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Abstract

Let G be a graph with n vertices and let λ1, λ2, . . . , λn be its eigenvalues. The

Estrada index of G is EE(G) =
n∑

i=1
eλi . We present some lower and upper bounds

for EE(G) in terms of graph invariants such as the number of vertices, the number

of edges, the spectral moments, the first Zagreb index, the nullity and the largest

eigenvalue.

1. INTRODUCTION

Let G be a simple graph with n vertices and m edges. In what follows we say

that G is an (n,m)-graph. Let λ1, λ2, . . . , λn be the eigenvalues of G arranged in

non-increasing order [1].

The Estrada index of the graph G is defined as

EE = EE(G) =
n∑

i=1

eλi .
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It has found successful applications in a large variety of problems, including those

in biochemistry and in complex networks, see [2–7]. Various bounds for the Estrada

index can be found in [8–11]. See [12–14] for more recent results.

A similar invariant is energy. The energy of G is defined as [15]

E(G) =
n∑

i=1

|λi| .

Denoting by Mk = Mk(G) the k-th spectral moment of the graph G, i.e.,

Mk =
n∑

i=1

λk
i ,

we have

EE(G) =
∑

k≥0

Mk

k!
.

Recall that for an (n, m)-graph G,

M0 = n , M1 = 0 , M2 = 2m, M3 = 6t

where t is the number of triangles.

The first Zagreb index of the graph G is defined as [16]

Zg = Zg(G) =
∑

u∈V (G)

d 2
u

where du denotes the degree (number of first neighbors) of vertex u in G and V (G)

is the vertex set of G .

Let Kn be the complete graph with n vertices and Kn its (edgeless) complement.

Let Ka,b be the complete bipartite graph with two partite sets having a and b vertices,

respectively.

Now we establish some lower and upper bounds for the Estrada index in terms

of graph invariants such as the number of vertices, the number of edges, the spectral

moments, the first Zagreb index, the nullity and the largest eigenvalue.

2. LOWER BOUNDS

Theorem 1. Let G be a graph with n vertices. Then for any integer k0 ≥ 2,

EE(G) ≥
√√√√n2 +

k0∑

k=2

2kMk(G)

k!
(1)

with equality if and only if G ∼= Kn .
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Proof. Note that Mk(G) is equal to the trace of Ak, where A is the (0, 1)-adjacency

matrix of G. Thus ∑

k≥k0+1

2kMk(G)

k!
≥ 0

with equality if and only if G has no non-zero eigenvalues. Then

n∑

i=1

e2λi =
n∑

i=1

∑

k≥0

(2λi)
k

k!
=

∑

k≥0

2kMk(G)

k!
≥

k0∑

k=0

2kMk(G)

k!
.

By the arithmetic–geometric mean inequality and using the fact that
n∑

i=1
λi = 0, we

have [8]

2
∑

1≤i<j≤n

eλieλj ≥ n(n− 1)

with equality if and only if all the eigenvalues are equal. Now by the definition of the

Estrada index,

EE(G)2 =
n∑

i=1

e2λi + 2
∑

1≤i<j≤n

eλieλj ≥ n(n− 1) +
k0∑

k=0

2kMk(G)

k!
.

Now (1) follows easily. From the derivation of (1) it is evident that equality will be

attained if and only if all the eigenvalues are equal to zero, i.e., G ∼= Kn . 2

Let G be an (n,m)-graph. Setting k0 = 2, 3 in (1), we have [8]

EE(G) ≥
√

n2 + 4m

EE(G) ≥
√

n2 + 4m + 8t

and either equality is attained if and only if G ∼= Kn .

Theorem 2. Let G be a graph with n ≥ 2 vertices and the first Zagreb index Zg .

Then

EE(G) ≥ e
√

Zg
n + (n− 1)e−

1
n−1

√
Zg
n (2)

with equality if and only if G ∼= Kn or G ∼= Kn .

