MATCH Communications in Mathematical and in Computer Chemistry

On tetracyclic graphs with minimal energy^{*}

Shuchao Li^a, Xuechao Li^{b,\dagger}

^aFaculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China

^bDivision of Academic Enhancement, The University of Georgia, GA, USA 30602

(Received December 3, 2007)

Abstract. The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let \mathscr{G}_n be the class of tetracyclic graphs G on n vertices and containing no disjoint odd cycles C_p, C_q of lengths p and q with $p + q \equiv 2 \pmod{4}$. In this paper, we obtain the minimal value on the energies of the graphs in \mathscr{G}_n and determine the corresponding graphs.

1. Introduction

Let G be a simple graph with n vertices. Let A(G) be the adjacency matrix of G. The *characteristic polynomial* of G is

$$\phi(G,\lambda) = \det(\lambda I - A) = \sum_{i=0}^{n} a_i \lambda^{n-i},$$

^{*}The research is partially supported by National Science Foundation of China (Grant No. 10671081)

[†]Corresponding author. lscmath@mail.ccnu.edu.cn (S. Li), xcli@uga.edu (X. Li)

Sachs theorem states that [12] for $i \ge 1$,

$$a_i = \sum_{S \in L_i} (-1)^{p(S)} 2^{c(S)},$$

where L_i denotes the set of Sachs graphs of G with i vertices, that is, the graphs in which every component is either a K_2 or a cycle, p(S) is the number of components of S and c(S) is the number of cycles contained in S. In addition $a_0 = 1$. The roots $\lambda_1, \ldots, \lambda_n$ of $\phi(G, \lambda)$ are called the eigenvalues of G. Since A(G) is symmetric, all *eigenvalues* of G are real. Let C_n denote a cycle of length n. Other undefined notation may refer to [2, 12].

The energy of G, denoted by E(G), is then defined as $E(G) = \sum_{i=1}^{n} |\lambda_i|$. Since the energy of a graph can be used to approximate the total π -electron energy of the molecule (e.g., see [11, 12]), there are numerous results on E(G)(e.g., see [1,3,4,5-11,13-27,29-33,35-42]), including graphs with extremal energies [3,7,17,18,20,21,23-26,30,31,33,35-40,43-47].

It is known that E(G) can be expressed as the Coulson integral formula [12]

$$E(G) = \frac{1}{\pi} \int_0^{+\infty} \frac{dx}{x^2} \ln \left[\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i a_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i a_{2i+1} x^{2i+1} \right)^2 \right].$$
(1.1)

Let $b_{2i}(G) = (-1)^i a_{2i}$ and $b_{2i+1}(G) = (-1)^i a_{2i+1}$ for $0 \leq i \leq \lfloor \frac{n}{2} \rfloor$. Clearly, $b_0(G) = 1$ and $b_2(G)$ equals the number of edges of G. Thus, by (1.1), E(G) is a strictly monotonically increasing function of $b_i(G), i = 1, \ldots, \lfloor n/2 \rfloor$.

Many results on the minimal energy have been obtained for various classes of graphs. In [3], Caporossi et al. gave the following conjecture.

Conjecture 1.1. Connected graphs G with $n \ge 6$ vertices, $n-1 \le e \le 2(n-2)$ edges and minimum energy are star with e-n+1 additional edges all connected to the same vertex for $e \le n + \lfloor \frac{n-7}{2} \rfloor$, and bipartite graphs with two vertices on one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when e = n - 1, 2(n - 2) [3, Theorem 1] and e = n for $n \ge 6$ [17]. When e = n + 1 and e = n + 2 the conjecture has been discussed [40, 26]. In this paper, we consider the above conjecture for the case e = n + 3 for $n \ge 9$.

Figure 1: Graphs G_n^0 and G_n^1

A connected simple graph with n vertices and e = n + 3 edges contains four elementary cycles and called *tetracyclic*. Let \mathscr{G}_n be the class of tetracyclic graphs G with n vertices and containing no disjoint two odd cycles C_p, C_q with $p + q \equiv 2 \pmod{4}$. Let G_n^0 be the graph formed by joining 4 pendent vertices to a vertex of degree one of the $K_{1,n-1}$ (e.g., see Figure 1), and G_n^1 be the graph formed by joining n - 5 pendent vertices to a vertex of degree 5 of the complete bipartite graph $K_{2,5}$ (e.g., see Figure 1). In this paper, for graphs in \mathscr{G}_n , we show that G_n^0 has minimal energy if $n \ge 18$ and G_n^1 has the minimal energy if $9 \le n \le 17$.

The following two lemmas are needed in our paper.

Lemma 1.2 ([40]). Let G be a graph with n vertices and let uv be a pendent edge of G with pendent vertex v. Then for $2 \leq i \leq n$, $b_i(G) = b_i(G - v) + b_{i-2}(G - u - v)$.

Lemma 1.3 ([40]). Let G be any graph. Then $b_4(G) = m(G, 2) - 2s$, where m(G, 2) is the number of 2-matchings of G and s is the number of quadrangles in G.

2. Lemmas and main results

In this section, we shall determine the graphs in \mathscr{G}_n $(n \ge 9)$ having the minimal energy.

We are, at first, to show $E(G) > E(G_n^1)$ for any $G \in \mathscr{G}_n$ with $G \notin \mathscr{J}_n$; and proceed to show that $E(G_n^0) < E(G_n^1) (n \ge 18)$, and $E(G_n^1) < E(G_n^0) (9 \le n \le 17)$, where each graph in \mathscr{J}_n is as shown in Figure 2. The following fact is immediate.

Fact 1. For any $G \in \mathscr{G}_n$, there are at most four vertex-disjoint cycles contained in G.

Lemma 2.1. If $G \in \mathscr{G}_n$, then $b_{2i} \ge 0$ for $0 \le i \le \lfloor \frac{n}{2} \rfloor$.

