lemma 2, |P(T)| < 1. Suppose |P(T)| =1, and let P = vgv; ... vs(s > 2)
be a pendent path of 7" such that vy € Vo(T') and d(vs) = r > 3. Since T ¢ 7,,, there
must exist a vertex w € V(T')\{vs} with d(w) > 3. Further, let P’ be the unique path
between vy and w. If u is the vertex of P’ adjacent to v, let d(u) =t > 2 and set

T =T — veu — vgvq + VoUs + v1u, then
Ry (T") — Ro(T) = r® 4+ 2°t* — 2% — r%t* = (r* — 2%)(1 — t*) < 0,
contradicting to the choice of T'. 1
Lemma 4 LetT € 7,, and o > 1. Then
R, (T) > (ng + 2% — 1)n{ + (n —nyg — 2)4% 4 2¢

with equality if and only if T = C'S(n,ny).

Proof. Note that if "= C'S(n,n;), then the inequality holds.

We choose T" € T, so that R,(7") is as small as possible. Since 7" % Ki,,, we
have P(T") # (. By Lemma 2, |P(T”)| = 1. Therefore, T" = C'S(n,n) since T" is a
generalized star. Then, for any 7' € 7,,,,

Ro(T) > Ro(T") > (m1 + 2% — 1)n{ + (n — nqg — 2)4% + 2% 1

Let 3 <ny <n—2and a > 1, and denote ¢(n,n;) :=n-4*+ (3*+2-6>—-3-
4a)n1 +5. 4o — 6a+1.
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Theorem 2 Let3<ny <n—-2anda>1. IfT € 7T,,,, then

n-4*4+6%—5-4*4+2-34+2% ifn =3
w(n,ny) if4<m <n-2

R.(T) > { (1)

In (1), if ny = 3, the equality holds if and only if T = CS(n,3); if 4 <ny < n—2, the
equality holds if and only if n > 3n; — 5 and T € T,

n,ni°

Proof. Let T € 7,,, by Lemma 4 we have
R, (T) > (ng + 2% — 1)n{ + (n —ny — 2)4% + 29,
so if ny = 3,
R,(T) >4 + 6% —5-4% + 2. 3% +2¢

with equality holds if and only if 7" = C'S(n, 3).

If 4 <ny; < n — 2, then by some calculations we can prove

Ro(T) > (ng +2% — 1)ng + (n — ny — 2)4% +2¢

= p(n,n)+ (g +2% = Dnd + (=2 6% — 3 +2-4%)n; + (6> — 7. 4% +2%).

Denote f(ny, @) = (ny +2%— 1)ng + (—2-6% — 3%+ 2-4%)n; + (6T — 7-4% +2%), then

w = (a+ DS +and (2 — 1) + (=26 — 3% + 2. 4%)
1

%

(a4 1)4% + (2 — 1)4* 71 4+ (=2 6% — 3% +2- 4%)

3 « a (o3 (o3 (2% « g « (o3
(Za+3>4 +Z~8 -2-6 3>34-|—4 8 2-6%>0,

i.e., f(n1,a) is increasing in ny. Therefore f(ny,a) > f(4,a) = (8% —6%) — (6% — 4%) +
3(4 — 3%) — (3% —2%) > 0. So we have R, (T) > ¢(n,ny).

In view of this, we assume that T € 7,,,,,\7,, and 4 <n; <n —2.

Note that if T' € T3

n,ni?

calculations. We will prove that if 7' € 7;, ,, \ 7y, , then the theorem holds by induction

then n > 3n; — 5 and the theorem is verified by elementary

on ny. We choose T such that R, (T) is as small as possible.
If ny = 4, then by Lemma 3, T' € 73 for n = 6 or T' € 7,3, for n > 7. Hence

R, (T) =

4-3%+9% > ¢(n,n) ifn==6
4:-3*+2.-6°+ (n—1)4*=p(n,ny) ifn>7
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Therefore, we assume that n; > 5 and the result holds for smaller values of n;. Let
u € N(W(T)) and d(u) = t, and let vy,...,v, and v,41,...,v; be the pendent and
non-pendent neighbors of u, respectively. Then ¢t — r > 1 (because T 2 Ki,,_1).

Case 1. t > 4.

Let 7" =T —wv;. Then T" € T;_1,-1. Suppose d(v;) = d; fori =r+1,...,t. Then

Ro(T) = Ro(T)+1+ (r — D[t — (t — 1)°] + [t* — (t — 1)* Zda

n—1n —1)+1*+ (r—1)[t* — t—1)}+2a(t—r)[t —(t—1)"]
n,ny) — 3% —2-6%+2- 4%+t + [t — (¢t — D2t — 1) + 7 — 1]
) —3%=2-6"+2-4"+ 4%+ (4° = 3")(3" +2)
n,np) + (4% — 3%)(3* + 3) — 2*1(3* — 29)
)+ (3% — 2%)(3% + 3 — 2°T1) > p(n, ny).

