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Abstract. The energy of a graph is defined as the sum of the absolute values

of all the eigenvalues of the graph. Let Gn be the class of tetracyclic graphs

G on n vertices and containing no disjoint odd cycles Cp, Cq of lengths p and

q with p + q ≡ 2 (mod 4). In this paper, we obtain the minimal value on the

energies of the graphs in Gn and determine the corresponding graphs.

1. Introduction

Let G be a simple graph with n vertices. Let A(G) be the adjacency matrix

of G. The characteristic polynomial of G is

φ(G, λ) = det(λI − A) =
n∑

i=0

aiλ
n−i,
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Sachs theorem states that [12] for i > 1,

ai =
∑
S∈Li

(−1)p(S)2c(S),

where Li denotes the set of Sachs graphs of G with i vertices, that is, the

graphs in which every component is either a K2 or a cycle, p(S) is the number

of components of S and c(S) is the number of cycles contained in S. In addition

a0 = 1. The roots λ1, . . . , λn of φ(G, λ) are called the eigenvalues of G. Since

A(G) is symmetric, all eigenvalues of G are real. Let Cn denote a cycle of

length n. Other undefined notation may refer to [2, 12].

The energy of G, denoted by E(G), is then defined as E(G) =
∑n

i=1 |λi|.
Since the energy of a graph can be used to approximate the total π-electron

energy of the molecule (e.g., see [11, 12]), there are numerous results on E(G)

(e.g., see [1,3,4,5-11,13-27,29-33,35-42]), including graphs with extremal ener-

gies [3,7,17,18,20,21,23-26,30,31,33,35-40,43-47].

It is known that E(G) can be expressed as the Coulson integral formula

[12]
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(1.1)
Let b2i(G) = (−1)ia2i and b2i+1(G) = (−1)ia2i+1 for 0 6 i 6 bn

2
c. Clearly,

b0(G) = 1 and b2(G) equals the number of edges of G. Thus, by (1.1), E(G)
is a strictly monotonically increasing function of bi(G), i = 1, . . . , bn/2c.

Many results on the minimal energy have been obtained for various classes
of graphs. In [3], Caporossi et al. gave the following conjecture.

Conjecture 1.1. Connected graphs G with n > 6 vertices, n−1 6 e 6 2(n−2)
edges and minimum energy are star with e−n+1 additional edges all connected
to the same vertex for e 6 n+ bn−7

2
c, and bipartite graphs with two vertices on

one side, one of which is connected to all vertices on the other side otherwise.

This conjecture is true when e = n− 1, 2(n− 2) [3, Theorem 1] and e = n

for n > 6 [17]. When e = n+1 and e = n+2 the conjecture has been discussed

[40, 26]. In this paper, we consider the above conjecture for the case e = n+3

for n > 9.
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Figure 1: Graphs G0
n and G1

n

A connected simple graph with n vertices and e = n + 3 edges contains

four elementary cycles and called tetracyclic. Let Gn be the class of tetracyclic

graphs G with n vertices and containing no disjoint two odd cycles Cp, Cq with

p + q ≡ 2 (mod 4). Let G0
n be the graph formed by joining 4 pendent vertices

to a vertex of degree one of the K1,n−1 (e.g., see Figure 1), and G1
n be the

graph formed by joining n− 5 pendent vertices to a vertex of degree 5 of the

complete bipartite graph K2,5 (e.g., see Figure 1). In this paper, for graphs in

Gn, we show that G0
n has minimal energy if n > 18 and G1

n has the minimal

energy if 9 6 n 6 17.

The following two lemmas are needed in our paper.

Lemma 1.2 ([40]). Let G be a graph with n vertices and let uv be a pendent

edge of G with pendent vertex v. Then for 2 6 i 6 n, bi(G) = bi(G − v) +

bi−2(G− u− v).

Lemma 1.3 ([40]). Let G be any graph. Then b4(G) = m(G, 2) − 2s, where

m(G, 2) is the number of 2-matchings of G and s is the number of quadrangles

in G.

2. Lemmas and main results

In this section, we shall determine the graphs in Gn (n > 9) having the minimal

energy.
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We are, at first, to show E(G) > E(G1
n) for any G ∈ Gn with G /∈ Jn;

and proceed to show that E(G0
n) < E(G1

n)(n ≥ 18), and E(G1
n) < E(G0

n)(9 ≤
n ≤ 17), where each graph in Jn is as shown in Figure 2. The following fact

is immediate.

Fact 1. For any G ∈ Gn, there are at most four vertex-disjoint cycles contained

in G.

Lemma 2.1. If G ∈ Gn, then b2i > 0 for 0 6 i 6 bn
2
c.