Proof. Let L_i be the set of Sachs graphs of G with *i* vertices. By Sachs theorem,

$$b_{2i} = \sum_{S \in L_{2i}} (-1)^{p(S)+i} 2^{c(S)} = \sum_{S \in L_{2i}^1} (-1)^{p(S)+i} + \sum_{S \in L_{2i}^2} (-1)^{p(S)+i} 2^{c(S)},$$

where L_{2i}^1 is the set of graphs with no cycles in L_{2i} , and $L_{2i}^2 = L_{2i} \setminus L_{2i}^1$.

If every S in L_{2i} has no cycle, then p(S) = i, and $b_{2i}(G) = \sum_{S \in L_{2i}} 1 \ge 0$. Otherwise, there exists S' in L_{2i} such that S' contains cycles. If S' has no odd cycles, then $b_{2i}(G) \ge 0$ [14]; If S' contains odd cycles, together with Fact 1, S' must contain two or four vertex-disjoint odd cycles.

Case 1. If S' contains two odd cycles, say C_k, C_l , we have $k+l \equiv 0 \pmod{4}$ since $G \in \mathscr{G}_n$. If S' has no cycle except C_k and C_l , then

$$p(S') + i = 2 + \frac{2i - (k+l)}{2} + i \equiv 0 \pmod{2}.$$

If S' contains one more cycle C_m besides C_k , C_l , then C_m must be even. Thus its corresponding term in b_{2i} is $(-1)^{p(S')+i}2^3$. On the other hand, since C_m is an even cycle, it has exactly two perfect matching, say M_1, M_2 , therefore there exist Sachs graphs S_1'', S_2'' in L_{2i} such that $S_1'' := (S' \setminus C_m) \cup C_k \cup C_l \cup M_1$ and $S_2'' := (S' \setminus C_m) \cup C_k \cup C_l \cup M_2$, respectively. Their corresponding terms in b_{2i} are

$$(-1)^{p(S_1'')+i} \cdot 2^2 + (-1)^{p(S_2'')+i} \cdot 2^2,$$

where $p(S_1'') + i = p(S_2'') + i = 2 + \frac{2i - (k+l)}{2} + i \equiv 0 \pmod{2}$. It is easy to see $|L_{2i}^1| \ge 2|L_{2i}^2|$, and so

$$b_{2i} \ge \sum_{M_1, M_2 \subseteq C_m}^{C_m \subseteq S' \in L^2_{2i}} \left[(-1)^{p(S''_1)+i} \cdot 2^2 + (-1)^{p(S''_2)+i} \cdot 2^2 + (-1)^{p(S')+i} \cdot 2^3 \right] \ge 0,$$

where $S_1'' = (S' \setminus C_m) \cup C_k \cup C_l \cup M_1$ and $S_2'' = (S' \setminus C_m) \cup C_k \cup C_l \cup M_2$.

Case 2. If S' contains four odd cycles, say $C_{l_i}(i = 1, 2, 3, 4)$, then C_{l_i} must be pairwise vertex-disjoint. We have $l_p + l_q \equiv 0 \pmod{4}$ $(p, q = 1, 2, 3, 4, p \neq q)$. Note that S' has no five pairwise vertex-disjoint cycles. Then

$$p(S') + i = 4 + \frac{2i - (l_1 + l_2 + l_3 + l_4)}{2} + i \equiv 0 \pmod{2}.$$

Hence $b_{2i} \ge 0$.

In \mathscr{G}_n , there exist eight special graphs, $G_i(i = 1, \dots, 8)$; see Figure 2, where $G_1(G_2)$ has n - 9 (n - 8, repectively) pendent vertices, each of G_3 and G_4 has n - 7 pendent vertices, each of G_5 and G_6 has n - 6 pendent vertices, and each of G_7 and G_8 has n - 5 pendent vertices.

Figure 2: Graphs $G_1, G_2, G_3, G_4, G_5, G_6, G_7$ and G_8 .

Let $\mathscr{J}_n = \{G_n^0, G_n^1, G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_8\}$ (see Figure 1 and Figure 2). It is straightforward to check that graph $G \in \mathscr{G}_n$ has at least 4 cycles and at most 15 cycles but has no 9 cycles.

Let m(G, 2) denote the number of 2-matchings of a graph G. Obviously, $m(P_n, 2) = (n-2)(n-3)/2$ and $m(C_n, 2) = n(n-3)/2$.

Lemma 2.2. If $G \in \mathscr{G}_n$ and $G \notin \mathscr{J}_n$, then $b_4(G) > b_4(G_n^1)$ for $n \ge 9$.

Proof. First we assume that G contains pendent edges, let uv be a pendent edge of G with pendent vertex v. By Lemma 1.2,

$$b_4(G) = b_4(G-v) + b_2(G-u-v), \ b_4(G_n^1) = b_4(G_{n-1}^1) + b_2(K_{1,5}).$$

Note that G-v has exactly four cycles on n-1 vertices and $G \notin \mathscr{J}_n$, therefore $G-v \notin \mathscr{J}_{n-1}$, by induction hypothesis, $b_4(G-v) > b_4(G_{n-1}^1)$. It is easy to see $G-u-v \notin \mathscr{J}_{n-2}$, we have $b_2(G-u-v) \ge b_2(K_{1,5}) = 5$. It is immediate that $b_4(G) > b_4(G_n^1)$.

Figure 3: 15 possible cases for the arrangement of four cycles in G.

Second we assume that G contains no pendent edges. Please note that G has at least 4 cycles and at most 15 cycles. So we consider the following several cases.

Case 1. *G* contains exactly four cycles.

Without loss of generality, let four cycles be C_a, C_b, C_c and C_d . These four cycles must be edge-disjoint; see Figure 3.

Note that any two adjacent edges cannot be a 2-match.

Subcase 1-1 Graphs (a), (b), (d) and (g) in Figure 3.

