
Computing the Permanental Polynomial of C60 in Parallel ∗

Heng Liang a † Hui Tong b Fengshan Bai a

a Department of Mathematical Sciences, Tsinghua University

Beijing, 100084, P.R.CHINA.

b School of Science, Beijing University of Posts and Telecommunications

Beijing, 100876, P.R.CHINA.

(Received September 12, 2007)

Abstract

The permanental polynomial of buckminsterfullerene C60 is computed in parallel in this paper.

The basic idea of the method is simply divide-and-conquer to achieve both computational precision

and speed. The load balancing strategies for the permanental polynomial computation are further

improved with the help of the theory of parallel machine scheduling in combinatorial optimization.

The special structural properties of the matrices are considered intensively so that very high parallel

efficiency is acquired. The algorithm developed in this paper can handle the permanental polynomial

of C60 and even larger fullerenes, which are of interest in applications.

1 Introduction

The permanental polynomial of a graph is of interest in chemistry [14]. It is defined as

P (G, x) = per(xI −A), (1)

where A is the adjacency matrix of a graph G with n vertices, and I is the identity matrix of order n.

Here per(A) denotes the permanent of the matrix A, which is defined as

per(A) =
∑

σ∈Λn

n∏

i=1

aiσ(i), (2)

where Λn denotes the set of all permutations of {1, 2, ..., n}. The definition of permanent per(A) looks

similar to that of determinant det(A). However it is much harder in computation. It is proved that

∗Supported by National Science Foundation of China 10501030.
†E-mail address: hliang72@gmail.com, hliang@math.tsinghua.edu.cn

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 60 (2008) 349-358

 ISSN 0340 - 6253

computing the permanent is a #P -complete problem [13], even for matrices with only three nonzero

entries in each row and column [4].

The computation of permanent and permanental polynomial recently has attracted attention in chem-

ical graph theory [1,3,5]. Gutman and Cash suggest the following as an important open question [5]: Can

more efficient algorithms be developed so that permanental polynomial for larger systems can be studied?

A numerical method for permanental polynomials of graphs is proposed [8]. It relates the computa-

tion of the permanental polynomial to that of permanent using Fast Fourier Transformation (FFT). All

fullerenes in the set C≤50 (that includes 812 isomers) are computed, and the properties of coefficients

and zeros of permanental polynomials of fullerenes are analyzed based on the data obtained [12]. The

algorithm works up to C56. Under double-precision arithmetic, the computation of C56 is already bor-

derline in precision. Parallel algorithm is proposed in this paper to improve the ability of computation

of the permanental polynomials. The idea of the method is simply divide-and-conquer. It is possible to

compute C60 and even larger fullerenes, which are of interest in real-world applications.

In the next two sections, we give a brief instruction to existing practical algorithms for permanent and

permanental polynomial of sparse matrix, especially emphasizing the problems of fullerene-like structure,

which are related to designing the parallel algorithm. Using the parallelized algorithm of the hybrid

method is developed in section 4, the permanents and the permanental polynomials of the fullerenes

are computed. In section 5, a more efficient load balancing strategy for computing the permanental

polynomial is proposed with the help of the special structural properties of the problem itself and the

theory of parallel machine in combinatorial optimization. Very high parallel efficiency is acquired. At

last section, the computation of permanental polynomial of buckminsterfullerene C60 is presented.

2 Algorithms for Permanents

Algorithms for permanental polynomials are based on those for permanents. The best-known algorithm

for precise evaluation of the permanent of general matrix is due to Ryser [11] and later improved by

Nijenhuis and Wilf [10]. It is O(n2n−1) in complexity. This method, which is denoted by R-NW, only

works for small matrices.

It is possible to make methods for permanents faster when the special structural properties of matrices

are considered. In the chemical graph theory, the first fast algorithm for permanent of fullerenes is given

by Cash [1].

