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Abstract

The distance energy Ep(G) of a graph G is defined as the sum of the absolute
values of the eigenvalues of the distance matrix of G. The graphs G and G5 are said
to be distance equienergetic (D-equienergetic) if Ep(Gy) = Ep(G2) . In this paper we
obtain the eigenvalues of the distance matrix of the join of two graphs whose diameter
is less than or equal to 2, and construct pairs of non D-cospectral, D-equienergetic
graphs on n vertices for all n > 9.
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INTRODUCTION

In this paper we are concerned with simple graphs, that is graphs without loops,
multiple edges or directed edges. Let G be such graph on n vertices and m edges.
Let its vertices be labelled as vy, vs, ..., v, . The distance between the vertices v; and
v;, denoted by d;;, is the length of the shortest path between them. The diameter
of a graph G, denoted by diam(G), is the maximum distance between any pair of
vertices of G [4,12].

The distance matrix of a graph G is an n x n matrix D(G) = [d;;]. The charac-
teristic polynomial of D(G) is defined as (G : p) = det(ul — D(G)), where I is the
identity matrix of order n. The eigenvalues of the distance matrix D(G), denoted by
1, flo, - .« ln , are said to be the distance or D-eigenvalues of G and their collection
is called the distance or D-spectrum of G. Two non-isomorphic graphs are said to
be D-cospectral if they have same D-spectra [4,5,6]. Since the distance matrix is
symmetric, its eigenvalues are real and can be ordered as pq > o > -+ > piy, -

The characteristic polynomial and the eigenvalues of the distance matrix of a
graph were considered in [7-9,13,14,29].

The distance energy Ep(G) of a graph G is defined as

Ep(G) = Z |2l - (1)

Eq. (1) was recently introduced by Indulal et al. [15] and was conceived in full

analogy to the ordinary graph energy F(G) defined as [10,11]

n

E(G) =3I (@)

i=1
where A1, Ag, ..., A\, are the eigenvalues of the adjacency matrix of G [6].

Several bounds for the distance energy of a graph are obtained in [15,20,21].

The graphs G and G are said to be equienergetic if E(G1) = E(G3). Numerous
results on (non-isomorphic) equienergetic graphs can be found in [1-3,16-19,23-28].

The connected graphs G and G are said to be D-equienergetic (distance equiener-
getic) if Ep(G1) = Ep(Gs) . For obvious reason D-cospectral graphs are D- equiener-
getic. Therefore we are interested in non D-cospectral, D-equienergetic graphs hav-

ing equal number of vertices. Indulal et al. [15] constructed pairs of D-equienergetic
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graphs on n vertices for n = 1 (mod 3) and for n = 0 (mod 6). Ramane, Revankar,
Gutman and Walikar [22] proved that if G; and G9 are r-regular graphs on n vertices
and diam(G;) < 2,4 = 1,2, then Ep(L¥(G,)) = Ep(L*(G2)) for k > 1, where L¥(G)
is the k-th iterated line graph of G .

In this paper we obtain the characteristic polynomial of the distance matrix of
the join of two regular graphs whose diameter is less than or equal to 2 and thereby
construct pairs of non D-cospectral, D-equienergetic graphs on n vertices for all

n>9.

ON THE JOIN OF GRAPHS

Definition [6, 12]. The join of two graphs G; and Ga, denoted by G;VGs, is a

graph obtained from G; and G, by joining each vertex of GGy to all vertices of G5 .

Gl Gz G1VG2

Fig. 1

Theorem 1. Let G; be an r;-regular graph on n; vertices and diam(G;) < 2,4 =1,2.
Then the characteristic polynomial of the distance matrix of G;V Gy is

(L —2n1+ 24 71) (1t — 202 + 2 + 12) — ny no)

G1VGy :p) =
VGG p) (b =201 +2471) (1t — 212+ 2+ 13)

WG ) (Ga ) -

3)
Proof.
Y(G1VGy i p) = det(ul — D(G1VG2))
_ Nlnl - D(Gl) 7&]71,1 XM (4)
_JTL2><TL1 :“‘[TL2 - D(GQ)

where J is a matrix whose all entries are equal to unity.
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The determinant (4) can be written as

14 7d12 e 7d1n1 -1 -1 e -1
*dgl M RN 7d2n1 -1 -1 e -1
*dnll *dnl? M -1 -1 -1
-1 -1 ... -1 i —dyy ... —dy,, (5)
-1 =1 =l =y o —d,
-1 -1 ... =1 —d, —d, ... p

where d;; is the distance between the vertices v; and v; in G; and dgj is the distance
between the vertices u; and u; in G. In Gj, every vertex is at distance one from 7;

vertices and at distance two from remaining n; — 1 — r; vertices. Therefore

ni
dy=2my—r -2  for i=12....m (6)
j=1

and
n2
Zd,’ij:2n2—r2—2 for i=1,2,...,n9. (7)
j=1

We now perform the number of transformations that leave the value of the deter-
minant (5) unchanged.