For the graph G being (g) in Figure 3, assume that there is a path P_{ij} connecting C_i and C_j and by Lemma 1.3,

$$b_4(G) = m(G,2) - 2s \ge m(G,2) - 8$$

= $\frac{(n+3)(n+2)}{2} - (\sum |C_i| + \sum_{i_j} \max(|P_{i_j}| - 1, 0)) - 12 - 8$
 $\ge \frac{n^2 + 5n + 6}{2} - (n+3) - 20 = \frac{n^2}{2} + \frac{3n}{2} - 20.$
 $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{1}{2}n - 18 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 15 > 0.$

Graph (a)(graph (b),(d) and (e), respectively) is a special case of graph (g) with $|P_{i_j}| = 0$ ($|P_{c_d}| = 0$, $|P_{b_c}| = 0$ and $|P_{b_c}| = |P_{c_d}| = 0$, respectively). To avoid repetition, we omit the proof here.

Subcase 1-2 Graphs (c) and (h).

For the graph G being (h) in Figure 3, assume that there is a path P_k

connecting C_a, C_b and C_c, C_d and by Lemma 1.3,

$$b_4(G) \ge m(G,2) - 8 = \frac{(n+3)(n+2)}{2}$$

-($\sum(|C_i|) + \max(|P_k| - 1, 0)$) - 16 - 8
 $\ge \frac{n^2 + 5n + 6}{2} - (n+3) - 24 = \frac{n^2}{2} + \frac{3n}{2} - 24.$
 $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 24 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 11 > 0.$

Graph (c) is a special case of graph (h) with $|P_k| = 0$, to avoid repetition, we omit the proof here.

Subcase 1-3 Graphs (i), (j), (k) and (l).

For the graph G being (l) in Figure 3, assume that there is a path P_k connecting C_a and C_d , another path P_r connecting $C_a(C_b)$ and C_c . We have

$$b_4(G) \ge \frac{(n+3)(n+2)}{2} \\ -(\sum(|C_i|) + \max(|P_k| - 1, 0) + \max(|P_r| - 1, 0)) - 14 - 8 \\ \ge \frac{n^2 + 5n + 6}{2} - (n+3) - 22 = \frac{n^2}{2} + \frac{3n}{2} - 22. \\ b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 22 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 13 > 0. \end{cases}$$

Discussion for the value of b_4 of Graph (i),(j) and (k) is similar to that of graph (l) and b_4 is no less than the value of b_4 of graph (l), so we omit the proof here.

Subcase 1-4 Graphs (f) and (m).

For the graph G being (m) in Figure 3, assume that there is a path P_k connecting C_a, C_b and C_c , another path P_r connecting C_c and C_d . We have

$$b_4(G) \ge \frac{(n+3)(n+2)}{2} - (\sum_{i=1}^{n} (|C_i|) + \max(|P_k| - 1, 0) + \max(|P_r| - 1, 0)) - 14 - 8$$
$$\ge \frac{n^2 + 5n + 6}{2} - (n+3) - 22 = \frac{n^2}{2} + \frac{3n}{2} - 22.$$
$$b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 22 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 13 > 0.$$

Graph (f) is a special case of graph (m) with $|P_r| = 0$, so we omit its proof. Subcase 1-5 Graphs (n) and (o).

$$\begin{array}{rcl} b_4(G) & \geqslant & \displaystyle \frac{(n+3)(n+2)}{2} - (\sum |C_i| + \max(|P_{a_i}|-1,0)) - 12 - 8 \\ \\ & \geqslant & \displaystyle \frac{n^2 + 5n + 6}{2} - (n+3) - 22 = \displaystyle \frac{n^2}{2} + \displaystyle \frac{3n}{2} - 22 \\ \\ & b_4(G) - b_4(G_n^1) & \geqslant & \displaystyle \frac{1}{2}n^2 + \displaystyle \frac{3}{2}n - 22 - (5n-35) = \displaystyle \frac{1}{2}n^2 - \displaystyle \frac{7}{2}n + 13 > 0. \end{array}$$

Graph (n) is a special case of graph (o) with $|P_{a_i}| = 0$, so we omit its proof.

Hence, we complete discussion of case 1. **Case 2.** $G \in \mathscr{G}_n$ with $G \notin \mathscr{I}_n$ has exactly five cvc

Case 2. $G \in \mathscr{G}_n$ with $G \notin \mathscr{J}_n$ has exactly five cycles. Since G has exactly five cycles, by Fact 1, there are exactly two cycles, say C_a and C_b , having t ($t \ge 1$) common edges and each of C_a, C_b has no common edges with each of rest two cycles C_c, C_d , and C_c and C_d are edge-disjoint (see graphs in Figure 4).

Subcase 2-1 Graphs (a), (i) and (f).

We consider graph (i) in Figure 4 first.

Note that any two adjacent edges cannot be a 2-match. For the graph G being (i) in Figure 4, where P_k connects C_a and $C_c(C_d)$, we have

$$b_4(G) \ge \frac{(n+3)(n+2)}{2} \\ -((\sum_{i} |C_i|) - t + \max(|P_k| - 1, 0))) - 14 - 10 \\ = \frac{(n^2 + 5n + 6)}{2} - (n+3) - 24 = \frac{1}{2}n^2 + \frac{3}{2}n - 24. \\ -b_4(G_n^1) = \frac{1}{2}n^2 - \frac{7}{2}n + 11 > 0.$$

Graph (a) (graph (f), respectively) is a special case of graph (i) with $|P_k| = 0$ (P_k share a common vertex with both C_a and C_b , respectively).

Subcase 2-2 Graphs (c),(d), (e) and (j).

 $b_4(G)$

 b_4

For the graph G being (d) in Figure 4, where P_k connects $C_a(C_b)$ and C_c , and P_r connects C_c and C_d , we have

$$b_4(G) \ge \frac{(n+3)(n+2)}{2} - ((\sum_{i} |C_i|) - t + \max(|P_k| - 1, 0)) + \max(|P_r| - 1, 0)) - 13 - 10$$

$$\ge \frac{(n^2 + 5n + 6)}{2} - (n+3) - 23 = \frac{1}{2}n^2 + \frac{3}{2}n - 23.$$

$$(G) - b_4(G_n^1) = \frac{1}{2}n^2 - \frac{7}{2}n + 12 > 0.$$

Graph (e) is a special case of graph (d) with $|P_r| = 0$. Discussion of graph (e) is similar to that of graph (d) and graph (j) is a special case of graph (e). So we omit the proof here.