Proof. Let Li be the set of Sachs graphs of G with i vertices. By Sachs theorem,

b2i =
∑

S∈L2i

(−1)p(S)+i2c(S) =
∑

S∈L1
2i

(−1)p(S)+i +
∑

S∈L2
2i

(−1)p(S)+i2c(S),

where L1
2i is the set of graphs with no cycles in L2i, and L2

2i = L2i \ L1
2i.

If every S in L2i has no cycle, then p(S) = i, and b2i(G) =
∑

S∈L2i
1 > 0.

Otherwise, there exists S ′ in L2i such that S ′ contains cycles. If S ′ has no odd

cycles, then b2i(G) > 0 [14]; If S ′ contains odd cycles, together with Fact 1, S ′

must contain two or four vertex-disjoint odd cycles.

Case 1. If S ′ contains two odd cycles, say Ck, Cl, we have k+l ≡ 0 (mod 4)

since G ∈ Gn. If S ′ has no cycle except Ck and Cl, then

p(S ′) + i = 2 +
2i− (k + l)

2
+ i ≡ 0 (mod 2).

If S ′ contains one more cycle Cm besides Ck, Cl, then Cm must be even. Thus

its corresponding term in b2i is (−1)p(S′)+i23. On the other hand, since Cm is

an even cycle, it has exactly two perfect matching, say M1,M2, therefore there

exist Sachs graphs S ′′1 , S ′′2 in L2i such that S ′′1 := (S ′ \Cm)∪Ck ∪Cl ∪M1 and

S ′′2 := (S ′ \Cm)∪Ck ∪Cl ∪M2, respectively. Their corresponding terms in b2i

are

(−1)p(S′′1 )+i · 22 + (−1)p(S′′2 )+i · 22,

where p(S ′′1 ) + i = p(S ′′2 ) + i = 2 + 2i−(k+l)
2

+ i ≡ 0 (mod 2). It is easy to see

|L1
2i| > 2|L2

2i|, and so

b2i >
Cm⊆S′∈L2

2i∑
M1,M2⊆Cm

[
(−1)p(S′′1 )+i · 22 + (−1)p(S′′2 )+i · 22 + (−1)p(S′)+i · 23

]
≥ 0,
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where S ′′1 = (S ′ \ Cm) ∪ Ck ∪ Cl ∪M1 and S ′′2 = (S ′ \ Cm) ∪ Ck ∪ Cl ∪M2.

Case 2. If S ′ contains four odd cycles, say Cli(i = 1, 2, 3, 4), then Cli must be

pairwise vertex-disjoint. We have lp + lq ≡ 0 (mod 4) (p, q = 1, 2, 3, 4, p 6= q).

Note that S ′ has no five pairwise vertex-disjoint cycles. Then

p(S ′) + i = 4 +
2i− (l1 + l2 + l3 + l4)

2
+ i ≡ 0 (mod 2).

Hence b2i ≥ 0.

In Gn, there exist eight special graphs, Gi(i = 1, · · · , 8); see Figure 2, where

G1 (G2) has n− 9 (n− 8, repectively) pendent vertices, each of G3 and G4 has

n−7 pendent vertices, each of G5 and G6 has n−6 pendent vertices, and each

of G7 and G8 has n− 5 pendent vertices.

1G

...

2G

.  .  .

3G 4G 5G

.  .  . .  .  . .  .  . .  .  .

6G

.  .  .

7G

.  .  .

8G

Figure 2: Graphs G1, G2, G3, G4, G5, G6, G7 and G8.

Let Jn = {G0
n, G1

n, G1, G2, G3, G4, G5, G6, G7, G8} (see Figure 1 and Figure

2). It is straightforward to check that graph G ∈ Gn has at least 4 cycles and

at most 15 cycles but has no 9 cycles.

Let m(G, 2) denote the number of 2-matchings of a graph G. Obviously,

m(Pn, 2) = (n− 2)(n− 3)/2 and m(Cn, 2) = n(n− 3)/2.

Lemma 2.2. If G ∈ Gn and G /∈ Jn, then b4(G) > b4(G
1
n) for n > 9.

Proof. First we assume that G contains pendent edges, let uv be a pendent
edge of G with pendent vertex v. By Lemma 1.2,

b4(G) = b4(G− v) + b2(G− u− v), b4(G
1
n) = b4(G

1
n−1) + b2(K1,5).

Note that G−v has exactly four cycles on n−1 vertices and G /∈ Jn, therefore
G − v /∈ Jn−1, by induction hypothesis, b4(G − v) > b4(G

1
n−1). It is easy to

see G− u− v /∈ Jn−2, we have b2(G− u− v) > b2(K1,5) = 5. It is immediate
that b4(G) > b4(G

1
n).
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Figure 3: 15 possible cases for the arrangement of four cycles in G.

