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Abstract

A terminal polynomial is the characteristic polynomial of the distance ma-

trix between all pairs of leaves (valence one vertices) of a given graph. Two

graphs are isoterminal if they share the same terminal polynomial. In this

paper we prove the Clarke-type theorem about terminal polynomial of a given

graph and prove that there are countably many isoterminal pairs of graphs. We

investigate isoterminal pairs of star-like graphs in more details and calculate

the isoterminal pair of star-like graphs with three rays that has the smallest

number of vertices (in both graphs together) compared to all isoterminal pairs

of star-like graphs with three rays.
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1 Introduction

Graphical representation of proteins, which are made of amino acids arranged in a

linear chain, has been initiated only recently [10]. The sequence of amino acids in a

protein is determined by the genetic code, which specifies the order in which the 20

natural amino acids occur. Among the latest development in this area is use of star-

like graphs for construction of graphical representation of proteins [15]. Star graphs

are connected graphs with at most one vertex of degree d ≥ 3 and all other vertices

of d = 1, while star-like graphs are connected graphs with with at most one vertex of

degree d ≥ 3 (while other vertices are of d = 1 and d = 2). In contrast to graphical

representation of proteins graphical representation of DNA (deoxyribonucleic acid),

which consists of four nucleic acids and determines the genetic information used in the

development of all living organisms, has been around for 25 years [7]. Different history

for graphical representation of proteins and DNA is due to combinatorial complexity

accompanying ordering of 20 objects relative to that of four when considering use

of labeled geometrical objects as template for their representation. However, graphs

have here an important advantage in offering graphical representation of the same

graph (protein) that may appear different, depending or order in which vertices are

labeled, but which will lead to the same set of invariants regardless labeling of its

vertices. Thus the quagmire of 20 factorials has been bypassed.

When star-like graphs are used for visual representation of proteins one is inter-

ested in graphs with at most 20 rays. Such graphs can be used unlabeled and labeled,

with labels indicating the site in which amino acids appear in the sequence [10]. When

graph invariants are considered as potential graph descriptors there is always loss of

information, which is the reason that typically one considers set of invariants for their

characterization. Among various invariants for characterization of molecular graphs

[12] the leading eigenvalue and eigenvalues have been occasionally considered [14]. In

such cases additional loss of information may occur due to possibility of isospectral-

ity, the situation that different graphs may have the same characteristic polynomials
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and the same set of eigenvalues. Collatz and Sinogowitz were the first to report on

a collection of isospectral trees [3]. Since then numerous results on isospectral (or

cospectral) graphs have been reported, particularly in mathematical and chemical

literature [16].

In view that star-like graphs have been proposed for graphical representation of

proteins it is of interest to study their mathematical properties more closely, including

spectral properties [4, 5, 8, 9]. In this contribution we will in particular focus on

terminal polynomials of star-like graphs. Informally terminal polynomials are defined

for trees and are the characteristic polynomials of the reduced distance matrix that

involves only distances between terminal vertices. In a preliminary report Randić

and Kleiner [11, 13] reported on a pair of simple star-like graphs, having only three

rays, which have the same set of eigenvalues for the reduced distance matrix involving

terminal vertices. We will refer to such graphs as isoterminal graphs, in analogy with

the label isospectral graph, for graphs having the same characteristic polynomial. In

this work we revisited the subject and made a more detailed study of isospectrality

of terminal graphs and some other their properties.

Other, more mathematically oriented work that is connected to this subject is [1],

where authors studied distance matrix realizability with trees (which matrices are

terminal matrices of trees).

2 Definitions

All graphs in this paper are considered to be finite, undirected, connected and simple.

We shall study special submatrices of distance matrices, called terminal distance

matrices. Define D(G) to be the graph-theoretical distance matrix of G and let D(G)

be the graph-theoretical distance matrix of distances between all pairs of terminal

vertices (or valence one vertices) of a graph G. We refer to D(G) as terminal distance

matrix of G. It has been proved in [17] that any tree is completely defined by its
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terminal distance matrix.

