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Abstract

Let G be a simple graph with n vertices and m edges. Let A1, Ag,..., A, denote the
eigenvalues of the adjacency matrix A of G and py, pa, . . ., i, denote the eigenvalues of the
n

Laplacian matrix L of G . Let v; = p;—2m/n. The energy E(G), defined as E(G) = > |\,
i=1
is a much studied quantity with well known applications in chemistry. In this paper we

n

investigate the properties of the Laplacian energy LE(G) = Y |v;| and its connections to
i=1

E(G). We establish some new analogies between the properties of E(G) and LE(G).

INTRODUCTION

Let G be a simple graph possessing n vertices and m edges. The ordinary spectrum
of G, consisting of the numbers A1, Ag, ..., A, (arranged in non-increasing order), is

the spectrum of the adjacency matrix A of G [1]. The energy of G is a quantity
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defined about 30 years ago as [2]

n

E(G) =) |\l -

i=1
Likewise, the Laplacian spectrum of GG, consisting of the numbers iy, po, . .., tin

(arranged in non-increasing order), is the spectrum of the Laplacian matrix L of G

[3]. The Laplacian energy of G is a newer concept, defined as [4]

LE(G) = _ il
i=1

where

and where 2m/n is the average vertex degree of G. Since u, = 0, we have v, =
—2m/n .

The energy E(G) of a graph G has a clear connection to chemical problems [2, 5, 6]
and there are numerous known results in the theory of the graph energy [7—13]. There
is a great deal of analogy between the properties of F(G) and LE(G), but also
significant differences [4, 14, 15]. More properties on LE are reported here.

RESULTS

The ordinary graph eigenvalues of G satisfy the following conditions:

n n n

dDN=0, Y AN=2m and J[A=detA.

i=1 i=1 i=1

Analogously, for the Laplacian eigenvalues of G we have

2”:%:0, zn:'yf:ZJW and ﬁ'yi:det (L—ZTmI)
i=1 i=1

=1

where
2m\?
M=m-+ = Z 0 — —
with J; denoting the degree of the i-th vertex of G'.

In [14] the following inequalities for LE(G) were obtained:

V2M +n(n — 1)D? < LE(G) < \/2M(n — 1)+ nD? 1)



where

— |det (L—Q—ml)

Analogous inequalities for graph energy were reported much earlier [16].

Lemma 1. Let a1, ao,...,a, be non-negative numbers. Then
1 n n 1/n n n 2
> Z(Li — <H al> < nZai — (Z \/ai)
i=1 i=1 i=1 i=1
n 1/n
< n(n-—1) Z a; — (H ai>
i=1
If ay, as, ..., a, are all positive numbers, then Lemma 1 is just Kober’s inequality

[17]. Otherwise, it is equivalent to

n n n 2 n
Zaiﬁnzai<z\/€7¢) S(nfl)Zai,
=1 =1 =1 =1

The left inequality follows directly from the Cauchy—Schwartz inequality, while the

right inequality is obvious.

Theorem 2. Let G be a graph with n > 2 vertices and m edges. Then

2;”+\/2M— (2%)2-5-(71—1)(71—2) (Zﬁ) < LE(G) <

(1) ("D) . 2)

2m

27m+ (n—2) {21\4— (%)2

Proof. Note that

n—1

Z\%\—LE(G)ff and Z%—W (Zm)

=1
Using Lemma 1 it can be easily checked that (2) is true if D = 0.
Now we assume that D # 0. By setting a; =+? , i =1,2,...,n— 1, in Lemma

1, we have

F<(n—1ni (§|7‘> <(n—-2)F



which can further be written as

F<(n—1)(2M —42) = [LE(G) — |w|]> < (n—2)F

i e,
(n—1)(2M —~2) = (n = 2)F < [LE(G) = |[]> < (n — 1) (2M —42) = F
where
n—1 n—1 n+l 2M—’)/2 D %
F = (n—-1) 'yl o =Mn-1 7”—( )
= 2M —~% — (n—l)( D )%1 .
7l

Note that v, = —2m/n. Then (2) follows easily. MW

Using the relation between the arithmetic and geometric means,

() =(3=E)
‘f)/n‘ n—1

and bearing in mind the upper bound in (2), we arrive at

20 — (2;”)2} 3)

2m

(G)<—+ (n—1)

which is same as inequality (10) in [4].

If we know p; and denote

om\ 2 2 2 =
on — (=2} (2 and _ b
n n 2m(nps — 2m)

by a and b, respectively, then by similar arguments, for n > 3, we obtain

A a+m—2)(n—30b< LEG) < ++/(n—-3)a+mn-—2pb. (‘)

In an analogous manner as before, the upper bound in (4) implies:

LE(G) <+ | (n—2) {2}\4 - (m - 2—’">2 _ (Qmﬂ . (5)

n n



- 445 -

Let K, be the complete graph on n vertices and K, its edgeless complement. Let

Ky, n, be the complete bipartite graph on n; 4 ny vertices.

Theorem 3. Let G be a graph with n > 2 vertices. Then LE(G) + E(G) > 2uy,
with equality if and only if G = K,, or G = K25/ -

Proof. Let m be the number of edges of G. Recall that A\; > 2m/n with equality
if and only G is a regular graph. Further, if G is a regular graph with exactly two
nonzero eigenvalues, then G = K, /5,72 . In view of this we have

n—1

Z i
i=2

n—1 n

N1+Z|'Yi‘+)\1+z‘>\i| > 1+
i—2 i—2

n

pORY

=2

LE(G) + E(G) A+

= Nl+

4m 4m
/111_7‘4‘2)\1 22(M1+)\1)—722u1 .

Suppose that LE(G) + E(G) = 2u1. Then A\; = 2m/n and so G is a regular
graph. Thus E(G) = y; = 2m/n— )\, , implying that either G = K, or G = Kyjomy2 -
Conversely, it is easy to see that LE(G) + E(G) = 2u; if G 2 K,, or G = Kojons -
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