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Abstract

The energy of a simple graph G is equal to the sum of the absolute values of the
eigenvalues of its adjacency matrix. The Laplacian energy of G , recently introduced in the
literature, is an analogous graph invariant defined as a function of the eigenvalues of the
Laplacian matrix and the average degree of G. We investigate the Laplacian energy of the
graphs whose energy was studied in the paper I. Gutman and L. Pavlović, The energy of
some graphs with large number of edges, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.)
118 (1999) 35–50. We prove that all these graphs are Laplacian integral.

MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 60 (2008) 447-460  
 

                                          ISSN 0340 - 6253 
 



INTRODUCTION

Let G = G(V, E) be a simple graph, V its vertex set with cardinality n, and E

its edge set with cardinality m. The spectrum of G is the non-increasing sequence

λ1, λ2, . . . , λn of the distinct eigenvalues of the adjacency matrix A(G) of G.

If D(G) is the diagonal matrix of the vertex degrees of G, L(G)=D(G)-A(G)

is defined to be the Laplacian matrix of G. The spectrum of L(G) is the sequence

of its eigenvalues displayed in non-increasing order, denoted by {µ1, . . . , µn−1, µn}.
It is well known that L(G) is a positive semidefinite and singular matrix. So, for

i = 1, 2, . . . , n − 1, µi ≥ 0 and µn = 0. Besides, when each Laplacian eigenvalue is

an integer number, G is said to be a Laplacian integral graph [13].

The energy of the graph G, E(G), is equal to the sum of the absolute values of

the eigenvalues of G. This invariant was introduced by one of the authors in [3] and

it has been extensively studied (see the reviews [3, 5] and the references therein).

Recently, Gutman and Zhou [8] introduced the concept of Laplacian energy of the

graph G as

LE(G) =
n∑

i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ . (1)

For the few subsequent works on Laplacian energy see [6, 18, 20].

While there are many papers concerned with finding the ordinary energy of par-

ticular graphs (see [2, 4, 7, 10, 11, 16, 17, 19]), there are no such studies of Laplacian

energy. In this work we investigate the Laplacian energy of the graphs with large

number of edges for which Gutman and Pavlović studied the ordinary energy [7]. All

of these graphs are obtained from the complete graph Kn by the deletion of some

edges, according to distinct rules as follows: the Kan(k)-graphs are obtained from

Kn by deleting k edges which have a common vertex; the Kbn(k)-graphs are obtained

from Kn by deleting k independent edges; the Kcn(k)-graphs are obtained from Kn

by deleting a k-clique, k < n; the Kdn(k)-graphs, are obtained from Kn by deleting

the edges of a k-membered cycle. Following these constructions, we introduce two

further kinds of graphs: the Ken(k)-graphs, that are obtained from Kn by deleting

the edges of k independent paths P3 and the Kfn(k)-graphs, that are obtained from

Kn by deleting the edges of k independent triangles C3. We investigate the Laplacian
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energy of these graphs, for all graph-theoretically relevant values of n and k (see [7]).

We analyze the behavior of the Laplacian energy as a function of k, for fixed values of

n. We prove that, except in the case of the Kdn(k)-graphs, all of them are Laplacian

integral.

Analogously to what happens in the study of the ordinary energy, in this paper,

we refer to two simple graphs G1 and G with same order, as to be equienergetic, when

LE(G1) = LE(G2). And we say that G1 and G2 are cospectral graphs, when both of

them have the same Laplacian spectra.

The following well known fact about the Laplacian spectrum of a graph will be

used several times in this work. Its proof can be found in [1].

Fact 1. Let G be a graph with n vertices and G be its complement. If the Laplacian

spectrum of G is {µ1, µ1, . . . , µn}, then the Laplacian spectrum of G is {n−µn−1, n−
µn−2, . . . , n− µ1, 0}.

THE Kan(k)-GRAPHS

For fixed integers n and k, n ≥ 3 and 0 ≤ k ≤ n−1, the graph Kan(k) is obtained

from Kn by the deletion of k edges with a common endpoint. If G is such a graph

then G is the union of the star Sk+1 and n − k − 1 isolated vertices. From Fact 1,

since the Laplacian spectrum of G is {k + 1, 1 (k − 1 times), 0 (n − k times)}, the

Laplacian spectrum of G is {n (n − k − 1 times), n − 1 (k − 1 times), n − k − 1, 0}.
Therefore, we arrive at our first result:

Theorem 1. For n ≥ 3 and 0 ≤ k ≤ n− 1,

LE(Kan(k)) = 2n− 2 +

(
2− 8

n

)
k . (2)

Proof. For given integers n and k, n ≥ 3 and 0 ≤ k ≤ n − 1, let G = Kan(k).