Let G be a graph on n = |V (G)| vertices and let In be the n× n identity matrix.

The polynomial

PG(x) = det(A(G)− xIn)

of the adjacency matrix A(G) of graph G, is called the characteristic polynomial of G.

Similarly, the polynomial det(D(G)−xIN) of the terminal distance matrix D(G) of a

graph G with N terminal vertices is called terminal polynomial of G. The information

contained in the terminal polynomial may have practical use; for instance, the degree

of the terminal polynomial tells us the number of vertices of valence one in a graph.

In Section 3 we consider terminal polynomials and prove Clarke-type theorem (see

[2]) for terminal polynomials.

Let N > 0 be a natural number and let a = {a1, a2, . . . , aN} be a tuple of positive

integers, such that ∀i, ai ≥ 1. A star-like graph S(a) with N rays is a graph with

vertex set V (S(a)) = {u}∪{vi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ ai} and edge set E(S(a)) = {u ∼

vi,1, 1 ≤ i ≤ N}∪{vi,j ∼ vi,j−1, 1 ≤ i ≤ N, 2 ≤ j ≤ ai}. Thus |V (S(a))| = 1+
∑N

j=1 aj

and |E(S(a))| =
∑N

j=1 aj. Figure 1 depicts the star-like graph S({1, 2, 3}) with three

rays. The induced subgraph of S(a) on vertex set {vi,j ∼ vi,j−1, 2 ≤ j ≤ ai} will be

called i-th ray.

Figure 1: The star-like graph S({1, 2, 3}).

Section 4 considers graphs with the same terminal polynomial, the so-called isoter-

minal graphs. We prove that there is countably many isoterminal graphs and define

ireducible and reducible graphs. In Section 5 we observe star-like graphs on three

rays. We obtain the smallest isoterminal pair of star-like graphs with three rays; the

- 496 -



smallest in a way, that the sum of the vertices of both graphs is the smallest among

all isoterminal pairs of star-like graphs on three rays. We calculated all ireducible

isoterminal pairs of star-like graphs with three rays, for which the smallest graph in

the pair has all rays of length up to 200 vertices.

3 Terminal polynomial

Let G be a graph and let V (G) = {v1, v2, . . . , vn} be the vertex set of the graph G.

The (Ulam) subgraph of G induced by the vertex set V (G) \ {vi} will be denoted by

G(i).

Let A(G, `) be the labeled adjacency matrix of a graph G using the edge labeling

`, that is, the |V (G)| × |V (G)| symmetric matrix whose ij-th entry is `(e), if vi and

vj are joined by an edge e = vi ∼ vj, and 0 otherwise; for analogous definition, see

[2]. From labeling all edges with label `(x) = 1 the well known adjacency matrix

A(G) := A(G, 1) is obtained. As in [2], define the polynomial

RG,`(x) = det(A(G, `) + xIn),

of the labeled adjacency matrix A(G, `) of the graph G using edge labeling `, where

again, In is the n× n identity matrix.

Lemma 3.1. Let G be a graph with edge labeling `, let n = |V (G)| and let G(i),

1 ≤ i ≤ n, be its Ulam subgraphs. Then

∂ RG,`(x)

∂x
=

n∑
i=1

RG(i),`(x).

Proof. We can prove our theorem following the idea that proves Theorem 2 and

Corollary 3 in [2] and considering labeling of the edges throughout the proof.

Corollary 3.2. Let PG,`(x) = det(A(G, `)− xIn) be the characteristic polynomial of
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the labeled adjacency matrix A(G, `). Then

∂ PG,`(x)

∂x
= −

n∑
i=1

PG(i),`(x).

Proof. Observe that RG,`(x) = PG,`(−x).