V
<

v
S5 5 5%
=
S

Y
S

Case 2. t = 3.
Subcase 2.1. r = 1.
Let N(u)\{v1} = {z1, 22} and d(z;) = d;. Let T" =T — vy, then T" € T,,_1 ,,—1 and

Ro(T) = Ro(T')+ 3%+ (df +d35)(3* —2%)
> p(n—1,n; — 1)+ 3% +2°T(3* — 2%) = p(n,ny)

Equality holds only if d; = dy = 2 and R,(T") = ¢(n — 1,n; — 1). By the induction
hypothesis, 7" € 7,2 |, . Since d; = dy = 2, there is an internal path of length at

least 4 which connects z; and z9 in 7" and |V(T")| > 3(n; — 1) +2 -5
Thus, n=|V(T")|+1>3n; —5and T € 7,2

n,ny*

Subcase 2.2. r = 2.

Let N(u)\{v1,v2} = {z1}. Suppose P = uguy ... us, u = ug (x1 = uy) be an internal
path of T with d(u) = 3 and d(u;) = s > 3, where t > 1.
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Ift=1,1let 7" =T\ {vi,v9}, T" € T2 -1, then

Ro(T) = R (T')+2-3%+ (3% —1)s®
en—2,n —1)+2-3%+ (3% — 1)s*
o(n,ng) +3%+4% —2-6% 4 (3% — 1)s

o(n,ny) +9%+4% —2-6% > p(n,ny).

Y

Y

Ift > 27 let 7" =T \ {Ub U2, Up, U1, - - - 7ut72}a T e betflnufh then

Ro(T) = Ro(T')+4%(t —2) 4+ 6% +2-3% + (22 — 1)s”
on—t—1,n —1)+4%(t—2)+6°+2-3%4+ (2 = 1)s
= o(n,n)+3% =6+ (2* — 1)s*

pln,m) + (20 = 1)(s* = 3%) > p(n,m).

Y

Equality holds only if R,(1T") = ¢(n —t —1,n; — 1) and s = 3. By the induction
hypothesis, " € 7,* , ;) and [V(T")| > 3(ny — 1) = 5. Thus, n = [V(T")| +t +1 >
3n1 —5and T € 7.2, . The proof is complete. 1

For T =CS(n,3)or T € T2

n,ni’

the maximum degree of T" is 3, then Theorem 2 also

holds for chemical trees.

Corollary 1 Let 3 <ny <n—2and o > 1. If T is a chemical tree with ny pendent

vertices, then

n-4*4+6*—-5-4*42-34+2% ifn =3
o(n,ny) if4<n; <n-—2

R.(T) > { (2)
In (2), if ny = 3, the equality holds if and only if T = CS(n,3); if 4 <ny < n—2, the
equality holds if and only if n > 3n; — 5 and T € T2

n,ni "’

4 For —-l<a<land 0<a<1

In [9], the authors introduced one class of chemical trees L.(n,n;), which were
founded by the system AutoGraphiz (AGX) of Caporossi and Hansen (further papers
describing mathematical applications of AGX are in [6], [7]). The structure of L.(n, n;)

(ny is even) is depicted in Figure 4.1. These trees are composed of subgraphs that are
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L [ ] [ ]
[ - - . L 3 . L - -
- . .

Figure 4.1 Structure of L.(n,n4).

stars S5, and these stars are connected by paths (the dotted lines in the figure), whose
lengths can be 0. The Randi¢ index of L.(n,n;) is
n 1 3
R(L¢(n, TN . | 2 V9.
(Le(nm) =5 +5 <\/§ )+2 v
Let T be a chemical tree with n vertices and n; pendent vertices. Denote by z; ; the
number of edges joining the vertices of degrees i and j, and n; the number of vertices
of degree 7 in T'. Then, we have another description for the Randi¢ index of T,
Ro(T) = Z wij - (1) (1)
1<i<j<4
Note that 17 = 0 whenever n > 3, and therefore the case ¢ = j = 1 needs not be
considered any further. Consequently, the right-hand side of (1) is a linear function of

the following nine variables x15, 13, 14, T22 , T23 , To4 , X33, T34, T44 . Then
ny+ng+ng+ng=nmn. (2)

Counting the edges terminating at vertices of degree i, we obtain for i = 1,2, 3,4

T+ T3 +T14 = M (3)
T1p + 2%op + Loy +Toa = 2np (4)
Ti3 4+ Toz + 2x33 + 34 = 3ng (5)
Tia+ Tog + Taa + 2244 = 4y . (6)

Another linearly independent relation of this kind is
ny+2ns +3nz+4dng =2m=2(n—1) . (7)
Now we will solve the linear programming

min R (T) = Z x5 - (1)

1<i<j<d

with constraints (2) — (7).
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Theorem 3 Let T be a chemical tree of order n with ny > 5 pendent vertices. Then

for =1 < a <0,
R,(T)>n-4%+ (8% —4*)n; +3-4* —4-8*

with equality if and only if ny is even and T = L.(n,ny) .