This graph has m = n(n − 1)/2 − k edges. So, the average degree of G is 2m/n =

n− 1− 2k/n. From (1) and after some algebraic manipulations we have

LE(G) = (n− k − 1)

∣∣∣∣1 +
2k

n

∣∣∣∣ + (k − 1)

∣∣∣∣
2k

n

∣∣∣∣ +

∣∣∣∣− k +
2k

n

∣∣∣∣ + n− 1− 2k

n
. (3)
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Since n ≥ 3, it is −k + 2k/n < 0. Consequently, | − k + 2k/n| = k− 2k/n. Applying

this inequality to (3), we straightforwardly obtain (2). ¤

Remark 1. From Theorem 1 it follows that LE(Kan(k)) is independent of k, if

n = 4, and that LE(Kan(k)) monotonically and linearly increases with k, if n > 4,

see Fig. 1. From Eq. (2) it is evident that the maximum value of LE(Kan(k)) is

attained for k = n − 1, if n > 3 , whereas for n = 3, LE(Kan(k)) is a decreasing

function on k, so that its maximum value is only attained when k = 0 . In Fig. 2 are

displayed the four Laplacian equienergetic and mutually non-cospectral graphs with

n = 4 vertices.

0

15

30

45

60

75

90

105

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
k

LE

Fig. 1. The dependence of LE(Kan(k)) on k for n = 30 and 0 ≤ k ≤ n− 1.

Fig. 2. LE(Ka4(0)) = LE(Ka4(1)) = LE(Ka4(2)) = LE(Ka4(3)) = 6.
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THE Kbn(k)-GRAPHS

Denote by G the graph Kbn(k) for fixed integers n ≥ 3 and 0 ≤ k ≤ bn/2c.
Since G is obtained from Kn by deleting k independent edges, G is the union of k

copies of K2 and (n − 2k) isolated vertices. Then, the Laplacian spectrum of G is

{ 2 (k times), 0 (n − k times)}. From Fact 1, the Laplacian spectrum of G is

{ n (n− k− 1 times), n− 2 (k times), 0}. Therefore, we have the following result:

Theorem 2. For n ≥ 3 and 0 ≤ k ≤ bn/2c,

LE(Kbn(k)) = (2n− 2) +

(
2− 4

n

)
k − 4k2

n
. (4)

Proof. Let G be a Kbn(k)-graph, where n ≥ 3 and 0 ≤ k ≤ bn/2c. Then, its average

degree is 2m/n = n− 1− 2k/n. From (1) and after some simple calculations, we get

LE(G) = (n− k − 1)

∣∣∣∣1 +
2k

n

∣∣∣∣ + k

∣∣∣∣− 1 +
2k

n

∣∣∣∣ + n− 1− 2k

n
. (5)

Since 0 ≤ k ≤ bn/2c, −1 + 2k/n < 0, and then | − 1 + 2k/n| = 1− 2k/n. Applying

this to (5) we directly obtain (4). ¤
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Fig. 3. The dependence of LE(Kbn(k)) on k for n = 30 and 0 ≤ k ≤ 15.
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Remark 2. It is easy to see that the function f(x) = (2n− 2) + (2− 4/n)x− 4x2/n,

x ∈ R, reaches its maximum value when x = (n− 2)/4.

Corollary 1. For a fixed integer n ≥ 3 , let k∗ = b(n− 2)/4c and k∗ = k∗ + 1. Then,

for each k , 0 ≤ k ≤ bn/2c , the Laplacian energy of Kbn(k) , viewed as a function of

k , reaches its maximum value at

• k = k∗ and k = k∗, when n ≡ 0 (mod 4)

• k = k∗ = (n− 1)/4, when n ≡ 1 (mod 4)

• k = k∗ = (n− 2)/4, when n ≡ 2 (mod 4)

• k = k∗ = (n− 3)/4, when n ≡ 3 (mod 4) .