Let D(G) be the terminal distance matrix of G. It can be easily checked that a

terminal distance matrix is a submatrix of a graph-theoretical distance matrix of a

given graph. The characteristic polynomial tG(x) := det(D(G)−xIN) of the terminal

distance matrix D(G) of a graph G with N terminal vertices is called the terminal

polynomial of G. We define the terminal polynomial of a graph G with no terminal

vertex as tG(x) := 1.

Observe that in the terminal polynomial of degree m, the coefficient of the term

xm−1 equals to the trace of the terminal distance matrix, and hence to 0. The leading

term equals to (−x)N , where N is the number of terminal vertices of G, and the

constant term equals to determinant of the terminal distance matrix of G.

Let vj be a terminal vertex of a graph G. Let Pvj
denote the maximal path in G

that starts in vj and contains (in addition to vj) only non-terminal vertices of G with

valences exactly 2. The generalized Ulam subgraph of G induced by the vertex set

V (G) \ V (Pvj
) will be denoted by G[j]. As in star-like graphs, we refer to Pvj

as j-th

ray (with length V (Pvj
)− 1), see Example 1.

Theorem 3.3 (Terminal Polynomial Theorem). Let G be a graph with N > 0 ter-

minal vertices and tG(x) its terminal polynomial. Let G[i] denote the graph obtained

from G when removing the i-th ray that starts in terminal vertex vi. Then

∂ tG(x)

∂x
= −

N∑
i=1

tG[i](x).

Proof. We are given a graph G with N > 0 terminal vertices. Let D(G), D(G) be

the graph-theoretical and the terminal distance matrices of G, respectively.
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When N = 1, D(G) = [0] and tG(x) = det([−x]) = −x. Hence ∂ tG(x)
∂x

= −1. On

the other hand, G[1] contains no terminal vertex. Thus, by definition, tG[1]
(x) = 1,

and the theorem holds.

Let us now observe the case when N > 1. From G we construct the complete

graph KN , where the i-th terminal vertex vi ∈ V (G) is represented by a vertex

ui ∈ V (KN). It is easy to see that the Ulam subgraph KN (i) represents the generalized

Ulam subgraph G[i] .

We label the edges of KN using labeling

`(ui ∼ uj) = D(G)i,j.

The labeled adjacency matrixA(KN , `) gives the characteristic polynomial PKN ,`(x).

It can be easilly checked, that

A(KN , `) = D(G),

thus the terminal polynomial tG(x) equals to the characteristic polynomial PKN ,`(x).

Similarly, A(KN (i), `) = D(G[i]), ∀1 ≤ i ≤ N and hence tG[i]
(x) = PKN (i),`(x). Using

Corollary 3.2

∂ tG(x)

∂x
=

∂ PKN ,`(x)

∂x

= −
N∑

i=1

PKN (i),`(x)

= −
N∑

i=1

tG[i]
(x),

which completes our proof.
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(a) (b) (c) (d)

Figure 2: (a) Graph Ga with no terminal vertex. (b) Graph Gb with one terminal
vertex. (c) Graph Gc with two terminal vertices. (d) Path Gd on five vertices.

Example 1. Graphs on Figure 2 have terminal polynomials

tGa(x) = 1,

tGb
(x) = det([−x]) = −x,

tGc(x) = tGd
(x) = det


 0 4

4 0

− x ·

 1 0

0 1




= det


 −x 4

4 −x


 = x2 − 16.

Observe that Gb[1] = Ga and Gd[1] = Gd[2] = K1.

Corollary 3.4. Let S := S({a1, a2, . . . , aN}) be a star-like graph with N rays and

tS(x) its terminal polynomial. Let S[i] := S({a1, . . . , ai−1, ai+1, . . . , aN}) denote the

star-like graph obtained from S when removing the i-th ray. Then

∂ tS(x)

∂x
= −

N∑
i=1

tS[i]
(x).