Proof. By some calculations, we have

2n —5n1+6 1 " +1 1 +1 +2 n (8)
Tyg = ——— — =T —X13 + =X14 — =Tz + =T33 + = x
22 B gF12 ¥ s T 5%~ gday + gda3 T g 34 44
=2 4 2 2 1 2 (9)
Toq = 2411 33513 T14 39?23 31‘33 3-7534 T4q

Substituting (8) and (9) into (1), we have

5
R(T) = (n — in] + 3) 4 + (2711 — 4)8a + c12T12 + C13713 —+ C14T14
+C23%23 + C33T33 + C34%34 + Ca4Tya

5 1 1 2
(n - 577,1 + 3) 4“ + (217/1 - 4)8(y + (2“ - 54(1) X192 + (30 + 64(! - gga) 13

3 1 2 1 4
+ <§4a _ 8&) T4 —+ <6a — §4a — §8a> 23 + (9u + 5411 — gsa) X33

2 =4
+ (m + 34t - §8> a1+ (16" + 4% — 28wy (10)

Because all coefficients ¢;; on the right-hand side of (10) are positive-valued for
—1 < a <0, it is clear that for fixed n and ny, R(T) will be minimum if the parameters
212, T13, T14, T2, T3z, T34 and xyy are all equal to zero (provided this is possible).

However, a tree must have at least two pendent vertices, and so we have
T12 + 213 + 214 > 0. (11)

Since ¢4 < €13 < €19, considering the minimum of R(T), the best solution of (11) is

that all pendent vertices are adjacent to vertices with degree 4, i.e., x14 = ny.

Thus, we get

R(T)

[\

5 3
n— 57“ +3 4%+ (2ny — 4)8* + §4a — 8% | my
4%n + (8% —4%)n; +3-4%— 4.8

with equality if and only if 215 = 213 = o3 = 33 = 234 = 244 = 0, 14 = n; and

ng = 0. The proof is complete. 1
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Theorem 4 Let T be a chemical tree of order n with ny > 5 pendent vertices. Then

for0<a<1,

Ry(T)>n 4%+ (3% +2-6% - 3-4%)n; +5-4% — 6>F1
with equality if and only if T € ’Z;fm.
Proof. By some calculations, we have

3 1 3
Tog =N —ny +5— 3T — 2213 — 51‘14 + §$24 + X33 + 5%34 + 2144 (12)

3 5
Toz = —06 + 3712 + 2713 + 5%~ 5% — 2r33 — 5%~ 344 (13)

Substituting (12) and (13) into (1), we have

R(T) = (n—mny+5)4" — 61" + cpom1s + c13713 + clazig
+C23%93 + C33T33 + C34%34 + C44Taa
= (n—ny +5)4% — 6T 4+ (2% —3-4% 4+ 36219 + (3% — 2-4% + 2 6%) 113
1 3 1 3
+ (*540 + §6a> T4 + (54(1 — 560 -+ 8a> Loy + (4a —2- 6a + 9a)1‘53

3.5
+ (540 - 56+ 12a) Zag+ (2-4% — 3 6% + 16244, (14)

Because all coefficients ¢;; on the right-hand side of (14) are positive-valued for
0 < a < 1, it is clear that for fixed n and ny, R(T) will be minimum if the parameters
T12, T13, T14, Tod, T3z, T34 and x4 are all equal to zero (provided this is possible).

However, a tree must have at least two pendent vertices, and so we have
12 + 213 + 214 > 0. (15)

Since ¢13 < ¢12 and ¢35 < ¢4, considering the minimum of R(T), the best solution of

(15) is that all pendent vertices are adjacent to vertices with degree 3, i.e., 13 = ny.

Thus, we get

R(T)

Y

(n —ny 4+ 5)4% — 6°T + (3% — 24 + 2. 6%)n,
N4 4 (3% 42 6% — 340y + 5 - 4% — 61!

with equality if and only if x10 = @14 = 2oy = @33 = 234 = 244 = 0, 13 = ny and

ng = 0. The proof is complete. 1
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