Proof. For a fixed n ≥ 3 and 0 ≤ k ≤ bn/2c, let f(k) = LE(Kbn(k)) = (2n−2)+(2−
4/n)k−4k2/n. In the first case, when n ≡ 0 (mod 4), then b(n−2)/4c = n/4−1 and

f(n/4 − 1) = f(n/4). So, f(k∗) = f(k∗). In the second case, when n ≡ 1 (mod 4),

then b(n−2)/4c = (n−5)/4. Since f((n−5)/4) < f((n−1)/4), then k∗ = (n−1)/4.

When n ≡ 2 (mod 4), then b(n−2)/4c = (n−2)/4 and f attains its maximum value

at k = k∗. Finally, when n ≡ 3 (mod 4), then we have b(n− 2)/4c = (n− 3)/4 and

f((n− 3)/4) > f((n+1)/4). Consequently, the maximum value of f is reached when

k∗ = (n− 3)/4. ¤

Proposition 1. For every even integer n and for all i, 0 ≤ i ≤ bn/4c − 1, Kbn(i)

and Kbn((n− 2− 2i)/2)) are Laplacian equienergetic and non-cospectral graphs.

Proof. Let n be even and 0 ≤ i ≤ bn/4c − 1. Consider the graphs G = Kbn(i) and

H = Kbn((n− 2− 2i)/2)). From (4), it is easy to prove that EL(G) = EL(H). The

spectra of G and H are, respectively, equal to { n (n−i−1 times), n−2 (i times), 0}
and { n (n/2 + i times), n − 2 (n/2 − 1 − i times), 0}. In order to prove that G

and H are Laplacian non-cospectral graphs, it is enough to show that n or k have

distinct multiplicities in, at least, one of the spectra. But, if that does not hold, then

n−1−i = n/2+i and i = n/2−1−i; consequently, i = (n−2)/4, which is impossible

by the conditions on i. So, G and H are non-cospectral graphs. ¤
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THE Ken(k)-GRAPHS

For given integers n ≥ 3 and 0 ≤ k ≤ bn/3c, let G be a Ken(k)-graph, that

is, a graph obtained from Kn by the deletion of k independent paths P3. Then, its

complement G is the union of k copies of P3 and (n − 3k) isolated vertices. So, the

Laplacian spectrum of G is { 3 (k times), 1 (k times), 0 (n− 2k times)} and, from

Fact 1, the Laplacian spectrum of G is { n (n− 2k− 1 times), n− 1 (k times), n−
3 (k times), 0}.

Theorem 3. For n > 3 and 0 ≤ k ≤ bn/3c,

LE(Ken(k)) = (2n− 2) +

(
4− 8

n

)
k − 8k2

n
. (6)
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Fig. 4. The dependence of LE(Ken(k)) on k for n = 30 and 1 ≤ k ≤ 10.

Proof. Similarly as in the proof of Theorem 1, we fix integers n ≥ 3 and 0 ≤ k ≤
bn/3c. The graph G ∼= Ken(k) has m = n(n − 1)/2 − 2k edges and average degree

2m/n = n− 1− 4k/n. From (1) and after simple calculations, we have

LE(G) = (n− 2k − 1)

∣∣∣∣1 +
4k

n

∣∣∣∣ + k

∣∣∣∣
4k

n

∣∣∣∣ + k

∣∣∣∣− 2 +
4k

n

∣∣∣∣ + n− 1− 4k

n
. (7)

Since 0 ≤ k ≤ bn/3c, then −2 + 4k/n < 0 and therefore | − 2 + 4k/n| = 2 − 4k/n.

Applying this to (7), we get (6). ¤
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Remark 3. From Theorems 1 and 2, LE(Ken(k)) = LE(Kbn(k)) + (2 − 4/n)k −
4k2/n. Thus, Corollary 1 holds for every Ken(k)-graph, 0 ≤ k ≤ bn/3c. Besides, we

have the following result, the proof of which is analogous to that of Proposition 1.

Proposition 2. For every even n and i = 0, 1, . . . , bn/12c, Ken(bn/3c) − i) and

Ken(bn/6c − 1 + i) are Laplacian equienergetic and non-cospectral graphs.

THE Kcn(k)-GRAPHS

Let n ≥ 3 and k, 1 ≤ k ≤ n − 1, be fixed integers, and let G ∼= Kcn(k), that

is, the graph G is obtained from Kn by deleting a k-clique. Its complement G is the

union of the complete graph Kk and (n − k) isolated vertices. Since the Laplacian

spectrum of G is { k (k− 1 times), 0 (n− k + 1 times)}, it follows from Fact 1 that

the Laplacian spectrum of G is { n (n−k times), n−k (k−1 times), 0}. Therefore,

the Laplacian energy of the Kcn(k)-graph G is given by the following theorem, the

proof of which is analogous those of Theorems 1, 2, and 3.