Proof. We can, as in Theorem 3.3, define the labeled complete graph KN on N

vertices, using the labeling

`(ui ∼ uj) :=

 ai + aj, i 6= j,

0, i = j.
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4 Isoterminal pairs

We say that two different graphs form an isoterminal pair of graphs if they have the

same terminal polynomial, see Table 1 for the proof that they exist. Since the leading

term in the terminal polynomial of a graph with N terminal vertices is (−x)N , both

graphs in an isoterminal pair have the same number of terminal vertices.

Let G be a graph and let k > 0 be a natural number. With G(k) we label the

graph obtained from G by inserting k − 1 vertices (of valence 2) into each edge of G

(by subdividing all edges of G, each k − 1 times). The following lemma will be used

to prove the next theorem.

Lemma 4.1. Let G be a graph with N > 0 terminal vertices, let k > 1 be a natural

number and let 0 < i ≤ N . Then

G(k)[i] = G[i](k)

Proof. It is easy to see that by inserting k− 1 vertices into each edge of the i-th ray,

we obtain a ray of k-times greater length.

Theorem 4.2. Let G be a graph with N > 0 terminal vertices and let k > 1 be a

natural number. Then

tG(k)(x) = kN · tG
(x

k

)
.

Proof. We will argue by induction on N .

Note that, when N = 0, the argument is trivially true. Let us first show that the

argument holds for N = 1. When N = 1, D(G) = [0] and tG(x) = det([−x]) = −x

and tG(k)(x) = k1 ·
(
−x

k

)
= −x.
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Using Theorem 3.3 and induction hypotheses, we may write

∂ tG(k)(x)

∂x
= −

N∑
i=1

tG(k)[i](x)

= −
N∑

i=1

tG[i](k)(x)

= −
N∑

i=1

kN−1 · tG[i]

(x

k

)
= −kN−1 ·

N∑
i=1

tG[i]

(x

k

)
.

Let us use a substitution y = x
k

and write

∫
∂ tG(k)(x)

∂x
∂x = C +

∫
−kN−1 ·

N∑
i=1

tG[i]

(x

k

)
∂x

= C +

∫
−kN−1 ·

N∑
i=1

tG[i]
(y) · k · ∂y

= C + kN ·
∫
−

N∑
i=1

tG[i]
(y) ∂y

= C + kN ·
∫

∂ tG(y)

∂y
∂y

and

tG(k)(x) = C + kN · tG(y) = C + kN · tG
(x

k

)
,

where C is some constant. Since

tG(k)(0) = det(k · D − 0 · In) = kN · det(D)

and

tG

(
0

k

)
= det(D −

(
0

k

)
· In) = det(D),
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we can write

C = tG(k)(0)− tG

(
0

k

)
= kN · det(D)− kN · det(D) = 0

and

tG(k)(x) = kN · tG
(x

k

)
.

Next theorem will prove that for every natural number N > 0 we have countably

many isoterminal pairs of graphs with exactly N terminal vertices.

Theorem 4.3. Let G, H be an isoterminal pair of graphs with N > 0 terminal vertices

and let k > 1 be a natural number. Then graphs G(k) and H(k) are an isoterminal

pair.

Proof. Again, let us use a substitution y = x
k

and write

tG(k)(x) = kN · tG
(x

k

)
= kN · tG (y)

= kN · tH (y)

= kN · tH
(x

k

)
= tH(k)(x).

Let G, H be an isoterminal pair of graphs. If there exist a natural number k > 1

and an isoterminal pair of graphs G0, H0, such that G = G0(k) and H = H0(k), we

say that the pair G, H is k-reducible (and less interesting) pair. Pairs of isoterminal

graphs that are not reducible are ireducible.
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Theorem 4.4. Let G, H be a k-reducible pair of isoterminal graphs. Then

gcd
i6=j
{D(G)i,j,D(H)i,j} > 1.

