
ON DISTANCE ENERGY OF GRAPHS

Gopalapillai Indulal,a Ivan Gutmanb and Ambat

Vijayakumarc

aDepartment of Mathematics, St. Aloysius College,
Edathua, Alappuzha - 689573, India
e-mail: indulalgopal@yahoo.com

bFaculty of Science, University of Kragujevac,
P. O. Box 60, 34000 Kragujevac, Serbia

e-mail: gutman@kg.ac.yu

Department of Mathematics, Cochin University of Science
and Technology, Cochin–22, India

e-mail: vijay@cusat.ac.in

(Received August 25, 2007)

Abstract

The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D , and the
D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are
said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds
for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular
D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.

INTRODUCTION

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vp} and size

(= number of edges) q . The distance matrix or D-matrix, D , of G is defined as
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D = [dij] , where dij is the distance between the vertices vi and vj in G . The

eigenvalues µ1, µ2, . . . , µp of the D-matrix of G are said to be the D-eigenvalues of G

and to form the D-spectrum of G , denoted by specD(G) .

Since the D-matrix of G is symmetric, all of its eigenvalues are real and can be

ordered as µ1 ≥ µ2 ≥ · · · ≥ µp . Two graphs G and H are said to be D-cospectral if

specD(G) = specD(H) . The D-energy ED(G) of G is defined as

ED(G) =

p∑
i=1

|µi| . (1)

Eq. (1) is put forward in full analogy to the definition of the (ordinary) graph energy

E , namely

E(G) =

p∑
i=1

|λi| (2)

where λ1, λ2, . . . , λp are the eigenvalues of the adjacency matrix of G . For basic

facts on graph energy E see the book [11]; for the most recent research on E see

[10,12,14–16,25,28,29,31,32].

Two graphs with the same D-energy are called D-equienergetic. We are, of course,

interested in D-equienergetic graphs only if these are not D-cospectral.

The characteristic polynomial of the D-matrix and the corresponding spectrum

were considered in [6–9,13,30]. The D-energy seems to be defined here for the first

time.

In this paper we are concerned with the D-spectra and D-energies of graphs of

diameter 2. Moore and Moser showed [3] that almost all graphs are of diameter two.

Thus a discussion of graphs of small diameter pertains to almost all graphs.

This paper is organized as follows. In the next section we establish the distance

spectrum of some graphs of diameter 2 and 3. In the following section a lower bound

for the largest eigenvalue of D , and bounds for the D-energy are obtained. In the

last section some pairs of equiregular D-equienergetic graphs of diameter 2 are con-

structed.

All graphs considered in this paper are simple. Our spectral graph theoretic

terminology follows that of the book [4].

We shall need the following lemmas.
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Lemma 1 [4]. Let G be a graph with an adjacency matrix A and spec(G) =

{λ1, λ2, . . . , λp} . Then det A =
p∏

i=1

λi . In addition, for any polynomial P (x) , P (λ)

is an eigenvalue of P (A) and hence det P (A) =
p∏

i=1

P (λi) .

Lemma 2 [5]. Let

A =

[
A0 A1

A1 A0

]

be a symmetric 2 × 2 block matrix. Then the spectrum of A is the union of the

spectra of A0 + A1 and A0 − A1 .

Lemma 3 [4]. Let M, N,P, Q be matrices, and let M be invertible. Let

S =

[
M N
P Q

]
.

Then det S = det M · det [Q− PM−1N ] . If M and P commute, then det S =

det[MQ− PN ] .

Lemma 4 [4]. Let G be an r-regular connected graph, r ≥ 3 , with spec(G) =

{r, λ2, . . . , λp} . Then

spec(L(G)) =

(
2r − 2 λ2 + r − 2 · · · λp + r − 2 −2

1 1 · · · 1 p(r − 2)/2

)
.

Lemma 5 [4]. Let G be an r-regular connected graph on p vertices with an adjacency

matrix A , and let r, λ2, . . . , λm be its distinct eigenvalues. Let J be the all-one square

matrix of order p . Then there exists a polynomial P (x) such that P (A) = J , and

P (x) = p
(x− λ2)(x− λ3) · · · (x− λm)

(r − λ2)(r − λ3) · · · (r − λm)

so that P (r) = p and P (λi) = 0 , for all λi 6= r .