Taking the advantage of the structure properties extensively, a hybrid method is proposed [9]. It is

- 350 -

an efficient algorithm for fullerene-like matrices. Consider an expansion

per


 a b xT

y1 y2 Z


 = per


 0 0 xT

y1 y2 Z


 + per

(
ay2 + by1 Z

)

= per(A1) + per(A2)

(3)

where a and b are scalars, xT is an (n−2)-dimensional row vector, y1 and y2 are both (n−1)-dimensional

column vectors, and Z is an (n−1)×(n−2) matrix. Combining the expansion (3) with R-NW algorithm,

a hybrid algorithm is constructed.

Algorithm H per(Hybrid) [9]

Input: A – an n× n 0-1 valued matrix .

Output: P = H per(A)

step1: Find the minimal number of nonzero entries s in one row or column of A,

step2: if n > 2 and s < 5, then divide A into A1, A2 as (3), and

P = H per(A1) + H per(A2)

else return by R-NW (A).

3 Algorithms for Permanental Polynomials

An algorithm for computing the permanental polynomial of adjacency matrixes of chemical graphs is

developed by Cash [2]. A symbolic algorithm, which relies on the computation of second order partial

derivatives, is later proposed by the same author [3]. The symbolic algorithm is approximately 50 times

faster for C40. However the computer memory required for symbolic manipulations would grow fast with

n.

A numerical method for computing permanental polynomials of fullerenes is proposed by Huo, Liang

and Bai [8], which adapts the hybrid method and multi-entry expansion to FFT. It works up to C56 for

fullerene-type graphs. The algorithm, named as H FFT, is given as follows.

Algorithm 2.3 H FFT
Input: A – an n× n 0-1 valued matrix.
Output: (a0, a1, · · · , an) – the coefficients of per(xI −A).

step1: Let ωn+1 = e(−2πi)/(n+1) be the (n + 1)-th root of unity,

take xj = ωj
n+1 (j = 0, 1, · · · , n);

step2: Computing pj = per(xjI −A) for j = 0, 1, · · · , n;

step3: Do inverse Fourier transform for (p0, p1, · · · , pn) to obtain aifft;

step4: (a0, a1, · · · , an) = round(aifft).

The function round(x) in the algorithm gives the integer that is closest to x. Note that per(xjI −A)

- 351 -

and per(xn−jI −A) are conjugate to each other. Hence only n
2 +1 permanents are needed to compute in

step 2. The coefficients of a permanental polynomial are all integers, while inverse Fourier transformation

gives output in real numbers. The rounded part of the FFT shows the computational precision to some

extent. Take

error = max
1≤k≤n+1

{|round(aifft
k)− ak|}

be a measure of the computational precision. Table 1 gives errors of fullerenes computed.

Table 1 : The computational precision with n

Fullerene C20 C30(C2ν) C40(C1) C50(D5h)

error 4.37× 10−11 3.44× 10−8 1.49× 10−5 1.76× 10−3

Fullerene C52(D2) C54(D3) C56(Td)

error 1.47× 10−2 8.16× 10−2 1.44× 10−1

The errors clearly increase with n, and it would likely exceed tolerant range under the double-precision

arithmetic when n > 56. This is reasonable, since the double precision only gives about 16 digits of

accuracy, and for C56, the per(xjI − A) is roughly O(1015). So an error of 0.144 might actually be too

good considering the huge amount of operations each with a rounding error in that range. In order to

compute Cn(n > 56), including the famous buckminsterfullerene C60, more elaborate operations must be

considered.

4 A Parallel Algorithm for Permanental Polynomials

It is natural to consider higher precision computation. Numerical experiments show that stability and

robustness are good for C60 when the quadruple precision is used. However, the running time with

quadruple precision is over 20 times more than that with double precision. It is so time-consuming that

higher precision computation is hardly acceptable for Cn (n > 56).

Divide-and-conquer is one way to make the current method to go beyond C56. The value of per(xjI−
A) can be divided into some smaller parts such that the 16 digits of accuracy is enough for each part. Then

all the parts are added with quadruple precision. In this way the problem of precision can be overcome.

The time cost of FFT is negligible compared with the exponentially growing cost of calculating the

required permanents. Hence the parallelization of algorithm H per is essential. Firstly, the n× n matrix

A is divided into a series of (n − d) × (n − d) matrices by using the formula (3) repeatedly so that the

permanent of each (n−d)× (n−d) matrix can be expressed exactly with the double-precision. Then the

(n− d)× (n− d) matrices are computed in parallel. The d is called the depth of pre-expansion.

