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Abstract 
Hetero fullerenes are fullerenes where some of the carbon atoms are replaced by other 
atoms. Fripertinger applied SYMMETRICA to write some codes for computing the 
number of C60-kBk molecules, where B is a hetero-atom such as Si (see H. Fripertinger, 
MATCH Commun. Math. Comput. Chem. 1996, 33, 121.). In this paper, the numbers 
of all C10n-kBk hetero-fullerenes are computed, where C10n is an infinite family of 
fullerenes. We apply the computer algebra system GAP to compute the number of 
permutational isomers of hetero fullerenes of the C60 fullerene with Ih point group 
symmetry. 
 

 

1. Introduction 

Carbon exists in several forms in nature. One is the so-called fullerene which was 

discovered for the first time in 1985.1 Fullerenes are carbon-cage molecules in which 

a large number of carbon (C) atoms are bonded in a nearly spherically symmetric 

configuration. Let p, h, n and m be the number of pentagons, hexagons, carbon atoms 

and bonds between them, in a given fullerene F. Since each atom lies in exactly 3 

faces and each edge lies in 2 faces, the number of atoms is n = (5p+6h)/3, the number 

of edges is m = (5p+6h)/2 = 3/2n and the number of faces is f = p + h. By the Euler’s 

formula n − m + f = 2, one can deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2, and 
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therefore p = 12, v = 2h + 20 and e = 3h + 30. This implies that such molecules made 

up entirely of n carbon atoms and having 12 pentagonal and (n/2 − 10) hexagonal 

faces, where n ≠ 22 is a natural number equal or greater than 20.2 Heterofullerenes are 

fullerene molecules in which one or more carbon atoms are replaced by heteroatoms 

such as boron or nitrogen, whose formation is a kind of “on-ball” doping of the 

fullerene cage.  

Detecting symmetry of molecules is a well-studied problem with applications 

in a large number of areas. Randic3,4 and then Balasubramanian5-11 considered the 

Euclidean matrix of a chemical graph to find its symmetry. Here the Euclidean matrix 

of a molecular graph G is a matrix D(G) = [dij], where for i ≠ j, dij is the Euclidean 

distance between the nuclei i and j. In this matrix dii can be taken as zero if all the 

nuclei are equivalent. Otherwise, one may introduce different weights for different 

nuclei.  

Suppose σ is a permutation on n atoms of the molecule under consideration. 

Then the permutation matrix Pσ is defines as Pσ = [xij], where xij = 1 if i = σ(j) and 0 

otherwise.  It is easy to see that PσPτ = Pστ, for any two permutations σ and τ on n 

objects, and so the set of all n × n permutation matrices is a group isomorphic to the 

symmetric group Sn on n symbols. It is a well-known fact that a permutation σ of the 

vertices of a graph G belongs to its automorphism group if it satisfies Pσ
tAPσ = A, 

where A is the adjacency matrix of G. On the other hand, it is well-known fact that for 

computing the symmetry of a molecule, it is sufficient to solve the matrix equation 

PtEP = E, where E is the Euclidean matrix of the molecule under consideration and P 

varies on the set of all permutation matrices with the same dimension as E. 

The first author of this paper12-15 introduced some algorithms for computing 

the symmetry of molecules and applied them to compute the symmetry of some big 

fullerenes. We notice that for computing the number of isomers of a given fullerene 

molecule, we need to an efficient method for computing symmetry of fullerenes. 

Fripertinger16 computed the symmetry of some fullerenes and then applied 

SYMMETRICA17 to calculate the number of C60HkCl60-k molecules and 

Balasubramanian11 computed the number of C60H36 isomers.  

Throughout this paper, our notation is standard and taken mainly from the 

standard book of the theory of graphs. 
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2. Main Results  

Groups are often used to describe symmetries of objects. This is formalized by the 

notion of a group action.  Let G be a group and X a nonempty set. An action of G on 

X is denoted by GX and X is called a G-set. It induces a group homomorphism ϕ from 

G into the symmetric group SX on X, where ϕ(g)x = gx for all x ∈ X. The orbit of x 

will be indicated as xG and defines as the set of all ϕ(g)x, g ∈ G. The set of all G-

orbits will be denoted by G\\X := {xG | x ∈ X}. Suppose g is a permutation of n 

symbols with exactly λ1 orbits of size 1, λ2 orbits of size 2, …, and λn orbits of size n. 