Second we assume that G contains no pendent edges. Please note that G
has at least 4 cycles and at most 15 cycles. So we consider the following several
cases.

Case 1. G contains exactly four cycles.
Without loss of generality, let four cycles be Ca, Cb, Cc and Cd. These four

cycles must be edge-disjoint; see Figure 3.
Note that any two adjacent edges cannot be a 2-match.

Subcase 1-1 Graphs (a), (b), (d) and (g) in Figure 3.
For the graph G being (g) in Figure 3, assume that there is a path Pij

connecting Ci and Cj and by Lemma 1.3,

b4(G) = m(G, 2)− 2s > m(G, 2)− 8

=
(n + 3)(n + 2)

2
− (

∑
|Ci|+

∑
ij

max(|Pij | − 1, 0))− 12− 8

> n2 + 5n + 6

2
− (n + 3)− 20 =

n2

2
+

3n

2
− 20.

b4(G)− b4(G
1
n) > 1

2
n2 +

1

2
n− 18− (5n− 35) =

1

2
n2 − 7

2
n + 15 > 0.

Graph (a)(graph (b),(d) and (e), respectively) is a special case of graph (g)
with |Pij | = 0 (|Pcd

| = 0, |Pbc| = 0 and |Pbc| = |Pcd
| = 0, respectively). To

avoid repetition, we omit the proof here.

Subcase 1-2 Graphs (c) and (h).
For the graph G being (h) in Figure 3, assume that there is a path Pk
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connecting Ca, Cb and Cc, Cd and by Lemma 1.3,

b4(G) > m(G, 2)− 8 =
(n + 3)(n + 2)

2

−(
∑

(|Ci|) + max(|Pk| − 1, 0))− 16− 8

> n2 + 5n + 6

2
− (n + 3)− 24 =

n2

2
+

3n

2
− 24.

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 24− (5n− 35) =

1

2
n2 − 7

2
n + 11 > 0.

Graph (c) is a special case of graph (h) with |Pk| = 0, to avoid repetition, we
omit the proof here.

Subcase 1-3 Graphs (i), (j), (k) and (l).
For the graph G being (l) in Figure 3, assume that there is a path Pk

connecting Ca and Cd, another path Pr connecting Ca(Cb) and Cc. We have

b4(G) > (n + 3)(n + 2)

2

−(
∑

(|Ci|) + max(|Pk| − 1, 0) + max(|Pr| − 1, 0))− 14− 8

> n2 + 5n + 6

2
− (n + 3)− 22 =

n2

2
+

3n

2
− 22.

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 22− (5n− 35) =

1

2
n2 − 7

2
n + 13 > 0.

Discussion for the value of b4 of Graph (i),(j) and (k) is similar to that of graph
(l) and b4 is no less than the value of b4 of graph (l), so we omit the proof here.

Subcase 1-4 Graphs (f) and (m).
For the graph G being (m) in Figure 3, assume that there is a path Pk

connecting Ca, Cb and Cc, another path Pr connecting Cc and Cd. We have

b4(G) > (n + 3)(n + 2)

2

−(
∑

(|Ci|) + max(|Pk| − 1, 0) + max(|Pr| − 1, 0))− 14− 8

> n2 + 5n + 6

2
− (n + 3)− 22 =

n2

2
+

3n

2
− 22.

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 22− (5n− 35) =

1

2
n2 − 7

2
n + 13 > 0.

Graph (f) is a special case of graph (m) with |Pr| = 0, so we omit its proof.

Subcase 1-5 Graphs (n) and (o).
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For the graph G being (o) in Figure 3, assume that there is a path Pai

connecting Ca and Ci(i = b, c, d) . We have

b4(G) > (n + 3)(n + 2)

2
− (

∑
|Ci|+ max(|Pai

| − 1, 0))− 12− 8

> n2 + 5n + 6

2
− (n + 3)− 22 =

n2

2
+

3n

2
− 22

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 22− (5n− 35) =

1

2
n2 − 7

2
n + 13 > 0.

Graph (n) is a special case of graph (o) with |Pai
| = 0, so we omit its proof.

Hence, we complete discussion of case 1.
Case 2. G ∈ Gn with G /∈ Jn has exactly five cycles. Since G has exactly

five cycles, by Fact 1, there are exactly two cycles, say Ca and Cb, having
t (t > 1) common edges and each of Ca, Cb has no common edges with each of
rest two cycles Cc, Cd, and Cc and Cd are edge-disjoint (see graphs in Figure
4).