Proof. Since G, H are k-reducible, there exist graphs G0, H0, such that G = G0(k)

and H = H0(k). Subdividing all edges of G0 by inserting k− 1 vertices into each and

every edge of G0 produces G0(k) with terminal distance matrix D(G0(k)). It can be

easily checked that D(G)i,j = D(G0(k))i,j = k · D(G0)i,j. Similar holds for graphs H

and H0. Hence, gcdi6=j{D(G)i,j,D(H)i,j} = k > 1.

Corollary 4.5. There is countably many isoterminal pairs of star-like graphs.

Proof. Lemma 4.6 proves that k − 1 times regularly subdivided star-like graphs are

star-like graphs with k times bigger ray lengths. Hence, by Theorem 4.3 and by the

fact that an isoterminal pair of star-like graphs exist (see Table 1), we have countably

many pairs of isoterminal star-like graphs.

In general, the existence of a factor k > 1 that divides all elements of terminal

distance matrices of an isoterminal pair of graphs, does not define the pair to be

k-reducible, see Figure 3. On the other hand, this is not the case with star-like

graphs.

Figure 3: Two ireducible isoterminal graphs with the property that
gcdi6=j{D(Ga)i,j,D(Gb)i,j} = 9.
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Lemma 4.6. Let k > 1 be a natural number. Then

S({a1, a2, . . . , aN})(k) = S({k · a1, k · a2, . . . , k · aN})

Proof. Let a = {a1, a2, . . . , aN} and let D(S) be the terminal distance matrix of

S(a). Subdividing all edges of S(a) by inserting k − 1 vertices into each and every

edge of S(a) produces S(k)(a) with terminal distance matrix D(S(k)). It can be

easily checked that D(S(k))i,j = k · D(S)i,j. By Zaretskii [17], a tree, and hence a

star-like graph, is completely determined by its terminal distance matrix.

Lemma 4.7. Define k := gcd{a1, a2, . . . , aN}. Then

S
({a1

k
,
a2

k
, . . . ,

aN

k

})
(k) = S({a1, a2, . . . , aN}).

Proof. Let a = {a1, a2, . . . , aN}. Using Lemma 4.6 we can write

S
(a

k

)
(k) = S

(
k · a

k

)
= S(a).

Corollary 4.8. Let a = {a1, a2, . . . , aN}, b = {b1, b2, . . . , bN}, and let S(a) and S(b)

be an isoterminal pair of star-like graphs with k := gcd{a1, . . . , aN , b1, . . . , bN}. Then

S(a
k
) and S( b

k
) is an isoterminal pair of star-like graphs.

Proof. Let A = {A1, . . . , AN}, B = {B1, . . . , BN}, where Ai := ai

k
and Bi := bi

k
.

Then, according to Lemma 4.7, S(A)(k) = S(a). Hence, tS(a)(x) = tS(A)(k)(x) =

kN · tS(A)

(
x
k

)
= kN · tS(A)(y). Similarly, tS(b)(x) = kN · tS(B)(y).

Since k > 0 and tS(a)(x) = tS(b)(x), kN · tS(A)(y) = kN · tS(B)(y) and tS(A)(y) =

tS(B)(y).
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5 Isoterminal pairs of star-like graphs with three

rays

Let a = {a1, a2, . . . , aN} and b = {b1, b2, . . . , bN}. We can permute the rays of a star-

like graph and still obtain the same graph and hence the same terminal polynomial.

Thus, we can canonically denote the star-like graph with the lexicographically ordered

labeling S(a), that is, with the labeling, where 1 ≤ a1 ≤ a2 ≤ . . . ≤ aN . Similarly,

we can canonically denote an isoterminal pair with S(a), S(b), if and only if a is

(lexicographically) smaller than b. See Figure 4 for such a pair.

Let S({a1, a2, a3}) be a three-ray star-like graph. Its terminal distance matrix

D(S) =


0 a1 + a2 a1 + a3

a1 + a2 0 a2 + a3

a1 + a3 a2 + a3 0


gives the terminal polynomial tS(x) = 2(a1 + a2)(a1 + a3)(a2 + a3) + ((a1 + a2)

2 +

(a1 + a3)
2 + (a2 + a3)

2)x− x3.