Lemma 6 [4,19]. For every t ≥ 3 , there exists a pair of non-cospectral cubic graphs

on 2t vertices.

THE DISTANCE SPECTRUM OF SOME GRAPHS

In this section we calculate the distance spectrum of some graphs of diameter 2

or 3. The distance energy of some particular graphs are also obtained.
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Graphs of diameter 2

Let G be a graph of diameter 2, A its adjacency matrix, and A the adjacency

matrix of its complement G . Then d(u, v) = 1 if u adj v in G , and d(u, v) = 2 if u

adj v in G . Thus the distance matrix of G is A + 2A .

Lemma 7. Let G be a (p, q)-graph of diameter 2, and let its D-eigenvalues be

µ1, µ2, . . . , µp . Then
p∑

i=1

µ2
i = 2(2 p2 − 2p− 3q) .

Proof. In the distance matrix D of G there are 2q elements equal to unity, and

p(p− 1)− 2q elements equal to two. Therefore,

p∑
i=1

µ2
i =

p∑
i=1

(D2)ii =

p∑
i=1

p∑
j=1

dij dji =

p∑
i=1

p∑
j=1

(dij)
2

= (2q) · 12 + (p2 − p− 2q) · 22

and the lemma follows. ¤

Theorem 1. Let G be an r-regular graph of diameter 2, and let its (ordinary)

spectrum be spec(G) = {r, λ2, . . . , λp} . Then the D-spectrum of G is specD(G) =

{2p− r − 2,− (λ2 + 2) , . . . ,− (λp + 2)} .

Proof. The theorem follows from the fact that the D-matrix of G is A + 2A and

from Lemma 5. ¤

Examples.

specD(Kn,n) =

(
3n− 2 n− 2 −2

1 1 2n− 2

)

specD(CP (n)) =

(
2n −2 0
1 n n− 1

)

where CP (n) denotes the (2n)-vertex regular graph of degree 2n − 2 (obtained by

deleting n independent edges from the complete graph K2n), sometimes referred to

as the “cocktail party graph”.
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The graph product G×K2

Theorem 2. Let G be an r-regular graph of diameter 1 or 2 with an adjacency

matrix A and spec(G) = {λ1, λ2, . . . , λp} . Then H = G ×K2 is (r + 1)-regular and

of diameter 2 or 3 with

specD(H) =

(
5p− 2(r + 2) −2 (λi + 2) −p 0

1 1 1 p− 1

)
, i = 2, . . . , p .

Proof. Since G is of diameter 1 or 2, its distance matrix is A+2A . Then the distance

matrix of H is of the form
[

A + 2A A + 2A + J

A + 2A + J A + 2A

]
.

The theorem then follows by Lemma 2. ¤

The wheel graph W1,p is defined as the join of p-vertex cycle Cp and K1 [4].

Figure 1: W1,5 = C5∇K1

Theorem 3. The distance energy of the wheel graph is given by ED(W1,p) =

2
(
p− 2 +

√
p2 − 3p + 4

)
.

Proof. Let A be an adjacency matrix of Cp with spec(Cp) = {2, λ2, λ3, . . . , λp} .

Then the distance matrix of the wheel graph can be written as
[

A + 2A Jp×1

J1×p 0

]
.

By Lemma 3,

specD (W1,p) =

(
p− 2±

√
p2 − 3p + 4 − (λi + 2)
1 1

)
, i = 2, . . . , p .

- 465 -



Since λi + 2 > 0 for all i = 2, . . . , p , the theorem follows. ¤

BOUNDS FOR THE SPECTRAL RADIUS AND DISTANCE ENERGY

Theorem 4. Let G be a (p, q)-graph of diameter 2 and µ1 be its greatest D-

eigenvalue. Then µ1 ≥ (2 p2 − 2q − 2p)/p . Equality holds if and only if G is a

regular graph.