Figure 4: 22 possible cases for the arrangement of five cycles in G

Subcase 2-3 Graphs (b), (h), (k),(m),(n) and (o).

For the graph G being (m) in Figure 4, where P_k connects C_a and C_c , and P_r connects C_a and C_d . we have

$$\begin{array}{rcl} b_4(G) & \geqslant & m(G,2)-10 \\ & = & \displaystyle \frac{(n+3)(n+2)}{2} - ((\sum_{i}|C_i|) - t + \max(|P_k|-1,0)) + \\ & \max(|P_r|-1,0)) - 12 - 10 \\ & \geqslant & \displaystyle \frac{(n^2+5n+6)}{2} - (n+3) - 22 = \displaystyle \frac{1}{2}n^2 + \displaystyle \frac{3}{2}n - 22. \\ & b_4(G) - b_4(G_n^1) & \geqslant & \displaystyle \frac{1}{2}n^2 - \displaystyle \frac{7}{2}n + 13 > 0. \end{array}$$

Graph (n) in Figure 4 is a special case of graph (m) with P_k sharing a common vertex with both C_a and C_b . We have $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 - \frac{7}{2}n + 12 > 0$. Similarly, for graph (o), $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 - \frac{7}{2}n + 11 > 0$. Graph (k) (graph (h) and graph (b), respectively) is a special case of graph (o) (graph (n), respectively) with $|P_k| = |P_r| = 1$ ($|P_r| = 1$ and $|P_k| = |P_r| = 1$, respectively). Hence, we omit the proof here.

Subcase 2-4 Graphs (g), (p), (q) and (s).

For the graph G being (p) in Figure 4, where P_k connects C_a and C_c , and P_r connects C_a and C_d with P_k, P_r sharing an end vertex, we have

$$\begin{array}{rcl} b_4(G) & \geqslant & m(G,2)-10 \\ & = & \displaystyle \frac{(n+3)(n+2)}{2} - ((\sum_i |C_i|) - t + \max(|P_k|-1,0)) + \\ & \max(|P_r|-1,0)) - 12 - 10 \\ & \geqslant & \displaystyle \frac{(n^2+5n+6)}{2} - (n+3) - 22 = \displaystyle \frac{1}{2}n^2 + \displaystyle \frac{3}{2}n - 22. \\ & b_4(G) - b_4(G_n^1) & \geqslant & \displaystyle \frac{1}{2}n^2 - \displaystyle \frac{7}{2}n + 13 > 0. \end{array}$$

Graph (s)(graph (q), respectively) is a special case of graph (p) with $P_r = 1$ (both P_r, P_k sharing a common vertex with $C_a(C_b)$, respectively). Graph (g) is a special case of (q). For each graph G listed above, we have $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 - \frac{7}{2}n + 11 > 0$.

Subcase 2-5 Graphs (r), (u), (v) and (t).

For the graph G being (r) in Figure 4, where P_k connects C_a and C_c , C_d and C_a share a common vertex, we have

$$b_4(G) \ge \frac{(n+3)(n+2)}{2} \\ -((\sum_{i}|C_i|) - t + \max(|P_k| - 1, 0)) - 12 - 10 \\ \ge \frac{(n^2 + 5n + 6)}{2} - (n+3) - 22 = \frac{1}{2}n^2 + \frac{3}{2}n - 22. \\ b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 - \frac{7}{2}n + 13 > 0.$$

Graph (t)(graph (v), respectively) is a special case of graph (r) and graph (u) is a special case of (t). For each graph G listed above, we have $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 - \frac{7}{2}n + 12 > 0$. Since the calculation is similar, it is omitted here. Thus we complete the discussion of case 2.

Case 3. $G \in \mathscr{G}_n$ has exactly six cycles.

All possible graphs with six cycles are listed in Figure 5. Without loss of generality, we consider graph G being (a), (e) and (f) in Figure 5 only. For graph (a), it has two pairs of cycles $\{C_a, C_b\}$ and $\{C_c, C_d\}$ sharing some common edges. Let C_a and C_b share t_1 common edges, C_c and C_d share t_2 edges and there is a path P_k connecting C_b and C_d (see Figure 5 (a)).

Since G has no pendent vertex, then

$$\begin{array}{lcl} b_4(G) &=& m(G,2)-2s \geqslant m(G,2)-12 \\ &\geq& \frac{n^2+5n+6}{2}-(|C_a|+|C_b|+|C_c|+|C_d|-t_1-t_2+\\ && \max(|P_k|-1,0))-12-12 \\ &\geq& \frac{(n+3)(n+2)}{2}-(n+3)-12-12=\frac{1}{2}n^2+\frac{3}{2}n-24. \end{array}$$

Figure 5: 6 possible cases for the arrangement of six cycles in G

$$b_4(G) - b_4(G_n^1) = \frac{1}{2}n^2 + \frac{3}{2}n - 24 - (5n - 35) = \frac{n^2}{2} - \frac{7n}{2} + 11 > 0.$$

Graph (d) ((b), (c) respectively) is a special case of (a) with $|P_k| = 1$ (one of end vertices of P_k is a common vertex of C_c and C_d , two end vertices of P_k sharing a common vertex with $C_a(C_b)$ and $C_c(C_d)$, respectively), we omit the discussion here. For graph (e), $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 26 - (5n - 35) =$ $\frac{n^2}{2} - \frac{7n}{2} + 9 > 0. \text{ For graph (f), we have } b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 28 - (5n - 35) = \frac{n^2}{2} - \frac{7n}{2} + 7 > 0.$ **Case 4.** $G \in \mathscr{G}_n$ has exactly seven cycles.

Some configurations of graphs G containing seven cycles are exhibited in Figure 6.

Figure 6: 12 possible arrangements of seven cycles in G

Subcase (4-1) Graphs (a) and (g) in Figure 6.

