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Abstract

Let G be a graph on n vertices and m edges. Let pui1,ua,. .., py, be the eigenvalues of

2m
n

n
the Laplacian matrix of G. The Laplacian energy of G is defined as LE(G) = Y |ui -
i=1

and some of its properties have recently been established. In this paper we determine a few
new upper bounds for LE(G), thus correcting an error in the paper [4].

INTRODUCTION

In this work we consider only simple graphs , i. e., undirected graphs without loops
or multiple edges. Let G be such a graph with n vertices. Denote the eigenvalues of
the Laplacian matrix of G by 1, pta, . . ., tn . The Laplacian spectrum of G is defined
as the set of all Laplacian eigenvalues piq, pa, . . . , ftn, [1,6-9].

The concept of Laplacian energy of the graph G has been defined in [3] as:

LE(G) =Y _ |l
i=1
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where
V=i — — .
n

By [3,4], the Laplacian eigenvalues of the graph G satisfy the following relations :

i:,ui:Qm ; i:,u?:%n—i—zn:d?.
i=1 i=1 i=1

Hence, the auxiliary “eigenvalues” ~; , ¢ =1,2,...,n, obey the conditions

n n
D=0 ; D i=2M
i=1 i=1
where )
1 — 2m
M - - di e .
mt 2 ; < n )

The number d; denotes the degree of the i-th vertex of G and 2m/n is the average
vertex degree. It is easy to see that M > m for all graphs G and M = m for regular
graphs. Obviously LE(G) > 0 and LE(G) =0if m =0 [3].

The Laplacian energy is a relatively new concept, so the study of its mathematical
properties started recently, and the first results were reported by Zhou and Gutman
[3.4].

In this paper we observe some new upper bounds for the Laplacian energy of a

graph.

THE MAIN RESULTS

1
Let G be an (n,m)-graph possessing p components (p > 1). In [3] (Theorem 3)

is proven that:

LEG) <y 1\ (n—p) {w—p(ﬁ”) } . )

T

We consider the right-hand side expression in (1) as a function of the parameter

F@) =t (-2 {2M—x<2nm)2], 0<z<n.

n
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Now,
(o) = 2 2M 2 20 n (G
()= — = — .
n 2\/(71730)[2]\4795(277:1)2]

In the paper [4] it was claimed that for a = 2m/n

OM +a®>n—2a%2>0

holds for x < n. This, however, is not generally true. In reality, the above inequality

<M 2m _2+n @)
T — — .
- n 2

Consequently, the function f(x) decreases if and only if and condition (2) is obeyed,

is valid only if

and

12 [ o (2o (22) )] < forr e (22) e (22)]

which can further be written as

2m )\ ? 9 5 [ 2m :
AMn | — <A4AM*+n“| —
n n

2m 21
2M+n():| >0.
n

Due to the definition of the function f(x), the following condition is also necessary:

2 -2
x < 2M (L") ,
n

Conclusion 1. For the graphs with the number of components

o2m 2
p<2M | —
n

the upper bound increases with decreasing p. Hence, for such graphs
om\ 2

2M — (ﬂ) ] ‘ (3)
n

Corollary 1. Let G be a connected (n, m)-graph. Then

LE@ <24 (-1 {QM _ (2’”)2} _

LEG) <4 (-1

n
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Proof. It follows directly from the Conclusion 1. |

2
Let G be an (n,m)-graph with n > 3. In [4] (Proposition 1) has been proven that

oM — (2m)? o 2M — (2m)? rom\?
<= A\nJ 2 _ 7 \wJ (20 )
LE(G) < et st |(n-2) [2M — < - ) (4)

Now, we show that the bound (3) and the bound (2) are equal, i. e.,

oM (Qmﬂ

oM — (2m)?
7(7‘L)+@+ (7172)

n—1 n n—1 n

2M — (2:]”)2] : ()

Let a = 2M — (2m/n)*. Then

¢ +2;n+\/(n—2)[a— - }:211 (n—1)a

2m
= — n—1
- + 4| (n )

n—1 n—1 n

holds if and only if

-2 —2)?
¢ +2M\/CL2+CL(TL7):(’H—1)CL.
n—1 n—1 n—1

It is elementary to verify that the above identity is satisfied for all values of n .

Corollary 2. For every (n,m)-graph G,

LE@G) < 27—’7 =1 {QM _ (T)Z} . (6)

Proof. For n > 3, inequality (3) and equality (4) directly lead to inequality (5). For
connected graphs with n = 2 inequality (5) holds by Corollary 1. For the graph with
n =1 and the disconnected graph with n = 2 equality in (5) is satisfied in a trivial

manner. | |
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