Subcase 2-1 Graphs (a), (i) and (f).
We consider graph (i) in Figure 4 first.
Note that any two adjacent edges cannot be a 2-match. For the graph G

being (i) in Figure 4, where Pk connects Ca and Cc(Cd), we have

b4(G) > (n + 3)(n + 2)

2

−((
∑

|Ci|)− t + max(|Pk| − 1, 0)))− 14− 10

=
(n2 + 5n + 6)

2
− (n + 3)− 24 =

1

2
n2 +

3

2
n− 24.

b4(G)− b4(G
1
n) =

1

2
n2 − 7

2
n + 11 > 0.

Graph (a) (graph (f), respectively) is a special case of graph (i) with |Pk| =
0 (Pk share a common vertex with both Ca and Cb, respectively).

Subcase 2-2 Graphs (c),(d), (e) and (j).
For the graph G being (d) in Figure 4, where Pk connects Ca(Cb) and Cc,

and Pr connects Cc and Cd, we have

b4(G) > (n + 3)(n + 2)

2
− ((

∑
|Ci|)− t + max(|Pk| − 1, 0)) +

max(|Pr| − 1, 0))− 13− 10

> (n2 + 5n + 6)

2
− (n + 3)− 23 =

1

2
n2 +

3

2
n− 23.

b4(G)− b4(G
1
n) =

1

2
n2 − 7

2
n + 12 > 0.

Graph (e) is a special case of graph (d) with |Pr| = 0. Discussion of graph
(e) is similar to that of graph (d) and graph (j) is a special case of graph (e).
So we omit the proof here.
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Figure 4: 22 possible cases for the arrangement of five cycles in G

Subcase 2-3 Graphs (b), (h), (k),(m),(n) and (o).
For the graph G being (m) in Figure 4, where Pk connects Ca and Cc, and

Pr connects Ca and Cd. we have

b4(G) > m(G, 2)− 10

=
(n + 3)(n + 2)

2
− ((

∑
|Ci|)− t + max(|Pk| − 1, 0)) +

max(|Pr| − 1, 0))− 12− 10

> (n2 + 5n + 6)

2
− (n + 3)− 22 =

1

2
n2 +

3

2
n− 22.

b4(G)− b4(G
1
n) > 1

2
n2 − 7

2
n + 13 > 0.

Graph (n) in Figure 4 is a special case of graph (m) with Pk sharing a
common vertex with both Ca and Cb. We have b4(G)−b4(G

1
n) > 1

2
n2− 7

2
n+12 >

0. Similarly, for graph (o), b4(G) − b4(G
1
n) > 1

2
n2 − 7

2
n + 11 > 0. Graph (k)

(graph (h) and graph (b), respectively) is a special case of graph (o) (graph (n),
respectively) with |Pk| = |Pr| = 1 (|Pr| = 1 and |Pk| = |Pr| = 1, respectively).
Hence, we omit the proof here.
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Subcase 2-4 Graphs (g), (p), (q) and (s).
For the graph G being (p) in Figure 4, where Pk connects Ca and Cc, and

Pr connects Ca and Cd with Pk, Pr sharing an end vertex, we have

b4(G) > m(G, 2)− 10

=
(n + 3)(n + 2)

2
− ((

∑
|Ci|)− t + max(|Pk| − 1, 0)) +

max(|Pr| − 1, 0))− 12− 10

> (n2 + 5n + 6)

2
− (n + 3)− 22 =

1

2
n2 +

3

2
n− 22.

b4(G)− b4(G
1
n) > 1

2
n2 − 7

2
n + 13 > 0.

Graph (s)(graph (q), respectively) is a special case of graph (p) with Pr = 1
(both Pr, Pk sharing a common vertex with Ca(Cb), respectively). Graph (g) is
a special case of (q). For each graph G listed above, we have b4(G)− b4(G

1
n) >

1
2
n2 − 7

2
n + 11 > 0.

Subcase 2-5 Graphs (r), (u), (v) and (t).
For the graph G being (r) in Figure 4, where Pk connects Ca and Cc, Cd

and Ca share a common vertex, we have

b4(G) > (n + 3)(n + 2)

2

−((
∑

|Ci|)− t + max(|Pk| − 1, 0))− 12− 10

> (n2 + 5n + 6)

2
− (n + 3)− 22 =

1

2
n2 +

3

2
n− 22.

b4(G)− b4(G
1
n) > 1

2
n2 − 7

2
n + 13 > 0.