Then the cycle type of g is defined as 1 2 n1 2 ...n .λ λ λ  

Enumeration of chemical compounds has been accomplished by various 

methods. The Polya-Redfield theorem has been a standard method for combinatorial 

enumerations of graphs, polyhedra, chemical compounds, and so forth. Combinatorial 

enumerations have found a wide-ranging application in chemistry, since chemical 

structural formulas can be regarded as graphs or three-dimensional objects.  

Denote by Cm,n the set of all functions f: {1, 2, …, m}→{x1, x2, ..., xn}.The 

action of p ∈  Sm  induced on Cm,n is defined by p̂ (f) = fop-1, f ∈  Cm,n. Treating the 

colors x1, x2, …, xn that comprise the range of f ∈ Cm,n as, independent variables the 

weight of f is W(f) = m

i 1
f (i)

=∏ . Evidently, W(f) is a monomial of (total) degree m. 

Suppose G is a permutation group of degree m, Ĝ ={ p̂ :p∈G}, p̂  is as defined 

above. Let p1, p2, …, pt be representatives of the distinct orbits of Ĝ . The weight of pi 

is the common value of W(f), f ∈  pi. The sum of the weights of the orbits is the 

pattern inventory WG(x1,x2,…,xn)=
t

ii 1
W(p )

=∑ . 

 
Theorem.1 (Pólya's Theorem18) If G is a subgroup of Sm, the symmetry group on m 

symbols, then the pattern inventory for the orbits of Cm,n modula Ĝ  is  

WG(x1,x2,…,xn)= ∑ ∈Gp
pC

m
pCpC mMMM

G
)()(

2
)(

1 ...
||

1
21 , 

where Mk=x1
k+x2

k+…+xn
k, the kth power sum of the x’s, and (C1(p),…,Cm(p)) is the 

cycle type of the permutation p.  
 

We now introduce the notion of cycle index. Let G be a permutation group. 

The cycle index of G acting on X is the polynomial Z(G, X) over Q in terms of 
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indeterminates x1, x2, …, xt, t = |X|, defined by Z(G, X) = i
t c (p)

ip G i 1

1 x ,
| G | ∈ =∑ ∏  in 

which (c1(p), ···, ct(p)) is the cycle type of the permutation p ∈ G. All elements of a 

conjugacy class of a group have the same cycle type, so the cycle index can be 

rephrased in the following way: 

Z(G, X) = i C
t c (g )

iC Conj(G) i 1

1 | C | x ,
| G | ∈ =∑ ∏  

where Conj(G) is the set of all conjugacy classes C of G with representatives gC ∈ C. 

The dihedral group Dn is the symmetry group of an n-sided regular polygon 

for n > 1. These groups are one of the most important classes of finite groups 

currently applicable in chemistry. For example D3, D4, D5 and D6 point groups are 

dihedral groups. One group presentation for Dn is <x,y | xn = y2 = e, yxy = x-1>. This 

means that Dn is generated by a two elements set {x,y} with the condition xn = y2 = 1 

and yxy = x-1. In this section, an infinite class C10n of fullerene molecules with exactly 

10n carbon atoms and symmetry group D20 is constructed, Figure 1. To compute the 

number of isomers of these fullerenes, we first compute a permutation representation 

for the symmetry group of these fullerenes.  

Consider the Graph of Fullerene C10n, Figure 1. From Figure 1, one can see 

that the generators of this group are as follows: 

2 5 3 4 6 10 7 9 11 15 12 14 10 4 10 10 3 10 1( , )( , )( , )( , )( , )( , )...( n , n)( n , n ),σ = − − −  

1 10 4 2 10 3 3 10 2 4 10 1 5 10
7 10 6 9 10 14 11 10 12 13 10 10 15 10 8

( , n , , n , , n , , n , , n) ...
( , n , , n , , n , , n , , n ),

τ = − − − −
− − − − −

 

where σ fixes  elements 1, 8, 19, 30, …, 11i-3, 11i+2, …, 10n-2 , i=1,2,…,n-1, and τ 

does not have fixed points. Since σ2 = τ10 = identity and σ-1τσ = τ-1, the symmetry 

group G of these fullerenes is isomorphic to the dihedral group of order 20. In Table 

1, the cycle types of elements of G are computed. 

Thus the cycle index of G is computed as 
10n 2n 4n 2n 5n
1 1 2 5 2Z(G,X) (x 5x x 4 6x= + + + + n

104x ) / 20 . But from the cycle indices one 

can compute the number of different colourings using k colours via Pólya-theory by 

replacing each variable xi in the cycle index by 1 + xi.  
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Figure 1. The Schlegel diagram of C10n. 
 