Proof. Let G be a connected graph of diameter 2, and let its vertices be labelled

as v1, v2, . . . , vp . Let di denote the degree of vi . Then, as G is of diameter 2, it is

easy to observe that the i-th row of D consists of di one’s and p − di − 1 two’s. Let

x = [1, 1, 1, . . . , 1] , the all one vector. Then by the Raleigh Principle

µ1 ≥ xD xT

xxT
=

1

p

p∑
i=1

(2p− di − 2) =
2 p2 − 2q − 2p

p
.

If G is r-regular, then each row sum of D is equal to 2p − r − 2 and hence µ1 =

2p− r − 2 and equality holds. Conversely, if equality holds then x is the eigenvector

corresponding to µ1 and this happens when all row sums of D are equal. Since the

i-th row sum is equal to 2p− di − 2 , this occurs only when di has the same value for

all i , i. e., only when G is regular. ¤

The following theorem gives upper and lower bounds for the energy of graphs of

diameter 2.

Theorem 5. Let G be a (p, q)-graph of diameter 2 and let ∆ be the absolute value

of the determinant of its distance matrix. Then
√

4p (p− 1)− 6q + p (p− 1) ∆2/p ≤ ED(G) ≤
√

2p (2 p2 − 3q − 2p) .

Proof. This proof is fully analogous to what McClelland [24] has done in the case of

the ordinary graph energy (see pp. 147-148 in the book [11]). In view of the definition

(1) of D-energy and bearing in mind Lemma 7,

E2
D =

(
p∑

i=1

|µi|
)2

=

p∑
i=1

µ2
i +

∑

i6=j

|µi| |µj|

= 4p (p− 1)− 6q +
∑

i 6=j

|µi| |µj| . (3)
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By using the the inequality between the arithmetic and geometric means we have

1

p(p− 1)

∑

i6=j

|µi| |µj| ≥
(∏

i 6=j

|µi| |µj|
)1/[p(p−1)]

=

(∏

i6=j

|µi|2(p−1)

)1/[p(p−1)]

=
∏

i6=j

|µi|2/p = ∆2/p . ¤ (4)

Combining Equations (3) and (4) we arrive at the lower bound of Theorem 5.

By expanding
p∑

i=1

p∑
j=1

[|µi| − |µj|]2 and by taking into account (1), we obtain

p

p∑
i=1

µ2
i − 2 ED(G)2 + p

p∑
j=1

µ2
j

This expression is necessarily non-negative. The upper bound for ED follows now

from Lemma 7. ¤

Theorem 6. Let G be an r-regular graph of diameter 2. Then

ED ≤ 2p− r − 2 +
√

(p− 1) [p (r + 4)− (r + 2)2] .

Proof. Let G be an r-regular graph with p vertices and q edges. Then by Theorem

4, the greatest D-eigenvalue is µ1 = 2p − r − 2 . By applying the Cauchy–Schwarz

inequality to the two p− 1 vectors (1, 1, . . . , 1) and (µ2, µ3, . . . , µp) we get

(
p∑

i=2

|µi|
)2

≤ (p− 1)

p∑
i=2

µ2
i

i. e.,

(ED − µ1)
2 ≤ (p− 1)

(
4 p2 − 6q − 4p− µ2

1

)

i. e.,

ED ≤ µ1 +
√

(p− 1) (4 p2 − 6q − 4p− µ2
1) .

Since µ1 = 2p− r − 2 and 2q = pr , we have

ED ≤ 2p− r − 2 +
√

(p− 1) [p(r + 4)− (r + 2)2] . ¤
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Theorem 7. For any graph G of diameter 2 ,

ED ≤ 1

p

[
2 p2 − 2q − 2p +

√
(p− 1) [(2p + q) (2 p2 − 4q)− 4 p2]

]
.

Proof. This proof follows the ideas of Koolen and Moulton [22,23], used for obtaining

an analogous upper bound for the ordinary graph Energy E . By the Cauchy–Schwarz

inequality we have

ED ≤ µ1 +
√

(p− 1) [4 p2 − 6q − 4p− µ2
1] .