Subtract the row (ny + 1) from the rows (n; +2), (n1 + 3),. .., (n1 + na) of (5) to
obtain (8):

1 —d12 _dlm -1 -1 —1
—d21 12 _d2n1 -1 -1 -1
_dml —dmg M -1 -1 —1
e i &y -, | ®
0 0o ... 0 —dy — ptdy o —dy,, +d,
0 0 ... 0 —d,—p —d+dy ... p+d,,

Adding the columns (ny +2), (ny +3), ..., (n1 +n2) to the column (ny +1) of (8),
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using Eq. (7), and noting that dj; = dJ; we arrive at the determinant (9):

12 —d12 e _dlnl —MNo —1 . -1
—(121 M - —d2n1 —MNo —1 - —1
7dn11 7dn12 14 —TnN2 —1 —1 (9)
-1 -1 ... =1 p—2no+24nr —di, —d},,
0 0 ... 0 0 pdy o —dy +d,
0 0 e 0 0 —dy o+ dyy .. ptdy,,

which evidently is equal to (10):

1% —diz ... *dlm —ng
—d 1% s —dzm —ng
: ; 1B (10)
_dn11 _dn12 s 13 —n2
—1 —1 —1 M727L2+2+7'2
where
B+ dig —dys +diz ... —dy,, +di,
—dy + d + di. oo —=dhy,, +di,
|B| _ 32' 12 H 13 . 3ns 1ng (11)
_d;zgz +diy —d;23 +diy .. [ d/lng

In (10) the determinant is of order (n; 4+ 1). Subtract the first row from the rows

2,3,...,n1, to obtain (12):

12 —d12 . _dlnl —MNo
7d21 — M 1% + d12 e 7d2n1 + dlnl 0
: : 1Bl (12)
_dn11 — MK _dn12 + d12 e H + dlrn O
-1 -1 -1 nw—2ns+2+ry.

Adding columns 2,3, ...,n; to the first column of (12) and using Eq. (6) we get
(13):

p=2m+2+r  —din ... —diy e
0 1w+ dio oo —dap, + din, 0
; ; Bl (3)
0 —dp2+diz ... w+ dig, 0
—ny -1 -1 w—2ns+2417s

Expand it along the first column to obtain (14):

{(M*277,1+2+T1)A17(71)n1 ny A2}|B| (14)
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where
pdia —dyz +diz ... —don, +din, 0
—d3 + di2 p+dis oo —dsny +diy, 0
Al =
—dpp+diy —dpz+diz ... p+ dig, 0
-1 -1 -1 W—2ns+2+1ry
and
—dio —di3 cee _dlm —nNg
p+dia —dys+dis ... —dop, +di, O
AQ = —d32 + d12 1% + d13 . —dgnl + d1n1 0
—dpo+dia —dps+diz ... A+ din, 0

The expression (14) can be rewritten as

{(t—2n1 42+ 7r) (g —2n2 + 2 + r9)|A| — nyna| Al}| B|

= |Al|B{(p—2n1+2+711)(t —2na+ 2 +12) —nina} (15)
where
o+ dig —dyz +diz ... —dopy +din,
—dzo + dio p+dis con —dgpy +dip,
A= : (16)
—dp2+dig —dpz+dig ... pdin,

The determinant (16) can be written as

1

4 = ————x
(L—2m+2+m)

p=2n1 +2+m —dio —di3 e —dip,
0 1+ dia —doz +diz ... —day, +dip,
X 0 —dsz + dig o+ dis oo —dzn, +dip, |, (17)
0 _dn12 + d12 _dn13 + d13 e 1% + d1n1

From Eq. (6) the sum of the i-th row in (17) is u + dy for i = 2,3,...,n;g.