Graph (t)(graph (v), respectively) is a special case of graph (r) and graph
(u) is a special case of (t). For each graph G listed above, we have b4(G) −
b4(G

1
n) > 1

2
n2 − 7

2
n + 12 > 0. Since the calculation is similar, it is omitted

here. Thus we complete the discussion of case 2.
Case 3. G ∈ Gn has exactly six cycles.
All possible graphs with six cycles are listed in Figure 5. Without loss

of generality, we consider graph G being (a), (e) and (f) in Figure 5 only.
For graph (a), it has two pairs of cycles {Ca, Cb} and {Cc, Cd} sharing some
common edges. Let Ca and Cb share t1 common edges, Cc and Cd share t2
edges and there is a path Pk connecting Cb and Cd (see Figure 5 (a)).

Since G has no pendent vertex, then

b4(G) = m(G, 2)− 2s > m(G, 2)− 12

≥ n2 + 5n + 6

2
− (|Ca|+ |Cb|+ |Cc|+ |Cd| − t1 − t2 +

max(|Pk| − 1, 0))− 12− 12

≥ (n + 3)(n + 2)

2
− (n + 3)− 12− 12 =

1

2
n2 +

3

2
n− 24.
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 . . .
 . . .  . . .

)(a )(b )(c

)(d )(e )(f

Figure 5: 6 possible cases for the arrangement of six cycles in G

b4(G)− b4(G
1
n) =

1

2
n2 +

3

2
n− 24− (5n− 35) =

n2

2
− 7n

2
+ 11 > 0.

Graph (d) ((b), (c) respectively) is a special case of (a) with |Pk| = 1 (one
of end vertices of Pk is a common vertex of Cc and Cd, two end vertices of Pk

sharing a common vertex with Ca(Cb) and Cc(Cd), respectively), we omit the
discussion here. For graph (e), b4(G)− b4(G

1
n) > 1

2
n2 + 3

2
n− 26− (5n− 35) =

n2

2
− 7n

2
+ 9 > 0. For graph (f), we have b4(G) − b4(G

1
n) > 1

2
n2 + 3

2
n − 28 −

(5n− 35) = n2

2
− 7n

2
+ 7 > 0.

Case 4. G ∈ Gn has exactly seven cycles.
Some configurations of graphs G containing seven cycles are exhibited in

Figure 6.

)(a )(b )(c )(d

)(h )(i

 . . .  . . .

)(g
 . . .

)(e )(f

)(j

 . . .

)(k

 . . .

)(l

 . . .

Figure 6: 12 possible arrangements of seven cycles in G

Subcase (4-1) Graphs (a) and (g) in Figure 6.
We consider graph (g) in Figure 6. Let Ca, Cb and Cc have t edges in

common. There is a path Pk connecting Ca and Cd.

b4(G) = m(G, 2)− 2s > m(G, 2)− 14 ≥ n2 + 5n + 6

2
−(|Ca|+ |Cb|+ |Cc|+ |Cd| − t1 − t2 + max(|Pk| − 1, 0))− 14− 14

=
n2 + 5n + 6

2
− (n + 3)− 14− 14

=
1

2
n2 +

3

2
n− 28.
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b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 28− (5n− 35) =

1

2
n2 − 7

2
n + 7 > 0.

Clearly graph (a) is a special case of (g) with |Pk| = 1.

Subcase (4-2) Graphs (b),(f), (h) and (l) in Figure 6.
We consider a graph (l). Let Ca and Cb have t1 common edges, Ca and Cc

have t common edges in common. Pk connects Ca and Cd with one end vertex
joining Ca and Cb.

b4(G) ≥ n2 + 5n + 6
2

−(|Ca|+ |Cb|+ |Cc|+ |Cd| − t1 − t2 + max(|Pk| − 1, 0))
−13− 14

=
n2 + 5n + 6

2
− (n + 3)− 13− 14 =

1
2
n2 +

3
2
n− 27.

b4(G)− b4(G1
n) > 1

2
n2 +

3
2
n− 28− (5n− 35) =

1
2
n2 − 7

2
n + 8 > 0.

Clearly graph (f) (graph (h) respectively) is a special case of (l) with |Pk| = 1 (Ca, Cb

and Cc sharing one vertex, respectively). While graph (b) is a special case of (h)
with |Pk| = 1.

Subcase (4-3) Graphs (c),(d),(e), (k), (i) and (j).
Calculation the value of b4 for each graph listed in Subcase (4-3) is similar

as in Subcase (4-2), so we omit it here. And we have b4 − b4(G
1
n) > 0.

Case 5. G ∈ Gn has exactly eight cycles.
The four configurations of graphs G containing eight cycles exhibited in

Figure 7.

)(a )(b )(c )(d

 . . .