Define a function

f(x) := x +
√

(p− 1)(4 p2 − 6q − 4p− x2)

for
2 p2 − 2q − 2p

p
≤ x ≤

√
4 p2 − 6q − 4p

Then (2 p2 − 2q − 2p)/p ≥ 1 and hence f(x) is a decreasing function for 2 p2 −
2q − 2p/p ≤ x2 . But (2 p2 − 2q − 2p)/p ≤ x ≤ x2 as x ≥ 1 . Hence f(x) ≤
f((2 p2 − 2q − 2p)/p) , proving the theorem. ¤

ON A PAIR OF D-EQUIENERGETIC GRAPHS

The problem of constructing non-cospectral graph having equal energies E, Eq.

(2), has been much discussed and numerous examples of this kind were put forward

[1,2,17–21,25–28]. Such pairs of graphs are referred to as “equienergetic” (the name

first time used in [2]). Motivated by this, in this section we discuss the construction

of D-equienergetic graphs. We succeed to do this for every p ≡ 1 (mod3) and p ≡
0 (mod 6) .

Evidently, two graphs G1 and G2 are said to be D-equienergetic if ED(G1) =

ED(G2) .

The graph G∇G is obtained by joining every vertex of G to every vertex of another

copy of G .
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Theorem 8. Let G be a connected r-regular graph on p vertices with spec(G) =

{r, λ2, . . . , λp} . Then

specD(G∇G) =

(
3p− r − 2 p− r − 2 −2 (λi + 2)

1 1 2

)
, i = 2, . . . , p .

Proof. The distance matrix of G∇G can be written as[
A + 2A J

J A + 2A

]
.

Then the theorem follows from Lemma 2. ¤

Theorem 9. For every p ≡ 0 (mod 6) ≥ 18 , there exists a pair of D-equienergetic

regular graphs.

Proof. Let p = 6t , t ≥ 3 . Let G1 and G2 be non-cospectral cubic graphs on 2t

vertices as specified in Lemma 6. Then their line graphs L(G1) and L(G2) are 4-

regular on 3t vertices. By Lemma 4, the only positive D-eigenvalues of L(G1)∇L(G1)

are 9t−6 and 3t−6 . The same is true for L(G2)∇L(G2) . Thus ED(L(G1)∇L(G1)) =

ED(L(G2)∇L(G2)) = 24(t − 1) . The theorem follows now from the fact that both

L(G1)∇L(G1) and L(G2)∇L(G2) have 6t vertices. ¤

Figure 2: D-equienergetic graphs on 18 vertices with ED = 48 .

Theorem 10. For every p ≡ 1 (mod 3) ≥ 10 , there exists a pair of D-equienergetic

graphs.
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Proof. Let p = 3t + 1 . Let G1 and G2 be non-cospectral cubic graphs on 2t vertices

as specified by Lemma 6. The line graphs L(G1) and L(G2) possess 3t vertices and

are regular of degree 4. Then by a similar argument as in Theorem 3, we have

specD(L(G)∇K1) =

(
3t− 3±√9 t2 − 15t + 9 − (λi + 2)

1 1

)
, i = 2, . . . , 3t

where λi , i = 2, 3, . . . , 3t , are the (ordinary) eigenvalues of L(G) , different from its

regularity. Since λi + 2 ≥ 0 for i = 2, . . . , 3t , and 3t− 3 ≤ √
9 t2 − 15t + 9 , we have

ED(L(G)∇K1) = 2
√

9 t2 − 15 t + 9 +
3t∑

i=2

(λi + 2)

= 2
√

9 t2 − 15 t + 9− λ1 + 2(3t− 1)

= 2
√

9 t2 − 15 t + 9− 4 + 2(3t− 1) .

Thus

ED(L(G1)∇K1) = ED(L(G2)∇K2) = 2(3t− 3) + 2
√

9 t2 − 15 t + 9

i. e., L(G1)∇K1 and L(G2)∇K1 are D-equienergetic. ¤

Figure 3: D-equienergetic graphs on 10 vertices with ED = 2(6 + 3
√

5) .
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