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bLaboratorio de Qúımica Teórica, Universidad de Pamplona, Pamplona, Colombia

(Received February 20, 2008)

Abstract

We recently developed a methodology to endow a finite set Q with topologies

using similarity results from cluster analysis (dendrograms). In this paper we char-

acterise the family of these topologies. We introduce a new method generalising

the previous one and allowing to build new topologies over Q not belonging to the

former family. Either procedures ensure the existence of a topology given a den-

drogram and it is shown that given a topology for Q, mirroring similarities, then a

dendrogram can be associated.

1 Introduction

Normally, in classification processes, namely cluster analysis, once the classes are found

the study is addressed to the elements of each class, therefore the classes are individu-

ally studied. Consequently, relevant information pertaining to similarity among classes is

neglected. A method solving this drawback is the chemotopological one [1, 2, 3], which

permits to analyse the similarities of any class based upon the similarities found by clus-

tering. In this method, knowledge on the similarity among elements of a set Q is used to

draw a complete similarities landscape of any subset of Q.

Chemotopology was originally developed to show the important role of similarities for

the trends found in the periodic table of the chemical elements, for example to show that

the boundary of the non-metals is the set of semimetals [1, 3, 4]. However, it has found

application in the study of other chemical sets, e.g. amino acids, benzimidazoles, steroids

[5] and forth row monohydrides [6]. Although chemotopology has been applied in chem-

istry, it is not restricted to this science; in fact, chemotopology is a general mathematical

method able to deal with any set whose elements are defined by their features.
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In reference [2] we showed how different topological ideas, regarding the chemical set

under study, can be used to derive topological conclusions with chemical sense. These

ideas result from the calculation of topological properties by using chemotopology. Some

of these properties are closure, boundary and interior. In short, given a set Q the closure

of A ⊂ Q contains the elements of Q similar to A; the elements of Q similar to A and

simultaneously to elements not included in A constitute the boundary of A. The interior

of A contains the elements of Q which are completely similar to A and constitute the

“core” of A. A further mathematical discussion on the topological properties and on their

chemical meaning is given in reference [2]. An important aspect of chemotopology is the

generalised concept of similarity that can be derived by its application. Chemotopology

permits to reach a deep understanding of the similarity relationships among members of

a set, it permits to find elements of a class which are strongly related to the main features

of the class, i.e. class representatives; additionally it is possible to find elements which

share features of different classes and therefore are transition elements between different

classes. All these issues are common in chemical research, for example in drug design it

is always wanted to know the nearness or similarity of different pharmacophores in order

to save time and resources in developing new medicines. Historical examples of this kind

of thought abound, e.g. the similarities among chemical elements studied by Mendeleev

which lead to the periodic table; or the development of the transistor by spiking a material

with a similar one. More recently, Stadler and co-worwers have brought interesting ideas

on the use of topology, closures, boundaries, connectedness, convergence and continuity

in fields like combinatorial chemistry and genotype [7, 8, 9, 10, 11]. These, and many

other examples are deeply rooted in the idea of nearness or similarity. That notion of

nearness is the workhorse of topology and that is what chemotopology studies.

In this paper we explore the mathematical foundations of chemotopology and we

characterise the family of topologies for a set Q that are obtained by the application of the

method. It is described the relationship between the cardinality of open sets, i.e. similarity

neighbourhoods, and an integer number. Finally, we generalise the chemotopological

method as the procedure where all similarity neighbourhoods of any element in Q are

regarded as open sets of the topological basis and they are not restricted to an integer.

The family of topologies obtained by this generalised method is characterised and its

relation with the former family of topologies is studied.