Theorem 4. For n ≥ 3 and 1 ≤ k ≤ n− 1,

LE(Kcn(k)) =
2(n− k)(n + k2 − k)

n
.

Proof. Similar to the proof of Corollary 1. ¤

Remark 4. For n > 3, it is easy to see that the function f(x) = 2(n−x)(n+x2−x)/n,

x ∈ R, reaches its maximum value when x = [n + 1 +
√

(n− 1)2 − 2n ]/3.

Corollary 2. For a fixed integer n > 3, let k∗ =
⌊
[n + 1 +

√
(n− 1)2 − 2n ]/3

⌋
and

k∗ = k∗ + 1. Then the maximum value of the Laplacian energy of the Kcn(k)-graph,

1 ≤ k ≤ n− 1, as a function of k, is attained at

• k = k∗ = k∗, when n = 6

• k = k∗ = 2n/3, when n > 6 and n ≡ 0 (mod 3)

• k = k∗ = (2n− 2)/3, if n ≡ 1 (mod 3)

• k = k∗ = (2n− 1)/3, if n ≡ 2 (mod 3) .
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Fig. 5. The dependence of LE(Kcn(k)) on k for n = 30 and 1 ≤ k ≤ 29.

Remark 5. In the class of Kcn(k)-graphs, there is at least one Laplacian equiener-

getic non-coespectral pair. Let n = 6 and k1 = 4 and k2 = 3. Then the graphs Kc6(3)

and Kc6(4) have this property.

THE Kfn(k)-GRAPHS

Let n ≥ 3 and 1 ≤ k ≤ bn
3
c be fixed integers, and G ∼= Kfn(k), that is, the graph

G is obtained from Kn by the deletion of the edges belonging to k disjoint 3-cycles

(triangles). So G is the union of the k copies of the triangle, k C3, and (n−3k) isolated

vertices. Since the Laplacian spectrum of G is { 3 (2k times), 0 (n − 2k times)},
the Laplacian spectrum of G is { n (n − 2k − 1 times), n − 3 (2k times), 0}, from

Fact 1. Therefore, the Laplacian energy of G is given by the following theorem, the

proof of which is similar to those of Theorems 1–4.

Theorem 5. For n ≥ 3 and 0 ≤ k ≤ bn/3c,

LE(Kfn(k)) = 2n− 2 +

(
8− 12

n

)
k − 24 k2

n
.
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Remark 6. For n > 3, the function f(x) = (2n− 2) + (8− 12/n)x− 24x2/n, x ∈ R ,

reaches its maximum value at x = (2n− 3)/12.
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Fig. 6. The dependence of LE(Kfn(k)) on k for n = 30 and 0 ≤ k ≤ 10.

Corollary 3. For a fixed integer n > 3, let k∗ = b(2n − 3)/12c and k∗ = k∗ + 1.

Then the maximum value of the Laplacian energy of Kfn(k), viewed as a function of

k, 0 ≤ k ≤ bn/3c, is reached at

• k = k∗ = n/6 when n is even and n ≡ 0 (mod 3)

• k = k∗ = (n− 3)/6, when n is odd and n ≡ 0 (mod 3)

• k = k∗ = (n− 4)/6, when n is even and n ≡ 1 (mod 3)

• k = k∗ = (n− 1)/6, when n is odd and n ≡ 1 (mod 3)

• k = k∗ = (n− 2)/6, when n is even and n ≡ 2 (mod 3)

• k = k∗ = (n + 1)/6, when n is odd and n ≡ 2 (mod 3) .

Proof. Let n be even and f(k) = LE(Kfn(k)), 0 ≤ k ≤ bn/3c. If n ≡ 0 (mod 3),

we have f(n/6 − 1) < f(n/6). If n ≡ 1 (mod 3), then b(2n − 3)/12c = (n − 4)/6.
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For n > 3, it is easy to verify that f((n − 4)/6) > f((n + 2)/6). If n ≡ 2 (mod 3),

then b(2n− 3)/12c = (n− 2)/6 and f((n− 2)/6) > f((n + 4)/6).

