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Abstract

The Randić index of an organic molecule whose molecular graph is G is
the sum of the weights (d(u)d(v))−

1
2 of all edges uv of G, where d(u) and d(v)

are the degrees of the vertices u and v in G. In this paper, we present a upper
bound on the Randić index for all chemical graphs with n vertices, m ≥ n

edges and k > 0 pendant vertices, and determine corresponding extremal
graphs.

1. Introduction and Notations

In studying branching properties of alkanes, several numbering schemes for the

edges of the associated hydrogen-suppressed graph were proposed based on the de-

grees of the end-vertices of an edge. To preserve rankings of certain molecules, some

inequalities involving the weights of edges needed to be satisfied. The Randić index
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of an organic molecule whose molecular graph is G is defined (see [25]) as

R(G) =
∑
uv

(d(u)d(v))−
1
2

where d(u) denotes the degree of the vertex u of the molecular graph G, the sum-

mation goes over all pairs of adjacent vertices of G. The research background of

Randić index together with its generalization appears in chemistry or mathematical

chemistry and can be found in the literature (see [8, 9, 26]). An important direction

is to find bounds for the Randić index or the general Randić index of graphs and

determine the graphs with maximal or minimal (general) Randić index in a given

class of graphs. Up to now, many results are given (see [1], [3]-[6], [11]-[24], [27]-

[30]), but most of them are lower bounds. In this paper, we present a upper bound

on the Randić index for all chemical graphs with n vertices, m ≥ n edges and k > 0

pendant vertices, and determine corresponding extremal graphs.

In order to discuss our results, we first introduce some terminologies and nota-

tions of graphs. For other undefined notations, the reader is referred to [2]. We

only consider finite, undirected and simple graphs. For a vertex x of a graph G, we

denote the neighborhood and the degree of x by NG(x) and dG(x), respectively. A

pendant vertex is a vertex of degree 1. The maximum degree of G is denoted by

∆(G). An edge is symmetric if it connects two vertices of equal degree; otherwise

it is said to be asymmetric. We use G− xy to denote the graph that arises from G

by deleting the edge xy ∈ E(G). Similarly, G + xy is a graph that arises from G by

adding an edge xy /∈ E(G), where x, y ∈ V (G). Let Ps = v0v1 · · · vs be a path of G

with d(v1) = · · · = d(vs−1) = 2 (unless s = 1). If d(v0) = 1 and d(vs) ≥ 3, then we

call Ps a pendant chain of G.

A (n,m, k)-graph is a connected graph that has n vertices, m edges and k pendant

vertices. Clearly, a (n, n−1, k)-graph is a tree, a (n, n, k)-graph is a unicyclic graph,

a (n, n+1, k)-graph is a bicyclic graph and a (n, n+2, k)-graph is a tricyclic graph.

A connected graph is called chemical if its maximum degree is at most 4.

Let G = (V, E) be a graph. Denote

Vi(G) = {v : v ∈ V (G), dG(v) = i}, ni(G) = |Vi(G)|,

E1 = {uv ∈ E(G) : dG(u) = 1, dG(v) = 2}, E2 = {uv ∈ E(G) : dG(u) = dG(v) = 2},
E3 = {uv ∈ E(G) : dG(u) = 2, dG(v) ≥ 3}, E4 = {uv ∈ E(G) : dG(u), dG(v) ≥ 3}
and E5 = {uv ∈ E(G) : dG(u) = 1, dG(v) ≥ 3}. Note that any edge in E1 ∪E3 ∪E5

is an asymmetric edge.
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2. Preliminaries

The proof of our results are carried out mainly by the following lemma.

Lemma 2.1 (see [3]). Let G be a connected graph with n vertices. Then

R(G) =
n

2
−
∑

e∈E(G)

w∗(e), (∗)

where w∗(e) = 1
2

(
1√

dG(u)
− 1√

dG(v)

)2

for e = uv.

The above result can be for formulated also as follows: The Randić index of a

connected graph is maximum if and only if G does not possess edges connecting

vertices of different degrees (see [13]). This method has been successfully applied in

the study of the extremal values of Randić index in some classes of graphs. Moreover,

it can simplify the proof of some known results (see [3, 13]).