 . . .

Figure 7: 4 possible arrangements of eight cycles in G

Without loss of generality, we consider a graph G in Figure 7 (c). Let Ca

and Cb have t1 edges in common, Ca and Cc have t2 edges in common, Cb and
Cc have t3 edges in common. A path Pk connects Ca and Cd.

b4(G) = m(G, 2)− 2s > m(G, 2)− 16

≥ n2 + 5n + 6

2
− (|Ca|+ |Cb|+ |Cc|+ |Cd| − t1 − t2 − t3

+ max(|Pk| − 1, 0))− 12− 16

=
1

2
n2 +

3

2
n− 28.

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 28− (5n− 35)

=
1

2
n2 − 7

2
n + 7 > 0.
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Similarly, for graph (d), we have b4(G)− b4(G
1
n) > 1

2
n2 + 3

2
n−28− (5n−35) =

1
2
n2 − 7

2
n + 6 > 0.

Note that graph (a)(graph (b), respectively) is a special case of graph
(c)(graph (d), respectively).

Case 6. G ∈ Gn contains exactly 11 cycles.
Note that there is no 9-cycle graphs in Gn. Without loss of generality and

to avoid the repetition, we are to verify one graph (a) in Figure 8.

)(a )(b )(c )(e)(d

Figure 8: 7 possible cases for the arrangement of 11 cycles in G

Note that there is no pendent edges in G, without loss of generality, we
consider the graph G in Figure 8 (a). Let Ci and Cj have ti,j (i, j = 1, 2, 3, i 6=
j) edges in common, then

b4(G) = m(G, 2)− 2s > m(G, 2)− 22

≥ n2 + 5n + 6

2
− (|Ca|+ |Cb|+ |Cc|+ |Cd| − ta,b − ta,c − ta,d)− 12− 22

=
n2 + 5n + 6

2
− (n + 3)− 12− 22 =

1

2
n2 +

3

2
n− 34.

b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 34− (5n− 35) =

1

2
n2 − 7

2
n + 1 > 0(n ≥ 8).

Graph (b) is a special case of (a). We have

b4(G) = m(G, 2)− 2s > m(G, 2)− 22

≥ n2 + 5n + 6

2
− (|Ca|+ |Cb|+ |Cc|+ |Cd| − ta,b − ta,c − ta,d)− 13− 22

=
n2 + 5n + 6

2
− (n + 3)− 13− 22 =

1

2
n2 +

3

2
n− 35.

b4(G)− b4(G
1
n) ≥ 1

2
n2 +

3

2
n− 34− (5n− 35) =

1

2
n2 − 7

2
n > 0(n ≥ 8).

For graph (c) in Figure 8,

b4(G) = m(G, 2)− 2s > m(G, 2)− 22

≥ n2 + 5n + 6

2
−(|Ca|+ |Cb|+ |Cc|+ |Cd| − ta,b − ta,c − ta,d − tc,d)− 12− 22

=
1

2
n2 +

3

2
n− 34.
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b4(G)− b4(G
1
n) > 1

2
n2 +

3

2
n− 34− (5n− 35) =

1

2
n2 − 7

2
n + 1 > 0(n ≥ 8).

Graph (d) is a special case with Cb and Cc sharing a common vertex on
Ca.

For graph (e), we have

b4(G) ≥ n2 + 5n + 6

2
− (

∑
(|Ci|)− ta,b − ta,c − ta,d − tb,d − t(c, d))− 12− 22

b4(G)− b4(G
1
n) ≥ 1

2
n2 +

3

2
n− 34− (5n− 35) =

1

2
n2 − 7

2
n + 1 > 0(n ≥ 8).

Case 7. G ∈ Gn contains exactly i (i = 10, 12, 13, 14, 15) cycles.

)(a )(b )(c )(d )(e

Figure 9: Some possible arrangements of 10,12,13,14 15 cycles in G

For i = 10, 12, 13, 14 and 15, we find exactly one graph with exactly i
cycles. Let cycle Ci and cycle Cj have ti,j edges in common, where i = a, b, c, d,
j = b, c, d(i 6= j). Note that the value of ti,j may be zero for some graph. For
instance, graph (a) has ta,c = ta,d = tb,d = 0.

Note that graph (e) has the least value of b4. For each i-cycle graph G
(i = 10, 12, 13, 14, 15) in Figure 9, we have

b4(G) = m(G, 2)− 2s > n2 + 5n + 6

2
− (|Ca|+ |Cb|+ |Cc|+ |Cd| − ta,b − ta,c − ta,d − tb,c − tb,d − tc,d)

−12− 2i

=
n2 + 5n + 6

2
− (n + 3)− 12− 3i =

1

2
n2 +

3

2
n + 12− 2i

b4(G)− b4(G
1
n) ≥ 1

2
n2 +

3

2
n− 42− (5n− 35) =

1

2
(n− 7

2
)2 + 23− 2i

> 1

2
(n− 7

2
)2 − 42 > 1

2
(n− 7

2
)2 − 105

8
> 0(n ≥ 9).