 
In what follows we prepare a GAP program to compute the number of hetero 

fullerenes for C10n. We mention here that our computations of symmetry properties 

and cycle indices of fullerenes were carried out with the use of GAP19,20. This 

software was constructed by the GAP team in Aachen. In Table 2, we apply this 

program to compute the number of hetero fullerenes for the case of n = 30. 

 

Table 1. Cycle Types of Elements of G. 
 

#PermutationsCycle type Fullerene

1 

5 

4 

6 

4 

110n 

12n24n 

52n 

25n 

10n 

C10n 
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Program 1: A Gap Program for Counting the Number of Hetero Fullerene for C10n 
 
f:=function(n) 
local s,i,f,x,t; 

Print("Number of vertices is: ",10*n,"\n"); 
x:=Indeterminate(Rationals,"x"); 
f:=(5*((1 + x)^(2*n))*((1 + x^2)^(4*n)) + 4*((1 + x^5)^(2*n)) + 

6*((1+x^2)^(5*n)) + 4*((1 + x^(10))^n) + (1 + x)^(10*n))/20; 

t := CoefficientsOfLaurentPolynomial(f); 
for i in t[1] do 

Print(i,"\n"); 
od; 

return; 
end; 

 

Table 2. Number of C30-kBk molecules. 
 

K Number of C30-kBk 
Molecules 

0,30 

1,29 

2,28 

3,27 

4,26 

5,25 

6,24 

7,23 

8,22 

9,21 

10,20 

11,19 

12,18 

13,17 

14,16 

15,15 

1 

3 

33 

226 

1467 

7287 

30173 

102468 

294255 

717299 

1506051 

2735358 

4331275 

5994081 

7279821 

7762876 
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We now present another GAP program to compute the numbers of different 

fullerene molecules Cn-kBk, for large n.  
 

Program 2: A GAP Program for Enumerating the Hetero Fullerenes 

h:=function(f,g) 

local t,i,tt;  

Print("Coefficients Of f are:","\n"); 

t:=CoefficientsOfLaurentPolynomial(f); 

for i in t[1] do 

Print(i,"\n"); 

od; 

Print("Coefficients Of g are:","\n"); 

tt:=CoefficientsOfLaurentPolynomial(g); 

for i in tt[1] do 

Print(i,"\n"); 

od; 

return(); 

end; 

To investigate the efficiency of the second program, we consider the 

Buckminster fullerene C60, Figure 2. Fripertinger16 computed the cycle indices for the 

actions of the rotational group R and symmetry group S on the set of all vertices as 

follows: 

( )12 20 30 60
5 3 2 1

1Z(G,R) 24x 20x 15x x ,
60

= + + +  

( )6 10 12 20 30 4 28 60
10 6 5 3 2 1 2 1

1Z(G,S) 24x 20x 24x 20x 16x 15x x x .
120

= + + + + + +  

 

 
Figure 2. The Buckminster Fullerene C60. 
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 We apply these cycle indices and our second program to compute the number 

of permutational isomers of this fullerene. Our calculations are given in Table 3. 

Fripertinger in the mentioned paper computed these numbers for 1 ≤ k ≤ 10 and one 

can see that our calculations have the same results.  

 

Table 3. Number of C60-kBk Molecules 
 

k 
Number of C60−kBk 

molecules for 
Rotational Group 

Number of C60−kBk 
molecules for 

Symmetry Group 
0,60 
1,59 
2,58 
3,57 
4,56 
5,55 
6,54 
7,53 
8,52 
9,51 
10,50 
11,49 
12,48 
13,47 
14,46 
15,45 
16,44 
17,43 
18,42 
19,41 
20,40 
21,39 
22,38 
23,37 
24,36 
25,35 
26,34 
27,33 
28,32 
29,31 
30,30 

1 
1 
37 
577 
8236 
91030 
835476 
6436782 
42650532 
246386091 
1256602779 
5711668755 
23322797475 
86114390460 
289098819780 
886568158468 
2493474394140 
6453694644705 
15417163018725 
34080036632565 
69864082608210 
133074428781570 
235904682814710 
389755540347810 
600873146368170 
865257299572455 
1164769471671687 
1466746704458899 
1728665795116244 
1907493251046152 
1971076398255692 

1 
1 
23 
303 
4190 
45718 
418470 
3220218 
21330558 
123204921 
628330629 
2855893755 
11661527055 
43057432740 
144549869700 
443284859624 
1246738569480 
3226849468425 
7708584971055 
17040023323785 
34932048763560 
66537224405790 
117952355252550 
194877787472550 
300436595453640 
432628675734195 
582384767014701 
733373386161407 
864332935668892 
953746664302456 
985538239868528 
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