We consider graph (g) in Figure 6. Let C_a , C_b and C_c have t edges in common. There is a path P_k connecting C_a and C_d .

$$b_4(G) = m(G,2) - 2s \ge m(G,2) - 14 \ge \frac{n^2 + 5n + 6}{2}$$

-(|C_a| + |C_b| + |C_c| + |C_d| - t₁ - t₂ + max(|P_k| - 1,0)) - 14 - 14
= \frac{n^2 + 5n + 6}{2} - (n+3) - 14 - 14
= $\frac{1}{2}n^2 + \frac{3}{2}n - 28.$

$$b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 28 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 7 > 0.$$

Clearly graph (a) is a special case of (g) with $|P_k| = 1$.

Subcase (4-2) Graphs (b),(f), (h) and (l) in Figure 6.

We consider a graph (1). Let C_a and C_b have t_1 common edges, C_a and C_c have t common edges in common. P_k connects C_a and C_d with one end vertex joining C_a and C_b .

$$\begin{array}{lcl} b_4(G) & \geq & \displaystyle \frac{n^2+5n+6}{2} \\ & -(|C_a|+|C_b|+|C_c|+|C_d|-t_1-t_2+\max(|P_k|-1,0)) \\ & & \displaystyle -13-14 \\ & = & \displaystyle \frac{n^2+5n+6}{2}-(n+3)-13-14=\frac{1}{2}n^2+\frac{3}{2}n-27. \\ \\ b_4(G)-b_4(G_n^1) & \geqslant & \displaystyle \frac{1}{2}n^2+\frac{3}{2}n-28-(5n-35)=\frac{1}{2}n^2-\frac{7}{2}n+8>0. \end{array}$$

Clearly graph (f) (graph (h) respectively) is a special case of (l) with $|P_k| = 1$ (C_a, C_b and C_c sharing one vertex, respectively). While graph (b) is a special case of (h) with $|P_k| = 1$.

Subcase (4-3) Graphs (c),(d),(e),(k),(i) and (j).

Calculation the value of b_4 for each graph listed in Subcase (4-3) is similar as in Subcase (4-2), so we omit it here. And we have $b_4 - b_4(G_n^1) > 0$.

Case 5. $G \in \mathscr{G}_n$ has exactly eight cycles.

The four configurations of graphs G containing eight cycles exhibited in Figure 7.

Figure 7: 4 possible arrangements of eight cycles in G

Without loss of generality, we consider a graph G in Figure 7 (c). Let C_a and C_b have t_1 edges in common, C_a and C_c have t_2 edges in common, C_b and C_c have t_3 edges in common. A path P_k connects C_a and C_d .

$$\begin{split} b_4(G) &= m(G,2) - 2s \geqslant m(G,2) - 16\\ &\geq \frac{n^2 + 5n + 6}{2} - (|C_a| + |C_b| + |C_c| + |C_d| - t_1 - t_2 - t_3\\ &+ \max(|P_k| - 1, 0)) - 12 - 16\\ &= \frac{1}{2}n^2 + \frac{3}{2}n - 28.\\ b_4(G) - b_4(G_n^1) &\geqslant \frac{1}{2}n^2 + \frac{3}{2}n - 28 - (5n - 35)\\ &= \frac{1}{2}n^2 - \frac{7}{2}n + 7 > 0. \end{split}$$

Similarly, for graph (d), we have $b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 28 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 6 > 0.$

Note that graph (a)(graph (b), respectively) is a special case of graph (c)(graph (d), respectively).

Case 6. $G \in \mathscr{G}_n$ contains exactly 11 cycles.

Note that there is no 9-cycle graphs in \mathscr{G}_n . Without loss of generality and to avoid the repetition, we are to verify one graph (a) in Figure 8.

Figure 8: 7 possible cases for the arrangement of 11 cycles in G

Note that there is no pendent edges in G, without loss of generality, we consider the graph G in Figure 8 (a). Let C_i and C_j have $t_{i,j}$ $(i, j = 1, 2, 3, i \neq j)$ edges in common, then

$$b_4(G) = m(G, 2) - 2s \ge m(G, 2) - 22$$

$$\ge \frac{n^2 + 5n + 6}{2} - (|C_a| + |C_b| + |C_c| + |C_d| - t_{a,b} - t_{a,c} - t_{a,d}) - 12 - 22$$

$$= \frac{n^2 + 5n + 6}{2} - (n + 3) - 12 - 22 = \frac{1}{2}n^2 + \frac{3}{2}n - 34.$$

$$b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 34 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 1 > 0 (n \ge 8).$$

Graph (b) is a special case of (a). We have

$$\begin{array}{ll} b_4(G) &=& m(G,2)-2s \geqslant m(G,2)-22\\ &\geq& \frac{n^2+5n+6}{2}-(|C_a|+|C_b|+|C_c|+|C_d|-t_{a,b}-t_{a,c}-t_{a,d})-13-22\\ &=& \frac{n^2+5n+6}{2}-(n+3)-13-22=\frac{1}{2}n^2+\frac{3}{2}n-35.\\ &b_4(G)-b_4(G_n^1) \ge \frac{1}{2}n^2+\frac{3}{2}n-34-(5n-35)=\frac{1}{2}n^2-\frac{7}{2}n>0 (n\ge 8).\\ & \mbox{For graph (c) in Figure 8,} \end{array}$$

$$b_4(G) = m(G, 2) - 2s \ge m(G, 2) - 22$$

$$\ge \frac{n^2 + 5n + 6}{2}$$

$$-(|C_a| + |C_b| + |C_c| + |C_d| - t_{a,b} - t_{a,c} - t_{a,d} - t_{c,d}) - 12 - 22$$

$$= \frac{1}{2}n^2 + \frac{3}{2}n - 34.$$

$$b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 34 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 1 > 0 (n \ge 8).$$

Graph (d) is a special case with C_b and C_c sharing a common vertex on C_a .