By previous Lemma, we obtain the following proposition.

Proposition 2.3. If G ∈ Gnand G /∈ Jn, then E(G) > E(G1
n) for n > 9.
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Proof. By Sachs theorem, for each graph in Gn, we have b0 = 1, b1 = 0, b2 =
n + 3, for G1

n, b3(G
1
n) = 0, b4(G

1
n) = 5n − 35, bi(G

1
n) = 0 for i > 5. By

previous Lemma, b4(G) > b4(G
1
n) for n > 9. By Lemma 2.1, b2i(G) > 0 for

0 6 i 6 bn/2c. Hence by Coulson integral formula (1.1),

E(G) =
1

π

∫ +∞

0

dx

x2
ln






bn

2
c∑

i=0

b2i(G)x2i




2

+



bn

2
c∑

i=0

b2i+1(G)x2i+1




2
 ,

E(G1
n) =

1

π

∫ +∞

0

dx

x2
ln






bn

2
c∑

i=0

b2i(G
1
n)x2i




2
 .

From these formulas it is immediate that E(G) > E(G1
n).

Lemma 2.4. For each Gj ∈ Jn(j = 1, · · · , 8) (see Figure 2),

(i) E(G0
n) < E(Gj) for n > 9.

(ii) E(G1
n) < E(Gj) for 9 6 n 6 17.

Proof. Note that for each graph G ∈ Gn, b0(G) = 1, b1(G) = 0, b2(G) =

n + 3, b3(G) = 8. So we need to find bi(i ≥ 4) for each Gk(k = 1, · · · , 8)

only. For each Gj, we list the bi(Gj) as below.

b4(G1) = 4n− 6, b4(G2) = 4n− 7, b4(G3) = 4n− 8, b4(G4) = 4n− 8,
b5(G1) = 24, b5(G2) = 20, b5(G3) = 16, b5(G4) = 16,
b6(G1) = 6n− 26, b6(G2) = 5n− 23, b6(G3) = 4n− 20, b6(G4) = 3n− 1,
b7(G1) = 24, b7(G2) = 12, b7(G4) = 6,
b8(G1) = 4n− 27, b8(G2) = 2n− 16,
b9(G1) = 8.

b4(G5) = 4n− 9, b4(G6) = 4n− 9, b4(G7) = 4n− 15, b4(G8) = 4n− 16,
b5(G5) = 12, b5(G6) = 2n− 2, b5(G7) = 2n− 6, b5(G8) = 8,
b6(G5) = 3n− 15, b6(G6) = 3n− 15, b6(G7) = n− 5, b6(G8) = 2n− 10,

b7(G6) = 2n− 12,

where each bi(Gj) = 0 except the values listed above.

Proof of (i) .

(A). Claim that E(G0
n) < E(G1).

Note that b3(G
0
n) = (−1)a3 = −((−1)21× 4) = 8, b4(G

0
n) = 4(n− 6)+12−

6 = 4n− 18, bl(G
0
n) = 0(l ≥ 5). By (1.1),

E(G1)− E(G0
n) =

1

π

∫ ∞

0

dx

x2
ln

f(x)[
1 + (n + 3)x2 + (4n− 18)x4

]2
+

[
8x3

]2 ,
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where f(x) =
[
1 + (n + 3)x2 + (4n − 6)x4 + (6n − 26)x6 + (4n − 27)x8

]2

+
[
8x3 + 24x5 + 24x7 + 8x9

]2
.

Let

g(x) =
[
1 + (n + 3)x2 + (4n− 6)x4 + (6n− 26)x6 + (4n− 27)x8

]2
+

[
8x3

+24x5 + 24x7 + 8x9
]2 − [

1 + (n + 3)x2 + (4n− 18)x4
]2 − 64x6

=
[
2 + 2(n + 3)x2 + (8n− 24)x4 + (6n− 26)x6 + (4n− 27)x8

]

×[12x4 + (6n− 26)x6 + (4n− 27)x8
]

+
(
8x3 + 24x5 + 24x7 + 8x9

)2 − 64x6.