Therefore, by subtracting the columns 2,3, ...,n; of (17) from the first column, we
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obtain (18):
1

Al = ————— x
(=201 +24r)

1 —di2 —dy3 cee *dlnl
—p — day A+ dio —das +dis ... —dyp, +din,
X —p—d3  —dsz+di2 A+ dis e —dan, Fdig, | (18)
—pp—dp1 —dpp2+diz —dpz+diz ... o+ dip,

Add the first row of (18) to the rows 2,3,...,n; to obtain (19):

1 —di2 —diz ... —d1m
1 —dy 1 —dyz ... _d2n1
Al = ——m— —d3;  —ds3 1% coo —dap,
(u—2n1+2+rl) . .
—dpy1 —dpy2 —dps ... m
! $(Gh - p) (19)
= — % : .
(b —2n1 4+ 2+ 1) 1 p

In a similar manner we can show that from (11) follows

1
(y — 2712 + 2+ 7’2)
Substituting (19) and (20) back into (15) yields Eq. (3). |

|B| = V(Ga:p) (20)

Theorem 2. Let G; be an r;-regular graph on n; vertices and diam(G;) <2,i=1,2.
Then
Ep(G1VGy) = Ep(Gy)+ Ep(Ga), if XY >ning
= Ep(G1)+ Ep(G2) = (X +Y) + /(X +Y)? —4(XY — nyny),
if XY <niny

where X =2n; —2 —ryand Y =2ny — 2 —1ry.

Proof. If G; is an r;-regular graph on n; vertices and diam(G;) < 2,7 = 1,2, then
from Theorem 1,

. (e —=2n1+ 2+ 1) (pp— 2n9 + 2 + 1) — nyny) . .
VGVG i) = (L—2n1+2+7)(p—2ns +2+713) V(G (G ip)

(= X) (1 = Y) — many)
(n=X)(p=Y)

P(Gr:w)Y(Ga s )
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which gives that

(= X)(p =YV)W(CV Gy i p) = (= X) (1 = Y)(Gr: ) (G ) -
Let
Pi(p) = (= X)(p = Y)(G1VG2 - )
and
Py(p) = (= X)(u = Y) (G p) (G2 2 pr)
The roots of the equation Py(p) = 0 are X, Y and the D-eigenvalues of G1VGs.
Therefore the sum of the absolute values of the roots of P;(u) =0 is

X +Y + Ep(Gi1VGy) . (21)

The roots of Pa(u) = 0 are the D-eigenvalues of G; and G5 and

% (X FY /(X + V)2 —4(XY —my 7L2)) .

Therefore the sum of the absolute values of the roots of P(p) =0 is

Ep(Gy) + Ep(Gy) + E [X+Y+\/(X+Y)2—4(XY—n1n2)H

1
+ ‘5 [X +Y - (X +Y)2—4(XY fnm)] ’ . (22)
Since P () = Pa(p), equating Eqgs. (21) and (22) we get

ED(GIVGQ) = ED(GI) + ED(GQ) - (X + Y)

+ E [X+Y+\/(X+Y)2—4(XY—n1n2)H

[X+Y— VX +Y)? - 4XY — nz)H . (23)

N =

|
Case 1: If XY > nyny, then Eq. (23) reduces to

Ep(G1VGe) = Ep(Gy) + Ep(Gs) .

Case 2: If XY < njngy, then Eq. (23) reduces to

Ep(GiVGy) = Ep(Gy) 4+ Ep(Ge) — (X +Y)+ V(X +Y)2 —4(XY —nyny) .
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This completes the proof. |

Corollary 2.1. If Hy and H, are non D-cospectral, D-equienergetic regular graphs
on n vertices and of same degree and diam(H;) < 2, i = 1,2, then for any regular

graph G with diam(G) < 2, Ep(H,VG) = Ep(H,VG). |

CONSTRUCTION OF DISTANCE EQUIENERGETIC GRAPHS

Theorem 3. There exist pairs of non D-cospectral, D-equienergetic graphs on n

vertices for allm > 9.

Proof. Consider the graphs H, and H, as shown in Fig. 2.

Fig. 2
By direct computation,
Y(Hy o p) = (= 12)(p +3) i (24)

and
(Hy: ) = (= 12)(p+4)(n+3)* (u + 1) i . (25)
Both H, and H,, are regular graphs on 9 vertices and of degree 4. Also diam(H;) < 2,
i=a,b, and Ep(H,) =24 = Ep(Hy).
Let H be any r-regular graph on p > 1 vertices and diam(H) < 2. Then by

Theorem 2

Ep(H,VH) = Ep(H,VH) =24 + Ep(H) if 5p> 84 4r
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and

ED(H(,VH) = ED(H},VH) = ED(H) + 14 — 2p “+r

+ V(10 +2p —7)2 —12(5p — 8 — 4r) if 5p < 8+4r.

Thus from both cases, H,VH and H,VH are D-equienergetic. By Eqs. (24) and
(25), H, and H,, are non D-cospectral, so from Theorem 1, H,VH and H,VH are
also non D-cospectral. Further H,VH and H,V H possesses equal number of vertices
n=94+p,p=12,....