For graph (e), we have

$$b_4(G) \ge \frac{n^2 + 5n + 6}{2} - \left(\sum (|C_i|) - t_{a,b} - t_{a,c} - t_{a,d} - t_{b,d} - t_{(C,d)}\right) - 12 - 22$$

$$b_4(G) - b_4(G_n^1) \ge \frac{1}{2}n^2 + \frac{3}{2}n - 34 - (5n - 35) = \frac{1}{2}n^2 - \frac{7}{2}n + 1 > 0 (n \ge 8).$$

Case 7. $G \in \mathscr{G}_n$ contains exactly $i \ (i = 10, 12, 13, 14, 15)$ cycles.

Figure 9: Some possible arrangements of 10,12,13,14 15 cycles in G

For i = 10, 12, 13, 14 and 15, we find exactly one graph with exactly *i* cycles. Let cycle C_i and cycle C_j have $t_{i,j}$ edges in common, where i = a, b, c, d, $j = b, c, d(i \neq j)$. Note that the value of $t_{i,j}$ may be zero for some graph. For instance, graph (a) has $t_{a,c} = t_{a,d} = t_{b,d} = 0$.

Note that graph (e) has the least value of b_4 . For each *i*-cycle graph G (i = 10, 12, 13, 14, 15) in Figure 9, we have

$$\begin{split} b_4(G) &= m(G,2) - 2s \geqslant \frac{n^2 + 5n + 6}{2} \\ &- (|C_a| + |C_b| + |C_c| + |C_d| - t_{a,b} - t_{a,c} - t_{a,d} - t_{b,c} - t_{b,d} - t_{c,d}) \\ &- 12 - 2i \\ &= \frac{n^2 + 5n + 6}{2} - (n+3) - 12 - 3i = \frac{1}{2}n^2 + \frac{3}{2}n + 12 - 2i \\ b_4(G) - b_4(G_n^1) &\geq \frac{1}{2}n^2 + \frac{3}{2}n - 42 - (5n - 35) = \frac{1}{2}(n - \frac{7}{2})^2 + 23 - 2i \\ &\geqslant \frac{1}{2}(n - \frac{7}{2})^2 - 42 \geqslant \frac{1}{2}(n - \frac{7}{2})^2 - \frac{105}{8} > 0(n \ge 9). \end{split}$$

By previous Lemma, we obtain the following proposition.

Proposition 2.3. If $G \in \mathscr{G}_n$ and $G \notin \mathscr{J}_n$, then $E(G) > E(G_n^1)$ for $n \ge 9$.

Proof. By Sachs theorem, for each graph in \mathscr{G}_n , we have $b_0 = 1$, $b_1 = 0$, $b_2 = n + 3$, for G_n^1 , $b_3(G_n^1) = 0$, $b_4(G_n^1) = 5n - 35$, $b_i(G_n^1) = 0$ for $i \ge 5$. By previous Lemma, $b_4(G) > b_4(G_n^1)$ for $n \ge 9$. By Lemma 2.1, $b_{2i}(G) \ge 0$ for $0 \le i \le \lfloor n/2 \rfloor$. Hence by Coulson integral formula (1.1),

$$E(G) = \frac{1}{\pi} \int_0^{+\infty} \frac{dx}{x^2} \ln \left[\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_{2i}(G) x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_{2i+1}(G) x^{2i+1} \right)^2 \right],$$

$$E(G_n^1) = \frac{1}{\pi} \int_0^{+\infty} \frac{dx}{x^2} \ln \left[\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_{2i}(G_n^1) x^{2i} \right)^2 \right].$$

From these formulas it is immediate that $E(G) > E(G_n^1)$.

Lemma 2.4. For each $G_j \in \mathscr{J}_n(j = 1, \dots, 8)$ (see Figure 2),

- (i) $E(G_n^0) < E(G_j)$ for $n \ge 9$.
- (ii) $E(G_n^1) < E(G_j)$ for $9 \le n \le 17$.

Proof. Note that for each graph $G \in \mathscr{G}_n$, $b_0(G) = 1, b_1(G) = 0, b_2(G) = n + 3, b_3(G) = 8$. So we need to find $b_i(i \ge 4)$ for each $G_k(k = 1, \dots, 8)$ only. For each G_j , we list the $b_i(G_j)$ as below.

$$\begin{array}{ll} b_4(G_1)=4n-6, & b_4(G_2)=4n-7, & b_4(G_3)=4n-8, & b_4(G_4)=4n-8, \\ b_5(G_1)=24, & b_5(G_2)=20, & b_5(G_3)=16, & b_5(G_4)=16, \\ b_6(G_1)=6n-26, & b_6(G_2)=5n-23, & b_6(G_3)=4n-20, & b_6(G_4)=3n-1, \\ b_7(G_1)=24, & b_7(G_2)=12, & b_7(G_4)=6, \\ b_8(G_1)=4n-27, & b_8(G_2)=2n-16, \\ b_9(G_1)=8. \end{array}$$

$$\begin{aligned} b_4(G_5) &= 4n - 9, & b_4(G_6) = 4n - 9, & b_4(G_7) = 4n - 15, & b_4(G_8) = 4n - 16, \\ b_5(G_5) &= 12, & b_5(G_6) = 2n - 2, & b_5(G_7) = 2n - 6, & b_5(G_8) = 8, \\ b_6(G_5) &= 3n - 15, & b_6(G_6) = 3n - 15, & b_6(G_7) = n - 5, & b_6(G_8) = 2n - 10, \\ & b_7(G_6) = 2n - 12, \end{aligned}$$

where each $b_i(G_j) = 0$ except the values listed above.

Proof of (i).