Note that (8n− 24), (6n− 26) and (4n− 27) are positive if n ≥ 9. So g(x) > 0
when n > 9 and x > 0. Hence E(G0

n) < E(G1) for n > 8.
(B). Note that Gj contains at least 9 vertices and since bi(Gj) ≥ bi(G

0
n) ≥ 0

(j = 1, · · · , 8) for n ≥ 9, by using mimic proof of E(G0
n) < E(G1), we could

show E(G0
n) < E(Gj)(j = 2, · · · , 8) for n ≥ 9. So we omit the proof here.

Hence E(G0
n) < E(Gj) (j = 1, · · · , 8) for n > 9.

Proof of (ii) . Let

E(Gj)− E(G1
n) =

1

π

∫ ∞

0

dx

x2
ln

fj(x)

fg(x)
,

where

f1(x) =
[
1 + (n + 3)x2 + (4n− 6)x4 + (6n− 26)x6 + (4n− 27)x8

]2

+
[
8x3 + 24x5 + 24x7 + 8x9

]2
,

f2(x) =
[
1 + (n + 3)x2 + (4n− 7)x4 + (5n− 23)x6 + (2n− 16)x8

]2

+
[
8x3 + 20x5 + 12x7

]2
,

f3(x) =
[
1 + (n + 3)x2 + (4n− 8)x4 + (4n− 20)x6

]2
+

[
8x3 + 16x5

]2
,

f4(x) =
[
1 + (n + 3)x2 + (4n− 8)x4 + (3n− 12)x6

]2
+

[
8x3 + 14x5 + 6x7

]2
,

f5(x) =
[
1 + (n + 3)x2 + (4n− 9)x4 + (3n− 15)x6

]2
+

[
8x3 + 12x5

]2
,

f6(x) =
[
1 + (n + 3)x2 + (4n− 9)x4 + (3n− 15)x6

]2

+
[
8x3 + (2n− 2)x5 + (2n− 12)x7

]2
,

f7(x) =
[
1 + (n + 3)x2 + (4n− 15)x4 + (n− 5)x6

]2
+

[
8x3 + (2n− 6)x5

]2
,

f8(x) =
[
1 + (n + 3)x2 + (4n− 16)x4 + (2n− 10)x6

]2
+

[
8x3 + 8x5

]2
,

fg(x) =
[
1 + (n + 3)x2 + (5n− 35)x4

]2
.

Using case by case checking, it is easy to see that fj(x) − fg(x) ≥ 0 (j =
1, · · · , 8), where 9 ≤ n ≤ 18 and x > 0. Hence E(G1

n) < E(Gj) for 9 ≤ n ≤
18.

Proposition 2.5. (i) E(G0
n) < E(G1

n) for n > 18.
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(ii) E(G1
n) < E(G0

n) for 9 6 n 6 17.

Proof. By Sachs theorem we can obtain b3(G
0
n) = 8, b4(G

0
n) = 4n − 18 and

bi = 0 for i > 5. Similarly, for G1
n, we obtain b3(G

1
n) = 0, b4(G

1
n) = 5n − 35

and bi(G
1
n) = 0 for i > 5, and so by (1.1),

E(G1
n)− E(G0

n) =
1

π

∫ ∞

0

dx

x2
ln

[
1 + (n + 3)x2 + (5n− 35)x4

]2

[
1 + (n + 3)x2 + (4n− 18)x4

]2
+ 64x6

.

To prove (i), let

f(x) =
[
1 + (n + 3)x2 + (5n− 35)x4

]2 − [
1 + (n + 3)x2 + (4n− 18)x4

]2

−64x6 =
[
(2 + 2(n + 3)x2 + (9n− 53)x4)

][
(n− 17)x4

]− 64x6.

It follows that f(x) > 0 for n > 19. Hence E(G0
n) < E(G1

n) for n > 19.
By direct calculation (rounded to four decimal places), we have E(G1

18) =
11.9720, E(G0

18) = 11.9595. Thus E(G0
n) < E(G1

n) for n ≥ 18.

To prove (ii), let

f ∗(x) =
[
1 + (n + 3)x2 + (4n− 18)x4

]2
+ 64x6

−[
1 + (n + 3)x2 + (5n− 35)x4

]2

=
[
(2 + 2(n + 3)x2 + (9n− 53)x4)

][
(17− n)x4

]
+ 64x6.

It follows that f ∗(x) ≥ 0 for 9 ≤ n ≤ 17. Hence E(G1
n) < E(G0

n) for
9 ≤ n ≤ 17.

By combining Propositions 2.3 and 2.5 and Lemma 2.4, we obtain the
following main results of this paper.

Theorem 2.6. (i) G1
n has minimal energy in Gn for 9 6 n 6 17.

(ii) G0
n has minimal energy in Gn for n > 18.
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