Proof. By the arithmetic–geometric mean inequality,

EE(G) = eλ1 +
n∑

i=2

eλi

≥ eλ1 + (n− 1)

(
n∏

i=2

eλi

) 1
n−1

= eλ1 + (n− 1)e

n∑
i=2

λi

n−1

= eλ1 + (n− 1)e−
λ1

n−1
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with equality if and only if eλ2 = · · · = eλn , i.e., λ2 = · · · = λn .

Note that the function f(x) = ex + (n − 1)e−
x

n−1 is increasing for x ≥ 0 and

that [17] λ1 ≥
√

Zg
n

with equality if and only if every component is either regular

of degree λ1 or bipartite semiregular such that the product of degrees of any two

adjacent vertices is equal to λ2
1 . We have

EE(G) ≥ f




√
Zg

n


 = e

√
Zg
n + (n− 1)e−

1
n−1

√
Zg
n

Suppose that equality holds in (2). Then λ2 = · · · = λn and λ1 =
√

Zg
n

. If λ1 > λ2,

then G has exactly one positive eigenvalue λ1 and n − 1 equal negative eigenvalues,

G is connected, regular, and so 2m
n

= λ1 = n − 1, which implies that G ∼= Kn . If

λ1 = λ2, then G ∼= Kn .

Conversely, it is easy to see that equality holds in (2) if G ∼= Kn or G ∼= Kn . 2

Remark 1. Let G be an (n,m)-graph with n ≥ 2 . By the interlacing theorem [1],

we have λ2 ≥ 0 if G 6∼= Kn . Thus, from the proof above, we may have

EE(G) ≥ eλ1 + (n− 1)e−
λ1

n−1

with equality if and only if G ∼= Kn or G ∼= Kn . Obviously, we may have better lower

bounds for EE than (2) if we use improved lower bounds for λ1 ≥
√

Zg
n

. If only the

number n of vertices and the number m of edges are known, then since λ1 ≥ 2m
n

, we

have

EE(G) ≥ e
2m
n + (n− 1)e−

2m
n(n−1)

with equality if and only if G ∼= Kn or G ∼= Kn .

Remark 2. Let G be a graph with n ≥ 2 vertices. Let G be the complement of G.

Let λ1 be the largest eigenvalue of G. Note that λ1 + λ1 ≥ n− 1 . It follows that

EE(G) + EE(G) ≥ eλ1 + eλ1 + (n− 1)
(
e−

λ1
n−1 + e−

λ1
n−1

)

≥ 2e
λ1+λ1

2 + 2(n− 1)e−
λ1+λ1
2(n−1)

≥ 2e
n−1

2 + 2(n− 1)e−
1
2 .

Since λ1 6= λ1 for G ∼= Kn or G ∼= Kn with n ≥ 2, we have EE(G) + EE(G) >

2e
n−1

2 + 2(n− 1)e−
1
2 .

The number n0 of zeros in the spectrum of the graph G is called its nullity. For

an (n,m)-graph G, n0 ≤ n with equality if and only if m = 0, i.e., G ∼= Kn .

The following lower bound for the Estrada index has been obtained in [11, Theo-

rems 1 and 5]. Here an alternate proof is given.
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Theorem 3. [11] Let G be an (n,m)-graph with nullity n0 < n . Then

EE(G) ≥ n0 + (n− n0) cosh

(√
2m

n− n0

)
(3)

with equality if and only if n − n0 is even, G consists of copies of complete bipartite

graphs Kri,ti, i = 1, 2, . . . , n−n0

2
, such that all riti are equal, and


n−

n−n0
2∑

i=1
(ri + ti)




isolated vertices.

Proof. It has been known that [11]

EE(G) ≥
n∑

i=1

cosh(λi) =
1

2

n∑

i=1

(
eλi + e−λi

)

with equality if and only if G is a bipartite graph.

We will use the following inequality: For positive a1, a2, . . . , an, and integer k ≥ 0,

n∑

i=1

ak
i ≥ n

(
1

n

n∑

i=1

ai

)k

with equality for k ≥ 2 if and only if all ai are equal. It is trivial for k = 0, 1, and

follows from Hölder’s inequality for k ≥ 2.

Note that
∑

i:λi 6=0
λ2

i = 2m . We have

EE(G) ≥ n0 +
1

2

∑

i:λi 6=0

(
eλi + e−λi

)

= n0 +
∑

k≥0

1

(2k)!