- 352 -

Based on the algorithm H per, the following parallel method PH is constructed. Where A
(w)
k denotes

the w-th (n− k)× (n− k) matrix.

Algorithm PH (Parallel H per)

STEP 1 Let n be the order of matrix A, num be the number of CPU’s used,

A
(1)
0 = A, s = 1, set d be the depth of pre-expansion

STEP 2 For k=1:d

t=0,

For w=1:s

divide A
(w)
k−1 into A(1) and A(2) as (3), A

(t+1)
k = A(1), A

(t+2)
k = A(2), t = t + 2;

End

s=t;

End

STEP 3 send A
(w)
d (w = 1, 2, · · · , t) to the num CPUs in turn and compute per(A(w)

d)

by Algorithm H per, until all A
(w)
d ’s (1 ≤ i ≤ t) has been computed,

STEP 4 P =
t∑

k=1

H(A(w)
d)

The main part of the parallel computation is clearly STEP 3 above and its costs dominate the

whole computing time. Using the algorithm H FFT, values per(xjI−A)(j = 0, 1, · · · , n/2) are needed to

compute in order to obtain the polynomial per(xI−A), where A is the n×n adjacency matrix of fullerene

Cn, xj = ωj
n+1, where ωn+1 is the (n + 1)-th root of unity in complex plane. For buckminsterfullerene

C60(Ih), the number of submatrices in Algorithm PH is about 120 when d = 8.

All numerical experiments in this paper are carried on a 32-bit Intel Pentium III (1266 MH) with

MATLAB as the programming languages. Table 2 and Table 3 give the parallel computation times for

per(x0I −A) and per(x1I −A).

Table 2 : CPU time(Seconds) for per(x0I −A),

where A is the adjacent matrix of buckminsterfullerene C60

num Time(sec) Accelerated ratio Parallel efficiency

1 79183.73 - -

2 39780.43 1.99 0.9953

4 19956.08 3.97 0.9920

8 10176.25 7.78 0.9727

16 5326.57 14.87 0.9291

32 3134.42 25.26 0.7895

- 353 -

Table 3 : CPU time(Seconds) for per(x1I −A),

where A is the adjacent matrix of buckminsterfullerene C60

num Time(sec) Accelerated ratio Parallel efficiency

1 125528.59 - -

2 62184.69 1.99 0.9964

4 31400.23 3.95 0.9866

8 16002.51 7.74 0.9680

16 8513.55 14.56 0.9097

32 4930.22 25.14 0.7855

The computation times for per(xjI −A) (j > 1) are similar to that of per(x1I −A) because only x0

is real and all the others are complex. Results in Table 2 and 3 show that the efficiency of the parallel

method is about 80% when num, the number of CPU’s, is 32, which is acceptable in parallel computation.

This can be improved further by considering the special properties deeply.

5 Load Balancing Strategies

The load balancing strategies for the permanental polynomial computation can be further improved

with the help of the properties of the problem itself and models of parallel machine in combinatorial

optimization. Consider the following machine scheduling model first. Assume that one has a set of n jobs

J1, · · · , Jn, and m identical machines M1, · · · ,Mm. Each job Jj must be processed without interruption

for a time pj > 0 on one of the machines. Each machine can process at most one job at a time. If all jobs

are ready for processing in the very beginning, it is called offline machine scheduling; otherwise if jobs

can only be ready for processing one by one, it is called online. We are not going to go into full details

of this field. The following example helps in understanding the basic concepts and algorithms in parallel

machine scheduling.

Example 5.1. Table 4 gives an example with n = 9 jobs and m = 3 machines. The aim is to find an

order of processing, such that the overall completion time is minimized.

Table 4: Processing Times of Jobs (n=9)

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9

Times 3 2 2 4 4 5 8 7 10

The results in Figure 1–3 suggest that the order of processing is a crucial issue. Figure 1 shows the

result of the order in natural, which is straightforward for online problems. Figure 2 shows the result

of the non-increasing order in processing times, and Figure 3 shows the result of the optimal processing

order for this example. Finding the best processing order would be hard normally. The result of Figure 2

shows that the order of non-increasing is a good strategy, which is only available for offline problems.