2 Usual Chemotopological method and its

topologies

We call usual chemotopological method the one depending on an integer number [1, 2, 3,

4, 5, 6]. Since chemotopology uses cluster analysis results, namely a dendrogram, to look

for topologies under a set Q, we show a hypothetical dendrogram D (Figure 1) defined
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on Q. It is noteworthy that a dendrogram is obtained through the common process of

cluster analysis that provides a hierarchical classification of the elements in Q [12, 13]. In

order to describe the chemotopological procedure we introduce the following definitions

[1, 2, 3]:

Definition 1. A dendrogram is a rooted acyclic-binary graph with the following

kinds of vertices:

1. Vertices of degree 1, called objects.

2. Vertices of degree 3, called nodes.

3. Only one vertex of degree 2, called root node.

Figure 1: A hypothetical dendrogram of five objects and its types of nodes. Bold lines
correspond to a subtree of the dendrogram.

Definition 2. Let G be a subgraph of the dendrogram D. We say that G is a subtree

iff G = D or:

1. G does not contain the root node (Figure 1) of D, and

2. There exists a node p in D of degree greater than 1 such that G corresponds to one

of the connected subgraphs obtained by deleting p from D.

Although subtree is defined as a graph (Definition 2), it is also associated with a

subset of Q (where Q is the set of nodes of degree 1 in D) made from all the elements

that are nodes of degree 1 in G. Hence, when we refer to the cardinality of G, we mean

the cardinality of this associated set. For instance, G = {a, b, c} is the set associated to

the subtree containing the elements a, b and c in Figure 1 (bold lines).

Definition 3. Let G be a subtree and n a positive integer. We say that G is a

n-subtree iff |G| ≤ n.

Thus, a n-subtree can be a subtree with less than n objects; then, for every k ≤ n we

have that every k-subtree is simultaneously a n-subtree. In particular, a 1-subtree can be

regarded as a n-subtree for every n.

Definition 4. Let G be a n-subtree. We say that G is a maximal n-subtree iff it

is not contained in any other n-subtree.
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Definition 5. Let Bn be the family of subsets of Q holding:

Bn = {G ⊆ Q | G is a maximal n-subtree}.

Theorem 1. Let Q be a non-empty finite set, D a dendrogram defined on Q and n a

positive integer. Then, (Q, τn) is a topological space, where τn =

{
∪

B∈F
B | F ⊆ Bn

}
. τn

is called a topology obtained through maximal n-subtrees.

The proof of this theorem appears in reference [2] and is based upon the fact that

Bn is a partition of Q, which guaranties that Bn is a basis for a topology. In terms of

similarity, the elements in Bn are the similarity neighbourhoods of the elements in Q

since they come from the branches (n-subtrees) of the dendrogram.

3 Characterising usual topologies

We describe in this section the common feature of the topologies obtained through the

usual chemotopological method mentioned in the previous section [1, 2, 3, 4, 5, 6]. The

family Bn of maximal n-subtrees is a partition of Q [2], which is a consequence of the

“maximality” of the subtrees. Each element x ∈ Q also belongs to an 1-subtree that

is simultaneously a n-subtree; ergo it is in, at least, one maximal n-subtree. Given two

maximal n-subtrees with common elements, it can be proved that one of them ought to be

contained in the other one, for this reason they ought to be equal. It can be seen that this

fact is enough to obtain the topology of Theorem 1 but it produces strict consequences

in the generated topologies. In order to study these consequences, we characterise the

topologies found through the usual chemotopological method.

Proposition 1. Let Q be a non-empty finite set, n a positive integer and D a

dendrogram on Q. Then, any open set is simultaneously a closed set in the topological

space (Q, τn).

Proof. Since any open set is the finite union of elements of Bn (basic open sets), it is

enough to prove that these sets are closed because the finite union of closed sets is closed.