∑

i:λi 6=0

(
λ2

i

)k

≥ n0 +
∑

k≥0

1

(2k)!
(n− n0)


 1

n− n0

∑

i:λi 6=0

λ2
i




k

= n0 + (n− n0)
∑

k≥0

(√
2m

n−n0

)2k

(2k)!
.

This proves (3).

¿From the derivation of (3) it is evident that equality will be attained in (3) if

and only if G is bipartite and all the positive eigenvalues are equal, i.e., G is bipartite

and has exactly two distinct eigenvalues or exactly three distinct eigenvalues, by [1,

Theorems 6.4 and 6.5, p. 162], this is equivalent to say that G consists of copies of

Kri,ti , i = 1, 2, . . . , n−n0

2
, such that all riti are equal, and


n−

n−n0
2∑

i=1
(ri + ti)


 isolated

vertices. 2
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3. UPPER BOUNDS

Theorem 4. Let G be an (n,m)-graph. Then for any integer k0 ≥ 2,

EE(G) ≤ n− 1−
√

2m +
k0∑

k=2

Mk(G)−
(√

2m
)k

k!
+ e

√
2m (4)

with equality if and only if G ∼= Kn .

Proof. Note that
n∑

i=1
λ2

i = 2m . We have

EE(G) =
k0∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!

n∑

i=1

λk
i

≤
k0∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!

n∑

i=1

|λi|k

≤
k0∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!

(
n∑

i=1

λ2
i

)k/2

=
k0∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

(√
2m

)k

k!

=
k0∑

k=0

Mk(G)

k!
+ e

√
2m −

k0∑

k=0

(√
2m

)k

k!
.

In the second inequality above, we use an easy inequality: For nonnegative

a1, a2, . . . , an, and integer k ≥ 2,

n∑

i=1

ak
i ≤

(
n∑

i=1

a2
i

)k/2

.

Now (4) follows easily. From the derivation of (4) it is evident that equality will be

attained in (4) if and only if G has no non-zero eigenvalues, i.e., G ∼= Kn . 2

Setting k0 = 2, 3 in (4), we have

EE(G) ≤ n− 1−
√

2m + e
√

2m

EE(G) ≤ n− 1−
(
1 +

m

3

)√
2m + t + e

√
2m .

We can go further.

Theorem 5. Let G be an (n,m)-graph. Then for any integer k0 ≥ 2,

EE(G) ≤ n− 2− λ1 −
√

2m− λ2
1

+
k0∑

k=2

Mk(G)−λk
1−

(√
2m−λ2

1

)k

k!
+ eλ1 + e

√
2m−λ2

1

(5)

- 490 -



with equality if and only if G ∼= Kn .

Proof. Note that
n∑

i=1
λ2

i = 2m . We have

EE(G)− eλ1 =
k0∑

k=0

Mk(G)− λk
1

k!
+

∑

k≥k0+1

1

k!

n∑

i=2

λk
i

≤
k0∑

k=0

Mk(G)− λk
1

k!
+

∑

k≥k0+1

1

k!

n∑

i=2

|λi|k

≤
k0∑

k=0

Mk(G)− λk
1

k!
+

∑

k≥k0+1

1

k!

(
n∑

i=2

λ2
i

)k/2

=
k0∑

k=0

Mk(G)− λk
1

k!
+

∑

k≥k0+1

(√
2m− λ2

1

)k

k!

=
k0∑

k=0

Mk(G)− λk
1

k!
+ e

√
2m−λ2

1 −
k0∑

k=0

(√
2m− λ2

1

)k

k!
.

Now the result follows easily. 2

Setting k0 = 2, 3 in (5), we have

EE(G) ≤ n− 2− λ1 −
√

2m− λ2
1 + eλ1 + e

√
2m−λ2

1

EE(G) ≤ n− 2− λ1 −
√

2m− λ2
1 + t− λ3

1

6
−

(√
2m− λ2

1

)3

6
+ eλ1 + e

√
2m−λ2

1 .
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