Note that an asymmetry edge has a positive-valued weight w∗, whereas the

weight w∗ of any symmetry edge is zero. Therefore, symmetry edges do not con-

tribute to the right-hand side summations in (∗). With regard to this, the most

obvious consequence of (∗) is the known results (see [3]).

Let G be a (n,m, k)-graph, then m ≥ n − 1 and k ≥ 0. If k = 0, then the

chemical (n, m, 0)-graphs with extremal Randić index are determined by Gutman

et al (see [7]). Also, the chemical (n, n − 1, k)-graphs with extremal Randić index

are determined by Hansen and Mélot (see [10]). So in the following, we assume that

k > 0 and m ≥ n. Note that if k > 0, then E1 ∪ E5 6= ∅ and any (n, m, k)-graph

necessarily possess asymmetry edges.

Denoted by Gn,m,k the set of all (n, m, k)-graphs with k > 0 and m ≥ n.

Next we will give another lemma which will be used in the proofs of our results.

Lemma 2.2. Suppose G ∈ Gn,m,k, v ∈ V (G) vertex of degree 2 not contained

in any pendant chain and not contained in any cycle of length 3. Let degrees of

adjacent vertices of v be at least 2. Then, there is a graph G′ ∈ Gn,m,k such that one

of the following holds:

(i) R(G) < R(G′);

(ii) R(G) = R(G′) and G′ has more vertices in pendant chains then G.

Proof. Denote NG(v) = {u, w} with dG(v) = 2 and dG(u) = s ≥ 2, dG(w) =

t ≥ 2. Let x be a pendant vertex of G and y its neighbor. Then dG(y) = l ≥ 2. Let
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G′ = G− uv − vw − xy + uw + xv + yv. Then G′ ∈ Gn,m,k. Note that

R(G)−R(G′) =
1√
2s

+
1√
2t

+
1√
l
− 1√

st
− 1√

2l
− 1√

2

=

(
1√
s
− 1√

2

)(
1√
2
− 1√

t

)
+

(
1√
2
− 1

)(
1√
2
− 1√

l

)
.

If l > 2 or s, t > 2, then R(G) < R(G′). Otherwise, if l = 2, then only one pendant

chain is altered (one that corresponds to pendant vertex x and in that chain v is

included). Hence R(G) = R(G′) and G′ has more vertices in pendant chains.

From Lemma 2.2, we may assume that all vertices of degree 2 (except for some

vertices on the 3-cycles) in a (n,m, k)-graph G with maximum Randić index lie on

the pendant chains of G.

Let s, t, k be three positive integers with s ≥ 6 and t = 3s−2k
2

≥ s. We call G a

(s, t, k, 3)-semi-regular graph if G is a (s, t, k)-graph with |V1(G)| = k and dG(v) = 3

for any vertex v ∈ V (G)\V1(G). Note that for a (s, t, k, 3)-semi-regular graph, we

have k ≥ 3 if t = s, k ≥ 2 if t = s + 1 and k ≥ 1 if t ≥ s + 2. In Fig. 1, we have

drawn four (10, 10, 5, 3)-semi-regular graphs.

Let n,m, k be three positive integers with m ≥ n and 3n ≥ 2m + 3k. Let

G ∗
n,m,k = {G : G is a (n, m, k)-graph obtained from a (s, t, k, 3)-semi-regular graph

by adding at least one new vertex on each pendant edge, and total number of new

vertices is 3n − 2m − 2k}. Then G ∗
n,m,k ⊆ Gn,m,k. In Fig. 2, we have drawn four

(15,15,5)-graphs in G ∗
15,15,5.

Fig. 1 (10, 10, 5, 3)-semi-regular graphs

Fig. 2 Four graphs in G ∗
15,15,5

- 516 -



3. Chemical (n,m, k)-Graphs with Maximum Randić Index

In this section, we first consider (n,m, k)-graphs and determine the extremal

(n,m, k)-graphs with maximum Randić index.

Theorem 3.1. Suppose G ∈ Gn,m,k with R(G) being as large as possible, where

n = m and k ≥ 3, or n = m + 1 and k ≥ 2, or n ≥ m + 2. If no vertex of degree 2

is on the cycle of length 3 of G, then

R(G) ≤ n

2
− (7− 3

√
2−

√
6)k

6
. (1)

Moreover, the equality in (1) holds if and only if 3n ≥ 3k + 2m and G ∈ G ∗
n,m,k.