Let O ∈ Bn, owing to Bn is a partition of Q, thereby OC = ∪{B ∈ Bn | B 6= O}; then

OC ∈ τn, it means OC is an open set and for this reason O is closed. �

Proposition 1 guarantees that the topology obtained through maximal n-subtrees be-

longs to a particular class of topologies. This result is independent of the methodology

used to calculate the dendrogram and it is also independent of the selection of the n num-

ber. This general result is an evidence of the underlying mathematical structure [14] of

the research method, therefore of the set Q. An example of a mathematical structure for

a set Q is, for instance, the case of the chemical elements [1, 3, 4] where their similarity

neighbourhoods endow Q with a topology. In this case the mathematical structure is a

topological one.
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Definition 6. Let Q be a non-empty finite set. We define TOP (Q) as the set of all

topologies defined over Q and TOPOC(Q) as the set of all topologies defined over Q where

each open set is simultaneously a closed set.

According to Proposition 1 and Definition 6, given a dendrogram D and an integer n,

then τn ∈ TOPOC(Q) as is shown in Figure 2.

The common process in the usual chemotopological study is: given a dendrogram, to

extract its maximal n-subtrees by the selection of a n number, and build a topological

basis (Theorem 1). We showed (Proposition 1) that every element of a topology obtained

from this basis is an open-closed set of Q. It means that this topology belongs to the

family of topologies TOPOC(Q). This allows us to formulate the following question: if we

consider a topology τ in TOPOC(Q), there will exist a dendrogram D and an integer n

such that τ = τn? This question is equivalent to the following two questions:

1. If we only consider topologies obtained by dendrograms and integers n using maxi-

mal subtrees, is it possible to cover the whole family TOPOC(Q)?

2. If we consider all the possible dendrograms over Q2 and the topologies τn with all

the different integers n, can we obtain all the topologies belonging to TOPOC(Q)?

Figure 2: Family of topologies τn ∈ TOPOC(Q) that can be obtained from a dendrogram
D defined on Q through Theorem 1 using an integer number. The dashed arrow between
TOPOC(Q) and D rises the question on the possibility of obtaining a dendrogram from a
topology τn.

In order to answer these questions we developed the concept of Ox, the Lemma 1 and

the Proposition 2 (see below). We use the notation Ox to represent the smallest open set

containing the element x ∈ Q in a topology τ . Thus, Ox = ∩{O ∈ τ | x ∈ O}, that is Ox

can be obtained by the intersection of all the open sets of the topology τ containing x.

Since Q is finite in our case, then Ox is an open set of τ .

2The total number of dendrograms |F | that can be defined over a set Q of cardinality N is given by
|F | = (2N−3)!

2N−2(N−2)!
, [15].
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Lemma 1. Let Q be a non-empty finite set and τ ∈ TOPOC(Q) a topology. Then,

the family B = {Ox | x ∈ Q} is a partition of Q.

Proof. If Ox 6= Oy then these sets must have no common elements since if there were

a z ∈ Ox∩Oy, then Oz ⊆ Ox. Suppose that x /∈ Oz, then x ∈ OC
z that is an open set, then

Ox ⊆ OC
z , which implies that z ∈ OC

z and it comes to a contradiction. Then, we must

have that x ∈ Oz, which implies that Ox ⊆ Oz and Oz = Ox, in the same way Oz = Oy

and in conclusion Ox = Oy. This result contradicts our first hypothesis. In other words,

we have that B is a partition of Q. �

Proposition 2. Let Q be a non-empty finite set and τ ∈ TOPOC(Q) a topology.

Then, there exists a positive integer n and a dendrogram D defined on Q such that

τn = τ .

Proof. According to Lemma 1 we know that B = {Ox | x ∈ Q} is a partition of Q.

On the other hand, B is basis for the topology τ . Suppose that B = {B1, B2, . . . , Bm}.
We can consider without loss of generality that |B1| ≥ |B2| ≥ · · · ≥ |Bm|. Additionally,

suppose the dendrograms D1, D2, . . . , Dm defined on the sets B1, B2, . . . , Bm, respectively.