(A). Claim that $E(G_n^0) < E(G_1)$. Note that $b_3(G_n^0) = (-1)a_3 = -((-1)2^1 \times 4) = 8$, $b_4(G_n^0) = 4(n-6) + 12 - 6 = 4n - 18$, $b_l(G_n^0) = 0 (l \ge 5)$. By (1.1),

$$E(G_1) - E(G_n^0) = \frac{1}{\pi} \int_0^\infty \frac{dx}{x^2} \ln \frac{f(x)}{\left[1 + (n+3)x^2 + (4n-18)x^4\right]^2 + \left[8x^3\right]^2},$$

where
$$f(x) = [1 + (n+3)x^2 + (4n-6)x^4 + (6n-26)x^6 + (4n-27)x^8]^2$$

+ $[8x^3 + 24x^5 + 24x^7 + 8x^9]^2$.
Let
 $g(x) = [1 + (n+3)x^2 + (4n-6)x^4 + (6n-26)x^6 + (4n-27)x^8]^2 + [8x^3 + 24x^5 + 24x^7 + 8x^9]^2 - [1 + (n+3)x^2 + (4n-18)x^4]^2 - 64x^6$
 $= [2 + 2(n+3)x^2 + (8n-24)x^4 + (6n-26)x^6 + (4n-27)x^8] \times [12x^4 + (6n-26)x^6 + (4n-27)x^8] + (8x^3 + 24x^5 + 24x^7 + 8x^9)^2 - 64x^6$.

Note that (8n-24), (6n-26) and (4n-27) are positive if $n \ge 9$. So g(x) > 0 when $n \ge 9$ and x > 0. Hence $E(G_n^0) < E(G_1)$ for $n \ge 8$.

(B). Note that G_j contains at least 9 vertices and since $b_i(G_j) \ge b_i(G_n^0) \ge 0$ $(j = 1, \dots, 8)$ for $n \ge 9$, by using mimic proof of $E(G_n^0) < E(G_1)$, we could show $E(G_n^0) < E(G_j)(j = 2, \dots, 8)$ for $n \ge 9$. So we omit the proof here. Hence $E(G_n^0) < E(G_j)$ $(j = 1, \dots, 8)$ for $n \ge 9$.

Proof of (ii) . Let

$$E(G_j) - E(G_n^1) = \frac{1}{\pi} \int_0^\infty \frac{dx}{x^2} \ln \frac{f_j(x)}{f_g(x)},$$

where

$$\begin{split} f_1(x) &= \left[1+(n+3)x^2+(4n-6)x^4+(6n-26)x^6+(4n-27)x^8\right]^2 \\ &+ \left[8x^3+24x^5+24x^7+8x^9\right]^2, \\ f_2(x) &= \left[1+(n+3)x^2+(4n-7)x^4+(5n-23)x^6+(2n-16)x^8\right]^2 \\ &+ \left[8x^3+20x^5+12x^7\right]^2, \\ f_3(x) &= \left[1+(n+3)x^2+(4n-8)x^4+(4n-20)x^6\right]^2+\left[8x^3+16x^5\right]^2, \\ f_4(x) &= \left[1+(n+3)x^2+(4n-8)x^4+(3n-12)x^6\right]^2+\left[8x^3+14x^5+6x^7\right]^2, \\ f_5(x) &= \left[1+(n+3)x^2+(4n-9)x^4+(3n-15)x^6\right]^2+\left[8x^3+12x^5\right]^2, \\ f_6(x) &= \left[1+(n+3)x^2+(4n-9)x^4+(3n-15)x^6\right]^2 \\ &+ \left[8x^3+(2n-2)x^5+(2n-12)x^7\right]^2, \\ f_7(x) &= \left[1+(n+3)x^2+(4n-15)x^4+(n-5)x^6\right]^2+\left[8x^3+(2n-6)x^5\right]^2, \\ f_8(x) &= \left[1+(n+3)x^2+(4n-16)x^4+(2n-10)x^6\right]^2+\left[8x^3+8x^5\right]^2, \\ f_g(x) &= \left[1+(n+3)x^2+(5n-35)x^4\right]^2. \end{split}$$

Using case by case checking, it is easy to see that $f_j(x) - f_g(x) \ge 0$ $(j = 1, \dots, 8)$, where $9 \le n \le 18$ and x > 0. Hence $E(G_n^1) < E(G_j)$ for $9 \le n \le 18$.

Proposition 2.5. (i) $E(G_n^0) < E(G_n^1)$ for $n \ge 18$.

(ii) $E(G_n^1) < E(G_n^0)$ for $9 \le n \le 17$.

Proof. By Sachs theorem we can obtain $b_3(G_n^0) = 8, b_4(G_n^0) = 4n - 18$ and $b_i = 0$ for $i \ge 5$. Similarly, for G_n^1 , we obtain $b_3(G_n^1) = 0, b_4(G_n^1) = 5n - 35$ and $b_i(G_n^1) = 0$ for $i \ge 5$, and so by (1.1),

$$E(G_n^1) - E(G_n^0) = \frac{1}{\pi} \int_0^\infty \frac{dx}{x^2} \ln \frac{\left[1 + (n+3)x^2 + (5n-35)x^4\right]^2}{\left[1 + (n+3)x^2 + (4n-18)x^4\right]^2 + 64x^6}$$

To prove (i), let

$$f(x) = \begin{bmatrix} 1 + (n+3)x^2 + (5n-35)x^4 \end{bmatrix}^2 - \begin{bmatrix} 1 + (n+3)x^2 + (4n-18)x^4 \end{bmatrix}^2 -64x^6 = \begin{bmatrix} (2+2(n+3)x^2 + (9n-53)x^4) \end{bmatrix} \begin{bmatrix} (n-17)x^4 \end{bmatrix} - 64x^6.$$

It follows that f(x) > 0 for $n \ge 19$. Hence $E(G_n^0) < E(G_n^1)$ for $n \ge 19$. By direct calculation (rounded to four decimal places), we have $E(G_{18}^1) = 11.9720, E(G_{18}^0) = 11.9595$. Thus $E(G_n^0) < E(G_n^1)$ for $n \ge 18$.

To prove (ii), let

$$\begin{aligned} f^*(x) &= & \left[1+(n+3)x^2+(4n-18)x^4\right]^2+64x^6\\ &-\left[1+(n+3)x^2+(5n-35)x^4\right]^2\\ &= & \left[(2+2(n+3)x^2+(9n-53)x^4)\right]\left[(17-n)x^4\right]+64x^6. \end{aligned}$$

It follows that $f^*(x) \ge 0$ for $9 \le n \le 17$. Hence $E(G_n^1) < E(G_n^0)$ for $9 \le n \le 17$.