Proof. First we note that if G ∈ G ∗
n,m,k and 3n ≥ 3k + 2m, then the equality

in (1) holds.

Now, we prove that if G ∈ Gn,m,k with R(G) is as large as possible, where n = m

and k ≥ 3, or n = m + 1 and k ≥ 2, or n ≥ m + 2, then (1) holds and equality in

(1) holds only if 3n ≥ 3k + 2m and G ∈ G ∗
n,m,k. By assumption and the proof of

Lemma 2.2, we can assume, without loss of generality, that all vertices of G with

degree 2 are on the pendant chains of G. Thus E(G) = E1 ∪E2 ∪E3 ∪E4 ∪E5 and

|E3| = |E1|. Note that |E1|+ |E5| = k, and hence by Lemma 2.1,

R(G) =
n

2
−
∑

e∈E(G)

w∗(e)

=
n

2
− 1

2

(
1− 1√

2

)2

|E1| −
∑

uv∈E3

1

2

(
1√
2
− 1√

d(v)

)2

−
∑

uv∈E4

1

2

(
1√
d(u)

− 1√
d(v)

)2

−
∑

uv∈E5

1

2

(
1− 1√

d(v)

)2

≤ n

2
− 1

2

(
1− 1√

2

)2

|E1| −
∑

uv∈E3

1

2

(
1√
2
− 1√

d(v)

)2

−
∑

uv∈E5

1

2

(
1− 1√

d(v)

)2

≤ n

2
− 1

2

(
1− 1√

2

)2

|E1| −
1

2

(
1√
2
− 1√

3

)2

|E3| −
1

2

(
1− 1√

3

)2

|E5|

=
n

2
+

(3
√

2 +
√

6− 7)k

6
−
(

1− 1√
2

)(
1√
2
− 1√

3

)
|E5|

≤ n

2
+

(3
√

2 +
√

6− 7)k

6
.

- 517 -



In order for equality to hold, all inequalities in the above argument should be

equalities. Thus we have (i) |E5| = 0; (ii) for any uv ∈ E3, dG(u) = 2, dG(v) = 3;

(iii) for any uv ∈ E4, dG(u) = dG(v). Since each edge of E3 are incident to an edge

of E4 and a vertex of degree 2, respectively, we have dG(u) = dG(v) = 3 for any

uv ∈ E4 and n2 ≥ k. Thus the maximum degree of G is 3. Since G is an (n, m, k)-

graph, we have n1 + 2n2 + 3n3 = 2m and n1 + n2 + n3 = n. Hence 3n ≥ 3k + 2m

and G ∈ G ∗
n,m,k.

Let n∗
2 be the number of the cycles C of length 3 in G with V2 ∩ V (C) 6= ∅.

Theorem 3.2. Suppose G ∈ Gn,m,k with R(G) being as large as possible and

n∗
2 > 0. Then

R(G) ≤ n

2
− (7− 3

√
2−

√
6)k

6
− 5− 2

√
6

6
n∗

2.

Proof. Let G ∈ Gn,m,k with R(G) being as large as possible. By the proof of

Lemma 2.2, we can assume, without loss of generality, that all vertices of G with

degree 2 are on the pendant chains of G or on the cycles of length 3 of G. Thus

E(G) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 and |E3| = |E1| + 2n∗
2. Note that |E1| + |E5| = k,

and hence by Lemma 2.1,

R(G)

=
n

2
− 1

2

(
1− 1√

2

)2

|E1| −
∑

uv∈E3

1

2

(
1√
2
− 1√

d(v)

)2

−
∑

uv∈E4

1

2

(
1√
d(u)

− 1√
d(v)

)2

−
∑

uv∈E5

1

2

(
1− 1√

d(v)

)2

≤ n

2
− 1

2

(
1− 1√

2

)2

|E1| −
∑

uv∈E3

1

2

(
1√
2
− 1√

d(v)

)2

−
∑

uv∈E5

1

2

(
1− 1√

d(v)