If we join D1 and D2 together by their root nodes to a new root node as shown in

Figure 3 and we connect to this new dendrogram the dendrogram D3 and the process is

repeated until linking the dendrogram Dm, then we obtain a dendrogram D defined over

B1 ∪B2 ∪ · · · ∪Bm = Q (Figure 4).

If we consider n = |B1| then Bn = B, where Bn is the set of maximal n-subtrees of

D; and for this reason τn = τ . We illustrate this in Figure 4. �

Figure 3: Joining two dendrograms together to build a new one.

Figure 4: Building the dendrogam D according to the proof of Proposition 2.

Proposition 2 shows that all the possible topologies that can be obtained through
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dendrograms and maximal n-subtrees are all the topologies whose open sets are simulta-

neously closed sets. The most important fact is that, if for any other method (not nec-

essarily using dendrograms) a topology is obtained in such a way that it belongs to the

class TOPOC(Q), then that topology has associated a dendrogram and its corresponding

n-subtrees. In order to establish a contrast between the usual chemotopological method

(maximal n-subtrees) and the one formulated in Proposition 2, we may summarise the

usual chemotopological method in the following order:

1. Building a dendrogram on Q.

2. Partitioning Q using maximal n-subtrees.

3. Obtaining a topology τn for Q.

In Proposition 2 we raised a reformulation of the order established in the usual chemo-

topological method [1, 2, 3, 4, 5, 6] in such a way that we can use any order of application

of the three steps mentioned above as we show in Figure 5. It means that:

1. If we partition Q by any method, then we can build up a topology for Q and associate

a dendrogram to Q.

2. Or we can obtain a topology TOPOC(Q) and, starting from it, obtain a partition

on Q and then associate a dendrogram to Q.

Figure 5: Methodology of the usual chemotopological study (continuous arrows) and new
insights raised by Proposition 2 (dashed arrows).

We have changed the direction of the chemotopological process from dendrograms

to topologies, to, from topologies to dendrograms.

4 A new vision

Cluster analysis is a mathematical tool used in several fields of science to find similarities

among objects of a set Q [12, 13]. In this way, dendrograms D defined on Q, and their
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subtrees, show those similarity relationships. The degree of resemblance among the ele-

ments in Q depends on the size of the subtrees we select. In a metaphorical language,

the size of the subtrees is like the use of a “magnifying glass” to observe a dendrogram.

If we move the magnifying glass closer to the dendrogram, subtrees of low cardinality

result; in contrast, if the magnifying glass is moved away, then large subtrees are ob-

tained. An important fact of the way to adjust the magnifying glass or the way to select

the maximal n-subtrees is that we cannot “break” subtrees and re-group them to our

will. For instance, if we extract the maximal 2-subtrees from the dendrogram depicted

in Figure 1, we obtain: {a, b}, {c}, {d, e}. However, we cannot build a topology with

the sets {a, b, c, d}, {e}, because it does not show the actual similarities among a, b, c,

d and e represented in the dendrogram. To justify the impossibility of breaking subtrees

and re-grouping them, it is important to note that a topology is constructed using some

subsets of Q. The union of these subsets ought to cover Q. Initially, the choice of those

subsets is arbitrary, but if we wish to build the topology from a dendrogram D, then we

need to be more selective when choosing subsets of Q. One of the attention points for

selecting those subsets is to consider the subsets associated to the subtrees of D. The

reason for selecting these subsets as the basis for a topology on Q is the fact that we

want to build a topology on Q using similarity information. Hence, it is apropriate to

build that topology considering those “pieces” containing information about similarities

in Q as elements of the basis. These “pieces” are the mentioned subtrees. For instance,

we cannot permit that the couple {x, y} appears in the basis of the topology if in the

dendrogram these two elements are not “directly” joined together (forming a 2-subtree).

The reason for this is that in the topology x and y would be inseparable, which means

that they cannot be separated by open sets. In a case of this sort, the topology would

not correctly represent the dendrogram.