For odd n, if n ≡ 0 (mod 3), then b(2n− 3)/12c = (n− 3)/6 and f((n− 3)/6) >

f((n+3)/6). Consider now the case n ≡ 1 (mod 3). Then b(2n−3)/12c = (n−7)/6

and f((n− 7)/6) < f((n− 1)/6). If n ≡ 2 (mod 3), then b(2n− 3)/12c = (n− 5)/6

and f((n− 5)/6) < f((n + 1)/6). ¤

Theorem 6. For fixed integer n ≥ 3, no pair of non-cospectral Kfn(k)-graphs are

Laplacian equienergetic.

Proof. Let n ≥ 3 and k1 and k2 be integers, with 0 < k1, k2 ≤ bn/3c. Suppose that

contrary to the claim of Theorem 6, the graphs G1
∼= Kfn(k1) and G2

∼= Kfn(k2) are

non-cospectral and satisfy LE(G1) = LE(G2). Then it must be k1 6= k2 , and from

Theorem 5 we obtain

(
8− 12

n

)
k1 − 24

n
k2

1 =

(
8− 12

n

)
k2 − 24

n
k2

2 . (8)

Let x = 8− 12/n and y = 24/n. Then the equation above becomes

xk1 − yk2
1 = xk2 − yk2

2 . (9)

Using simple calculations, we get

k1 =
2n− 3

6
− k2 . (10)

So we have (2n − 3)/6 ∈ Z, that is, there exists q ∈ Z, such that 2n − 3 = 6q.

Consequently, n = 3(2q + 1)/2. Since 6q + 3 is an odd integer, then n /∈ Z, which is

not possible! ¤

LAPLACIAN INTEGRAL GRAPHS

A graph G is said to be Laplacian integral if its Laplacian spectrum is a subset

of the integer number set. The Laplacian integral graphs are extensively studied and

there are many available distinct classes of them in the literature, see [13, 14, 15].
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The main results in this section are Theorems 7 and 8. In the former we show

that every graph considered in this paper is Laplacian integral; the latter asserts that,

among all these graphs, only Kan(k) is threshold. In order to get there, we repeat

some definitions and classical results.

Let be G = G(V, E) and H = H(V ′, E ′) be graphs with disjoint vertex sets. The

union of G and H is the graph G⊕H = (V ∪ V ′, E ∪E ′) and the join of G and H is

the graph G∨H obtained from G⊕H by adding edges from each vertex of G to every

vertex of H. A graph G is decomposable if G can be expressed as joins and unions of

isolated vertices, see [14]. A graph G is called threshold if and only if G does not have

any induced subgraph isomorphic to 2K2, P4 or C4. If G is a threshold (respectively, a

decomposable) graph then G is also a threshold (respectively, a decomposable) graph.

These graphs have been extensively studied in the literature, see [9, 12, 13, 14, 15].

Fact 2. [14]. A graph G is decomposable if and only if G does not have any induced

subgraph isomorphic to P4.

Fact 3. [14]. If G is a decomposable graph then G is Laplacian integral.

Theorem 7. For graph-theoretically relevant integers n and k, the graphs Kan(k),

Kbn(k), Kcn(k), Ken(k) and Kfn(k) are Laplacian integral.

Proof. First, let G be a Kan(k)-graph with n ≥ 4 vertices and 0 ≤ k ≤ n− 1. Since

G is the union of the star Sk+1 and n − k − 1 isolated vertices, there is no induced

subgraph of G isomorphic to P4. From Fact 2, G is a decomposable graph and so is

G. Then, from Fact 3, G is a Laplacian integral graph. The same arguments are used

to prove the assertion in the other cases. ¤

Theorem 8. For n ≥ 4 and appropriate integers k, among the graphs Kan(k),

Kbn(k), Kcn(k), Ken(k), and Kfn(k), only the Kan(k)-graphs are threshold.

Proof. Let G be a Kan(k)-graph with n ≥ 4 vertices. Since G is the union of the

star Sk+1 and n − k − 1 isolated vertices, it does not have any induced subgraph

isomorphic to 2K2, P4 or C4. Then, G is a threshold graph and so is G. Now, let H

be a Kbn(k)-graph with n ≥ 4 vertices. Its complement H is the union of k copies

of K2 and n − 2k isolated vertices, and then neither H nor H are threshold graphs.

The proofs for the Kcn(k), Ken(k), and Kfn(k)-graphs are analogous. ¤
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