)2

≤ n

2
− 1

2

(
1− 1√

2

)2

|E1| −
1

2

(
1√
2
− 1√

3

)2

|E3| −
1

2

(
1− 1√

3

)2

|E5|

=
n

2
+

(3
√

2 +
√

6− 7)k

6
−
(

1√
2
− 1√

3

)2

n∗
2

+
|E5|
2

[(
1− 1√

2

)2

+

(
1√
2
− 1√

3

)2

−
(

1− 1√
3

)2
]

≤ n

2
+

(3
√

2 +
√

6− 7)k

6
− 5− 2

√
6

6
n∗

2.
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Note that if G ∈ Gn,n,1∪Gn,n,2∪Gn,n+1,1, then there is at least a cycle containing

a vertex of degree 2 in G. Thus, by an argument similar to the proof of Theorem

3.2, we have

Theorem 3.3 (i) For G ∈ Gn,m,1 with n = m or m = n + 1, we have

R(G) ≤ n

2
− 4−

√
2−

√
6

2

and equality holds if and only if G ∈ A 1
n , n ≥ 5 or G ∈ A 2

n , n ≥ 6 (see Fig. 3);

(ii) For G ∈ Gn,n,2, we have

R(G) ≤ n

2
− 19− 6

√
2− 4

√
6

6

and equality holds if and only if G ∈ B1
n, n ≥ 8 or G ∈ C 1

n , n ≥ 7 (see Fig. 3).

vq

v1

v2

︸︷︷︸
n−q

(n, n, 1)-graphs in A 1
n

(3 ≤ q ≤ n− 2)

vq

vq−1

v1

v2

︸︷︷︸
n−q

(n, n + 1, 1)-graphs in A 2
n

(4 ≤ q ≤ n− 2)

vq

v1

v2

︸ ︷︷ ︸
l−1

n−q−l︷ ︸︸ ︷

(n, n, 2)-graphs in B1
n

(l ≥ 3, 3 ≤ q ≤ n− 5)

v1

v2

vq︸︷︷︸
l

n−q−l︷ ︸︸ ︷

(n, n, 2)-graphs in C 1
n

(l ≥ 2, 3 ≤ q ≤ n− 4)
Fig. 3

For any graph G ∈ Gn,n,1 ∪ Gn,n,2 ∪ Gn,n+1,1 or G ∈ G ∗
n,m,k, the maximum degree

of G is 4, thus Theorems 3.1, 3.2 and 3.3 hold for chemical graphs. Thus we have

Corollary 3.4. For any chemical graph G ∈ Gn,m,k, m ≥ n + 2,

R(G) ≤ n

2
− (7− 3

√
2−

√
6)k

6
. (2)

Moreover the equality in (2) holds if and only if G ∈ G ∗
n,m,k and 3n ≥ 2m + 3k.
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Corollary 3.5. Let chemical graph G ∈ Gn,n,k. Then, for k = 1,

R(G) ≤ n

2
− 4−

√
2−

√
6

2

and equality holds if and only if G ∈ A 1
n and n ≥ 5; and for k = 2,

R(G) ≤ n

2
− 19− 6

√
2− 4

√
6

6

and equality holds if and only if G ∈ B1
n (n ≥ 8) or G ∈ C 1

n (n ≥ 7); and for k ≥ 3,

R(G) ≤ n

2
− (7− 3

√
2−

√
6)k

6

and equality holds if and only if n ≥ 3k and G ∈ G ∗
n,n,k.

Corollary 3.6. Let chemical graph G ∈ Gn,n+1,k. Then, for k = 1,

R(G) ≤ n

2
− 4−

√
2−

√
6

2

and equality holds if and only if G ∈ A 2
n and n ≥ 6; and for k ≥ 2,

R(G) ≤ n

2
− (7− 3

√
2−

√
6)k

6

and equality holds if and only if n ≥ 3k + 2 and G ∈ G ∗
n,n+1,k.
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Randić index of the Nordhaus-Gaddum type, MATCH Commun. Math. Com-

put. Chem. 55(2006) 419-426.

- 521 -



[18] H.-Q. Liu, X.-F. Pan and J.-M. Xu, On the Randić index of contradujted
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