The important fact in the representation of similarities using dendrograms is not the

use of maximal n-subtrees but something more general, the concept of subtree. A maximal

n-subtree is a particular case of a subtree. It is in the concept of subtree where the

similarities underlie [16].

Our aim is to build topologies using subsets of Q, but these subsets ought to represent

similarities.

We propose the criterion of the subtrees of the dendrogram as a rule for selecting the

members of the basis. In other words, we propose that the elements of the basis

for a topology are only subtrees of the dendrogram D.

Finding a criterion for choosing these subtrees is an interesting discussion. For the

special case of topologies τn, obtained through maximal n-subtrees, we refer to the selec-

tion of the number n. However, in the general case we are describing in this paper, the

discussion may be more complicated since, as we show in reference [16], a dendrogram

D has exactly 2|Q| − 1 subtrees. Which of them should we select? Should we consider
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the cardinality of subtrees? Should these subtrees be disjoint? These questions and some

others are more complex than the selection of a number between 1 and |Q|, which is the

case when using maximal n-subtrees.

In other words, our aim is to propose a method for selecting the members of the basis

not necessarily related to a positive integer n restricting the size of the branches to a

particular cardinality. This new vision or new rule for selecting members of the basis

considers just the concept of subtree and not the one of maximal n-subtree. In this case

we have topologies that can be out of the class TOPOC(Q).

Proposition 3. Let Q be a non-empty finite set, D a dendrogram defined on Q and

BD a family of subtrees of D such that ∪
B∈BD

B = Q. Then, (Q, TBD
) is a topological

space where TBD
=

{
∪

B∈F
B | F ⊆ BD

}
.

Proof. It is enough to prove that BD is basis for a topology. This is met because if

the intersection of two subtrees is non-empty, then one of them should be contained into

the other one [2]. Thus, BD is closed under intersections. �

We show a graphical explanation regarding Proposition 3 in Figure 6.

Figure 6: New methodology to build up a basis for a topology.

This proposition offers a new way for generating topologies using dendrograms. In this

case, any topology τn (Theorem 1) can be seen as a topology obtained by this method;

however, the contrary is not true. It means that the procedure generating topologies from

maximal n-subtrees is contained in this new procedure based on subtrees. In other words,

the new method is more general than the former one based upon maximal n-subtrees; an

example of this generality is the following:

We show in Figure 7 a dendrogram D and a family BD = {{a, b}, {c}} of subtrees

covering Q. The topology obtained through this family is TBD
= {∅, {a, b}, {a, b, c}}.

This topology does not belong to TOPOC(Q) since the open set {a, b} is not a closed set

and according to Proposition 2 no dendrogram defined over Q can generate this topology

with maximal n-subtrees.

There will exist a specific class of topologies containing all possible topologies that can

be obtained through this new method? It means, there will exist a characterisation similar
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Figure 7: A new kind of topology for Q.

to the one of the topologies τn? To answer these questions we developed the following

proposition:

Proposition 4. Let Q be a non-empty finite set, D a dendrogram on Q and TBD

a topology obtained according to Proposition 3. Then, for all x, y ∈ Q we have either

Ox ∩Oy = ∅, Ox ⊆ Oy or Oy ⊆ Ox.

Proof. Since BD is basis for TBD
, then Ox is the intersection of all the elements of

BD containing the element x, but BD is closed under finite intersections, for this reason

Ox ∈ BD. It means that Ox is a subtree of the dendrogram D. In the same way Oy is a

subtree of D. On the other hand, we know that if the intersection of two subtrees is non-

empty then one of them should be contained into the other one. It means, if Ox∩Oy 6= ∅
then either Ox ⊆ Oy or Oy ⊆ Ox. �

Definition 7. Let Q be a non-empty finite set. We say that TOPP (Q) is the family

of all topologies τ ∈ TOP (Q) such that for every x, y ∈ Q we have either Ox ∩ Oy = ∅,

Ox ⊆ Oy or Oy ⊆ Ox.