By combining Propositions 2.3 and 2.5 and Lemma 2.4, we obtain the following main results of this paper.

Theorem 2.6. (i) G_n^1 has minimal energy in \mathscr{G}_n for $9 \le n \le 17$. (ii) G_n^0 has minimal energy in \mathscr{G}_n for $n \ge 18$.

References

- D. Babić, I. Gutman, More lower bounds for the total π-electron energy of alternant hydrocarbons, MATCH Commun. Math. Comput. Chem. 32 (1995) 7-17.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.
- [3] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inform. Comput. Sci. 39 (1999) 984-996.

- [4] A. Chen, A. Chang, W.C. Shiu, Energy ordering of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 95-102.
- [5] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, 1980.
- [6] I. Gutman, Bounds for total π -electron energy, Chem. Phys. Lett. 24 (1974) 283-285.
- [7] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta. (Berl.) 45 (1977) 79-87.
- [8] I. Gutman, Bounds for total π-electron energy of polymethines, Chem. Phys. Lett. 50 (1977) 488-490.
- [9] I. Gutman, McClelland-type lower bound for total π-electron energy, J. Chem. Soc. Faraday Trans. 86 (1990) 3373-3375.
- [10] I. Gutman, Total π -electron energy of benzenoid hydrohabons, Topics Curr. Chem. 162 (1992) 29-63.
- [11] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
- [12] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
- [13] I. Gutman, A.V. Teodorovic, L. Nedeljkovic, Toplogical properties of benzenoid systems. Bounds and approximate formula for total π-electron energy, Theor. Chim. Acta 65 (1984) 23-31.
- [14] I. Gutman, L. Trinajstić, Graph theory and molecular orbitals. XV. The Hückel rule, J. Chem. Phys. 64 (1967) 4921-4925.
- [15] I. Gutman, L. Türker, J.R. Dias, Another upper bound for total π-electron energy of alternant hydrocarbons, MATCH Commun. Math. Comput. Chem. 19 (1986) 147-161.
- [16] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37.
- [17] Y. Hou, Uicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168.
- [18] Y. Hou, On trees with the least energy and a given size of matching, J. Syst. Sci. Math. Sci. 23 (2003) 491-494, (in Chinese).
- [19] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 83-90.
- [20] J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.

- [21] J.H. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs Combin. 19 (2003) 131-135.
- [22] J.H. Koolen, V. Moulton, I. Gutman, Improving the McCelland inequality for total π-electron energy, Chem. Phys. Lett. 320 (2000) 213-216.
- [23] F. Li, B. Zhou, Minimal energy of bipartite unicyclic graphs of a given bipartition, MATCH Commun. Math. Comput. Chem. 54 (2005) 379-388.
- [24] N.N. Li, S.C. Li, On extremal energies of trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 291-314.
- [25] N.N. Li, S.C. Li, Minimal energies on two classes of trees, preprint.
- [26] S.C. Li, X. Li and Z. Zhu, On tricycle graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59 (2008)397-419.
- [27] W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54 (2005) 363-378.
- [28] H.Q. Liu, M. Lu, F. Tian, Some upper bounds for the energy of graphs, J. Math. Chem., to appear.
- [29] A.J. Schwenk, Computing the characteristic polynomial of a graph, Graphs and Combinatorics, in: R.A. Bari, F. Harary (Eds.), Lecture Notes in Mathematics, vol. 406, Springer-Verlag, New York, 1974, pp. 153-173.
- [30] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra Appl. 414 (2006) 378-382.
- [31] W.G. Yan, L.Z. Ye, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046-1052.
- [32] W.G. Yan, L.Z. Ye, On the maximal energy and the Hosoya index of a type of trees with many pendent vertices, MATCH Commun. Math. Comput. Chem. 53 (2005) 449-459.
- [33] A.M. Yu, M. Lu, F. Tian, New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 441-448.
- [34] A.M. Yu, X.Z. Lv, Minimum energy on trees with k pendent vertices, Linear Algebra Appl. 414 (2006) 625-633.
- [35] A.M. Yu, X.Z. Lv, The Merrifield-Simmons Index and Hosoya Index of trees with k pendent vertices, J. Math. Chem. 41 (2007), no. 1, 33–43.
- [36] F.J. Zhang, H.E. Li, On acyclic conjugated molecules with minimal energies, Discr. Appl. Math. 92 (1999) 71-84.
- [37] F.J. Zhang, H.E. Li, On maximal energy ordering of acyclic conjugated molecules, in: P. Hansen, P. Fowler, M. Zheng (Eds.), Discrete Mathematical Chemistry, Am. Math. Soc., Providence, 2000, pp. 385-392.

- [39] F.J. Zhang, Z.M. Li, L.S. Wang, Hexagonal chains with maximal total πelectron energy, Chem. Phys. Lett. 337 (2001) 131-137.
- [40] J.B. Zhang, B, Zhou, On bicyclic graphs with minimal energies, J. Math. Chem. 37 (2005) 423-431.
- [41] B. Zhou and F. Li, On minimal energies of trees of a prescribled diameter, J. Math. Chem. 39 (2006) 465-473.
- [42] B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004) 111-118.
- [43] B. Zhou, Lower bounds for energy of quadrangle-free graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 91-94.
- [44] I. Gutman, S. Radenković, N.N. Li, and S.C. Li, Extremal energy trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 315-320.
- [45] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second maximal, and third maximal energy, MATCH Commun. Math. Comput. Chem. 58 (2007) 85-92.
- [46] H. Hua, On minimal energy of unicyclic graphs with prescribed girth and pendent vertices, MATCH Commun. Math. Comput. Chem. 57 (2007) 351-361.
- [47] H. Hua, Bipartite unicyclic graphs with large energy, MATCH Commun. Math. Comput. Chem. 58 (2007) 57-83.
- [48] L. Ye, X. Yuan, On the minimal energy of trees with a given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 57 (2007) 193-201.