That the theorem holds also for n = 9 is directly verified from Eqgs. (24) and (25).
|

Let K, be the complete graph on p vertices. It is regular of degree p — 1 and
diam(K,) = 1. The adjacency matrix and the distance matrix of K, are same.
Therefore Ep(K,) = E(K,) = 2(p — 1) [6,10]. Using this in Theorem 2 we have

following result.
Theorem 4. If H, and H, are the graphs as shown in Fig. 2, then
Ep(H,VK,) = Ep(H,VK,) =2(p + 11) if p>4

and

Ep(H,VK,) = Ep(H,VEK,) =p+114+/(p+11)2—12(p—4) ifp<4. W

Conclusion. From Corollary 2.1 it is easy to construct a pair of non D-cospectral,
D-equienergetic graphs. In particular from Theorem 3 and Theorem 4, it is easy to

construct a pair of non D-cospectral, D-equienergetic n-vertex graphs for alln > 9.

References

[1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287-295.

[2] A. S. Bonifacio, C. T. M. Vinagre, N. M. M. de Abreu, Constructing pairs of
equienergetic and non-cospectral graphs, Appl. Math. Lett. (in press).



3]

[4

[6]

[7

[9]

(10]

(11]

(12]

(13]

(14]

(16]

(17]

(18]

- 483 -

V. Brankov, D. Stevanovi¢, I. Gutman, Equienergetic chemical trees, J. Serb.
Chem. Soc., 69 (2004) 549-553.

F. Buckley, F. Harary, Distance in Graphs, Addison—Wesley, Redwood, 1990.

D. M. Cvetkovi¢, M. Doob, I. Gutman, A. Torgasev, Recent Results in the Theory
of Graph Spectra, North—Holland, Amsterdam, 1988.

D. M. Cvetkovi¢, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New
York, 1980.

M. Edelberg, M. R. Garey, R. L. Graham, On the distance matrix of a tree,
Discr. Math., 14 (1976) 23-39.

R. L. Graham, L. Lovész, Distance matrix polynomial of trees, Adv. Math., 29
(1978) 60-88.

R. L. Graham, H. O. Pollak, On the addressing problem for loop switching, Bell
System Tech. J. 50 (1971) 2495-2519.

I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz
103 (1978) 1-22.

I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,
Springer—Verlag, Berlin, 1986.

F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

A. J. Hoffman, M. H. McAndrew, The polynomial of a directed graph, Proc.
Amer. Math. Soc. 16 (1965) 303-309.

H. Hosoya, M. Murakami, M. Gotoh, Distance polynomial and characterization
of a graph, Nat. Sci. Rept. Ochanumizu Univ. 24 (1973) 27-34.

G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of a graph,
MATCH Commun. Math. Comput. Chem. (to appear).

G. Indulal, A. Vijaykumar, On a pair of equienergetic graphs, MATCH Commun.
Math. Comput. Chem. 55 (2006) 83-90.

G. Indulal, A. Vijaykumar, Equienergetic self-complementary graphs, Czechoslo-
vak Math. J. (to appear).

J. Liu, B. Liu, On a pair of equienergetic graphs, MATCH Commun. Math.
Comput. Chem. (in press).



(19]

20]

21]

22]

23]

(24]

[25]

[26]

(27]

(28]

29]

-484 -

H. S. Ramane, I. Gutman, H. B. Walikar, S. B. Halkarni, Equienergetic comple-
ment graphs, Kragujevac J. Sci. 27 (2005) 67-74.

H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya, H. B.
Walikar, Bounds for the distance energy of a graph, Kragujevac J. Math. (to

appear).

H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya, H. B.
Walikar, Estimating the distance energy of graphs, Graph Theory Notes, New
York (to appear).

H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar, D-spectra and D-
energy of iterated line graphs of regular graphs — construction of D-equienergteic
graphs, (preprint).

H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, MATCH
Commun. Math. Comput. Chem. 57 (2007) 203-210.

H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R.
Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math. 26 (2004) 5-13.

H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R.
Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs,
Appl. Math. Lett. 18 (2005) 679-682.

D. Stevanovié, Energy and NEPS of graphs, Lin. Multilin. Algebra 53 (2005)
67-74.

H. B. Walikar, H. S. Ramane, I. Gutman, S. B. Halkarni, On equienergetic graphs
and molecular graphs, Kragujevac J. Sci. 29 (2007) 73-84.

L. Xu, Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Com-
put. Chem. 57 (2007) 363-370.

B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH
Commun. Math. Comput. Chem. 58 (2007) 657-662.