According to Proposition 4 it is possible to ask similar questions to those of section 2,

that is: if we consider a topology τ in TOPP (Q), there will exist a dendrogram D and a

family BD of subtrees of D yielding this topology? (Figure 8).

Figure 8: New family of topologies (TOPP (Q)). The dashed arrow between TOPP (Q)
and D rises the question on the possibility of obtaining a dendrogram from a topology
τ ∈ TOPP (Q).

Proposition 5. Let Q be a non-empty finite set and τ ∈ TOPP (Q), then there exists
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a dendrogram D defined over Q and a family BD of subtrees of D, such that TBD
= τ .

Proof. Note that it is sufficient and necessary to find a dendrogram D defined

on Q such that for all x ∈ Q, Ox is a subtree of D. Hence, we can consider BD =

{Ox ∈ τ | x ∈ Q}. In such a case BD covers Q and it is also a family of subtrees; in

addition, it is a basis for τ . Then, the topology built up starting from this family BD

using Proposition 3 is the same than the former topology, that is TBD
= τ .

We use induction over the cardinality of Q in this proof. If |Q| = 1 then the only

possible topology on Q is P(Q) and this topology can be built starting from the only

possible dendrogram on Q. Suppose the proposition is true for any set of cardinality

lower or equal to n, that is: If |Q| = k ≤ n and τ is a topology in TOPP (Q) then there is

a dendrogram D defined on Q and a family of subtrees BD covering Q such that TBD
= τ .

Now, we prove the proposition for a set Q with n + 1 elements, it is |Q| = n + 1. Let

τ ∈ TOPP (Q) and consider the family B = {Ox ∈ τ | x ∈ Q}, then B = {B1, B2, . . . , Bm}
where B1, B2, . . . , Bm are different subsets of Q. There are two possibilities, that one of

them is Q or not.

Case 1. Without loss of generality we can consider that Bm = Q. Consider A =

B1 ∪ B2 ∪ · · · ∪ Bm−1, then A 6= Q, A is an open set and suppose A 6= ∅. If x /∈ A

then Ox = Q. Consider the topology τ |A (restricted topology to A). We can see that

τ |A∈ TOPP (A) and 1 ≤ |A| < |Q|, it is |A| ≤ n. Thus, there exist a dendrogram DA

defined over A such that τ |A can be generated through subtrees of this dendrogram. Let

build a dendrogram DAC on AC and join these two dendrograms together by their root

nodes to a new root node. Hence, we build a new dendrogram D over A ∪ AC = Q.

Let us use the initial observation to prove that there exists a subfamily BD of subtrees

of D covering Q in such a way that τ = TBD
. Let x ∈ Q, then either x ∈ A or x ∈ AC ;

if x ∈ A then owing to A is an open set, then Ox ⊆ A and for this reason Ox is a subtree

of the dendrogram DA therefore a subtree of the dendrogram D. If x ∈ AC then Ox = Q,

which corresponds to the whole dendrogram D. For this reason, B is a family BD of

subtrees of D. In the case that A = ∅ then τ = {∅, Q} which is constructed from any

dendrogram. In this way the case 1 ends.

Case 2. If Bi 6= Q for all i = 1, 2, . . . ,m, let x ∈ Q. It is impossible that x ∈
B1 ∩ B2 ∩ · · · ∩ Bm since it implies that for every pair Bi, Bj then Bi ∩ Bj 6= ∅ and

for this reason Bi ⊆ Bj or Bj ⊆ Bi. The consequence of this is that there is a Bi

containing B1, B2, ..., Bm, for instance Bm. Thus, B1 ∪ B2 ∪ · · · ∪ Bm = Bm but this

family covers Q, it is B1 ∪ B2 ∪ · · · ∪ Bm = Q, thus Bm = Q an this result contradicts

our hypothesis. Let us consider A as the union of the Bi that contains a fix element

x0 ∈ Q, it is A = ∪{Bi ∈ B | x0 ∈ Bi}. We know A is an open set, A 6= ∅, A 6= Q

and AC = ∪{Bi ∈ B | x0 /∈ Bi}, then AC is also an open set since it is an union of open

sets. Consider again the topologies restricted to each set, τ |A and τ |AC . Once again