Figure 4: Isoterminal pair of three-ray star-like graphs S({3, 56, 82}) and
S({24, 27, 91}) with terminal polynomial 1384140 + 29750x− x3.

Let S ′ denote the smallest graph (according to canonical notation) of the isoter-

minal pair S1,S2 of two star-like graphs. With the help of a computer program we

calculated all ireducible isoterminal pairs of star-like graphs with three rays, where all

ray lengths of the smaller graph S ′ (according to the canonical notation) are smaller

than 200, see Table 1.
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{a, b, c} {d, e, f} M

1

{1, 67, 98} {14, 46, 107} 333
{1, 67, 168} {16, 49, 172} 473
{1, 95, 171} {41, 45, 183} 536
{1, 97, 175} {37, 51, 187} 548
{1, 98, 177} {36, 53, 189} 554
{1, 103, 187} {33, 61, 199} 584
{1, 109, 199} {31, 69, 211} 620
{1, 119, 137} {29, 67, 163} 516
{1, 184, 188} {43, 97, 236} 749

2

{2, 67, 115} {16, 47, 122} 369
{2, 75, 120} {15, 55, 128} 395
{2, 98, 169} {43, 46, 182} 540
{2, 117, 148} {13, 93, 162} 535

3

{3, 56, 82} {24, 27, 91} 283
{3, 56, 144} {27, 29, 148} 407
{3, 72, 97} {17, 48, 108} 345
{3, 72, 116} {17, 51, 124} 383
{3, 117, 169} {33, 71, 187} 580
{3, 119, 153} {33, 69, 175} 552
{3, 131, 174} {14, 108, 187} 617

4

{4, 61, 77} {26, 28, 89} 285
{4, 65, 70} {25, 29, 86} 279
{4, 183, 191} {51, 92, 238} 759
{4, 184, 185} {52, 89, 235} 749

5

{5, 65, 80} {26, 32, 93} 301
{5, 121, 131} {43, 55, 161} 516
{5, 121, 167} {37, 71, 187} 588
{5, 160, 169} {16, 125, 194} 669

6 {6, 103, 127} {19, 76, 142} 473
{6, 178, 199} {58, 87, 241} 769

7

{7, 66, 103} {31, 34, 112} 353
{7, 66, 179} {34, 36, 183} 505
{7, 88, 92} {23, 53, 112} 375
{7, 121, 169} {43, 67, 189} 596
{7, 123, 141} {51, 53, 169} 544
{7, 141, 149} {39, 77, 183} 596

8
{8, 69, 117} {30, 40, 125} 389
{8, 100, 103} {23, 64, 125} 423
{8, 145, 163} {20, 113, 184} 633

9 {9, 129, 151} {51, 61, 179} 580
{9, 149, 195} {39, 97, 219} 708

{a, b, c} {d, e, f} M
10 {10, 92, 111} {27, 60, 127} 427

11 {11, 88, 97} {32, 49, 116} 393
{11, 149, 157} {47, 79, 193} 636

12 {12, 88, 107} {33, 52, 123} 415
{12, 125, 162} {26, 97, 177} 599

13

{13, 82, 122} {38, 47, 133} 435
{13, 92, 117} {33, 58, 132} 445
{13, 127, 132} {28, 88, 157} 545
{13, 131, 191} {61, 65, 211} 672
{13, 159, 177} {47, 93, 211} 700
{13, 169, 172} {46, 97, 213} 710

14 {14, 88, 121} {37, 53, 134} 447
{14, 148, 151} {28, 107, 179} 627

15 {15, 161, 181} {51, 93, 215} 716

16 {16, 94, 137} {38, 61, 149} 495
{16, 182, 193} {29, 142, 221} 783

17
{17, 94, 186} {39, 66, 193} 595
{17, 126, 138} {34, 87, 161} 563
{17, 136, 193} {32, 109, 206} 693

21 {21, 169, 179} {71, 81, 219} 740
{21, 175, 177} {67, 87, 221} 748

23

{23, 109, 166} {47, 74, 178} 597
{23, 122, 131} {47, 74, 156} 553
{23, 159, 186} {39, 122, 208} 737
{23, 161, 182} {39, 122, 206} 733

25 {25, 107, 192} {52, 72, 201} 649
{25, 111, 144} {60, 60, 161} 561

26 {26, 106, 181} {61, 62, 191} 627
{26, 117, 138} {61, 62, 159} 563

28 {28, 143, 180} {48, 105, 199} 703

31 {31, 124, 182} {59, 83, 196} 675
{31, 138, 140} {63, 76, 171} 619

36 {36, 173, 189} {57, 124, 218} 797
37 {37, 138, 172} {73, 82, 193} 695

39
{39, 138, 191} {74, 87, 208} 737
{39, 148, 186} {68, 99, 207} 747
{39, 162, 196} {63, 116, 219} 795

42 {42, 179, 184} {67, 120, 219} 811
44 {44, 165, 171} {80, 96, 205} 761
46 {46, 172, 185} {77, 110, 217} 807
54 {54, 184, 193} {94, 109, 229} 863

Table 1: All irreducible pairs of isoterminal star-like graphs S({a, b, c}),S({d, e, f})
with three rays in canonical notation, where the ray lengths of the smallest graph
S({a, b, c}) (according to the canonical notation) are smaller than 200 and where
M = a + b + c + d + e + f .

The isoterminal pair S({11, 88, 97}),S({32, 49, 116}) of Randić and Kleiner [13]

is listed in Table 1. Note that rays in one graph can be of the same length, for

example look at pair S({25, 111, 144}),S({60, 60, 161}) in Table 1. Moreover, in all
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cases a < d, b > e and c < f . Isoterminal pairs of Table 1 have different terminal

matrices but the same terminal polynomial while graphs on Figure 5 have the same

terminal matrix and consequently the same polynomial.

Lemma 5.1. Let S({a, b, c}), S({d, e, f}) be an isoterminal pair of star-like graphs

with 3 rays. Then a, b, c /∈ {d, e, f}.

Proof. Without loss of generality (because of the symmetry) we may assume that

a = d. Then we can write two equations

(a + b)(a + c)(b + c) = (a + e)(a + f)(e + f)

and

(a + b)2 + (a + c)2 + (b + c)2 = (a + e)2 + (a + f)2 + (e + f)2.

With simple arithmetic operations we can transform them into

2a(b + c− e− f)− e2 − f 2 − (e + f)2 + b2 + c2 + (b + c)2) = 0

and

a2(b + c− e− f) + a((b + c)2 − (e + f)2) + bc(b + c)− ef(e + f) = 0.

First, let us assume that b + c− e− f 6= 0. Then we can write

a =
e2 + f 2 + (e + f)2 − b2 − c2 − (b + c)2)

2(b + c− e− f)

and insert it into the second equation. The simplified second equation now becomes

(b− e)(c− e)(b− f)(c− f)

b + c− e− f
= 0

and the four solutions are e = b, e = c, f = b and f = c. Considering each solution
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and the first equation, we obtain the solution for the other variable and hence

• e = b, f = −(a + b + c),

• e = c, f = −(a + b + c),

• e = −(a + b + c), f = b,

• e = −(a + b + c), f = c.

Now, let us assume that b + c− e− f = 0. Then we can write f = b + c− e and

using it in the first equation would yield the equation 2(b− e)(c− e) = 0. We obtain

another two solutions

• e = b, f = c,

• e = c, f = b.

The first four solutions have negative ray lengths, thus do not represent valid

star-like graphs. The other two solutions determine the same graph, thus we obtain

a trivial isoterminal pair of star-like graphs.

Since there are countably many isoterminal pairs of star-like graphs with three

rays, it makes sence to find the smallest one (according to some canonical notation).