τ |A∈ TOPP (A) and τ |AC∈ TOPP (AC), furthermore 1 ≤ |A| < |Q| and 1 ≤ |AC | < |Q|,
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it is |A| ≤ n and |AC | ≤ n, then for the induction hypothesis there exist dendrograms

DA and DAC generating these topologies. Now let join these dendrograms together by

their root nodes to build up a dendrogram D. Again, we will use the initial observation

to conclude this proof; let x ∈ Q, then either x ∈ A or x ∈ AC , if x ∈ A then Ox ⊆ A

owing to A is an open set, then Ox is a subtree of DA and for this reason a subtree of D.

If x ∈ AC the result is analogous. �

Proposition 5 shows that the family TOPP (Q) is the collection of “all” possible topolo-

gies that can be obtained from dendrograms. Thus, every topology not belonging to this

family cannot be represented by means of a dendrogram; an example of this is the in-

cluded point topology. Suppose that Q has more than two elements and also suppose

that the topology τa, defined by τa = {O ⊆ Q | a ∈ O} where a ∈ Q, can be obtained by

means of a dendrogram D. The root node of D shows the existence of two large subtrees,

in one of those subtrees ought to be a. Consider an element b 6= a such that b can be

found in the other subtree in such a way that the lowest subtree containing a and b is the

whole dendrogram D, it means Q (Figure 9). On the other hand, Ob = {a, b} given this

topology. Thus, Q ⊆ Ob for Proposition 5, which is a contradiction because Q has more

than two elements.

Figure 9: Two elements in Q that are in two disjoint subtrees covering Q.

Another interpretation of Proposition 5 is that for each topology in TOPP (Q) there

exists a dendrogram generating such a topology, even more, when proving Proposition

5 we showed how that dendrogram may be built up. The question arises whether this

dendrogram is unique. The answer is no and is also no for topologies obtained through

maximal n-subtrees (Proposition 2). The reason is that a topology is determined by the

open sets of a topological basis, which in turn have an associated dendrogram. This

dendrogram might be whichever one mirroring the similarities expressed by the open set,

and the number and type of such dendrograms increases rapidly with the cardinality of

the open set [15, 17].

Finally, we have observed the following relations among the families of topologies

mentioned in this paper: TOPOC(Q) ⊂ TOPP (Q) ⊂ TOP (Q) (strictly contained). The

last remark shows the relations between the two families characterised in this paper.
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5 Conclusions

We presented a new methodology for constructing topologies over a non-empty finite set

Q using dendrograms. In this way, the chemotopological methodology already existent

was generalised. This usual chemotopological method is based on the construction of a

topology for Q using maximal n-subtrees, which in turn depends on the selection of an

integer n.

The generalisation developed in this paper makes more flexible the usual chemotopo-

logical method since now the construction of topologies is not restricted to the selection of

an integer n. This generalisation keeps the sense of the chemotopology, that is the idea of

building topologies using similarity information gathered in a dendrogram. Additionally,

because of the consideration of all possible neighbourhoods (not restricted by cardinality)

of the elements in Q, then all the similarity relationships take part in the construction

of the topological basis, therefore this basis collects local similarities and also similarities

among neighbourhoods. On the other hand, we have completely characterised the family

of topologies that can be obtained from dendrograms and that also contains similarity

information of the set Q under study. In this characterisation the main criterion is the

use of subtrees to define the topological basis. The use of subtrees is justified since they

represent similarity relationships among the elements under study. Finally, the theory

developed in this paper can be considered, so far, the most general one in the context of

building topologies from dendrograms.
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