Proposition 5.2. Let S({a1, a2, a3}),S({b1, b2, b3}) be an isoterminal pair of star-

like graphs with 3 rays, with the smallest sum M := a1 + a2 + a3 + b1 + b2 + b3. Then

there is exactly one such pair S({4, 65, 70}), S({25, 29, 86}) and M = 279.

Proof. Let S({a1, a2, a3}) and S({b1, b2, b3}) be an isoterminal pair of star-like graphs

in canonical notation. Define M := a1 +a2 +a3 + b1 + b2 + b3 and N :=
∏

i<j(ai +aj).

Then 1 ≤ a1 ≤ dM
6
e, a1 ≤ a2 ≤ dM−4a1

2
e and a2 ≤ a3 ≤ M − 4a1 − a2. On the

other hand (b1 + b2) divides N and (b1 + b2) ≤ 3
√

N . Define F := {f | f divides N}.

Then b2, b3 ∈ {f − b1 | f ∈ F}. Moreover, a1 ≤ b1 ≤ d
3√N
2
e, b1 ≤ b2 ≤ 3

√
N − b1 and

b2 ≤ b3. The result was obtained with the help of a computer program, calculating all
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isoterminal pairs with ray-lengths within allowed range. The minimal sum
∑3

i=1(ai +

bi) = 279 determines the smallest isoterminal pair S({4, 65, 70}), S({25, 29, 86}).

6 Conclusions

In the paper we presented the theory about terminal polynomials and proved the

Clarke-type theorem for terminal polynomials. We observed star-like graphs and

their terminal polynomials. We calculated all ireducible isoterminal polynomials of

star-like graphs with three rays where the ray lengths of the smaller graph in the pair

are smaller than 200.

It would be interesting to calculate minimal star-like graphs with more that three

rays, especially with rays up to 20, see [15].

We noticed that sometimes isoterminal pairs can be obtained from a given isoter-

minal pair with inserting vertices (inserting the same number of vertices in corre-

sponding rays) in both graphs that form the given isoterminal pair, see Table 2 for

more details. The question “Given an isoterminal pair, what is the minimum number

of vertices that must be added to both graphs, to obtain another isoterminal pair?”

still remains open.

{a, b, c} {d, e, f} {a′, b′, c′} {d′, e′, f ′} {i, j, k}
{4, 61, 77} {26, 28, 89} {16, 94, 137} {38, 61, 149} {12, 33, 60}
{4, 65, 70} {25, 29, 68} {12, 88, 107} {33, 52, 123} {8, 23, 37}
{25, 111, 144} {60, 60, 161} {39, 138, 191} {74, 87, 208} {14, 27, 47}

Table 2: Isoterminal pairs S({a, b, c}), S({d, e, f}) and S({a′, b′, c′}), S({d′, e′, f ′}),
with the property that there exist a triple {i, j, k}, i, j, k ≥ 0, such that {a′, b′, c′} =
{a + i, b + j, c + k} and {d′, e′, f ′} = {d + i, e + j, f + k}.

By connecting two non-terminal vertices u, v ∈ V (G) of a given graph G, with a

path that is longer than the graph-theoretical distance between the vertices u and v,

one does not change the terminal matrix. Hence, we can construct infinite number of

graphs that are isoterminal to G, see an example of an isoterminal triple on Figure 5.

But such a construction yields a cycle, thus it can not be used with star-like graphs;
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therefore, there is another question to be answered, namely, “For a given natural

number n > 2 is there an isoterminal n-tuple of star-like graphs?”.

(a) (b) (c)

Figure 5: Non-isomorphic graphs having the same number of vertices and the same
terminal polynomial.

Remark that some authors (see for example [6]) called the polynomial RG,1(x),

defined in Section 2, “the characteristic polynomial” of the graph. Since our notation

is now widely used, the reader should be aware of that, while using our results with

the older papers on this topic.
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