- 354 -

M1 J1 J6 J9

 3 8 18

M2 J2 J4 J7

2 6 14

M3 J3 J5 J8

0 2 6 13 time

Figure 1: The Natural Order

M1 J9 J5

 10 14

M2 J7 J4 J1

 8 12 15

M3 J8 J6 J2 J3

0 7 12 14 16 time

Figure 2: The Non-increasing Order in Processing Times

M1 J9 J5

 10 14

M2 J7 J4 J1

 8 12 15

M3 J8 J6 J2 J3

0 7 12 14 16 time

Figure 3: The Optimal Order

Algorithm LS is designed for the online parallel machine scheduling problems, where jobs are processed

in its natural order of coming. Graham [6] gives the worst-case analysis of the scheduling heuristics and

shows that Algorithm LS has a worst-case ratio of 2− 1
m , where m is the number of machines available.

If the jobs are sorted in the non-increasing order of processing times for offline problems, then there is

an algorithm known as LPT. It is proved by Graham that Algorithm LPT has an improved worst-case

ratio of 4
3 − 1

3m [7].

- 355 -

The scheduling problem in Algorithm PH presented in the last section is essentially online. One would

only be able to send the sub-matrices to different processors in their natural order of expansion. However,

it is important to notice that all matrices xjI −A (j = 1, · · · , n/2) have the same sparsity structure and

thus have the same expansion process in the Algorithm PH. Only x0I − A is an exceptional since x0 is

the number 1 and xj (j = 1, 2, · · · , n/2) are all complex numbers. The scheduling of the computation

of submatrices generated by expanding xjI − A (j = 2, · · · , n/2) in Algorithm PH can be regarded as

offline as long as per(x1I−A) is computed and all the computational times of the submatrices of x1I−A

are obtained. The idea is as follows. Let the submatrices generated by expanding x1I −A be

C1, C2, · · · , Cm,

and the processing times for them are

t1, t2, · · · , tm,

respectively. Sorting the processing times in the order of non-increasing, the results are

tr1, t
r
2, · · · , trm.

Re-order the submatrices correspondingly as their processing time

Cr
1 , Cr

2 , · · · , Cr
m.

This gives the order of non-increasing in processing times for x1I − A. Since matrices xjI − A (j =

1, · · · , n/2) have exactly the same structure as x1I−A, the load balancing strategy for parallel computing

in STEP 3 of Algorithm PH is naturally obtained.

Moreover, the submatrices of xjI − A (j = 2, · · · , n/2) can be scheduled all together in STEP 3 of

Algorithm PH, which can further speed up the computation process.

6 Computational Results for Buckminsterfullerene C60

The computational results of permanental polynomial of the famous buckminsterfullerene C60 is presented

in this section. With Algorithm LPT as load balancing strategy, higher parallel efficiency is obtained as

shown in Table 5. This is clear, if results in Table 3 and Table 5 are compared.

Table 5: Results of per(x2I −A) (d=8)

num Time(sec) Accelerated ratio Parallel efficiency

1 125528.59 - -

2 62771.94 1.99 0.9999

4 31430.37 3.99 0.9985

8 15748.20 7.97 0.9964

16 7959.24 15.77 0.9857

32 4100.71 30.61 0.9566

- 356 -

When the submatrices of xjI−A (j = 2, · · · , n/2) are scheduled all together at STEP 3 of Algorithm

PH, even higher parallel efficiency is achieved. The results are given in Table 6.

Table 6: Results of per(xjI −A) (j = 2, · · · , 30) (d=8)

num Time(sec) Accelerated ratio Parallel efficiency

1 3599529.54 - -

2 1799774.60 2.00 1.0000

7 514229.54 7.00 1.0000

32 112518.48 31.99 0.9997

512 7107.02 506.48 0.9892

Finally the coefficients of permanental polynomial of buckminsterfullerene C60(Ih) are presented in

Table 7. Numbers shown as ‘coef’ are the coefficients of the corresponding power indices.

Table 7: Coefficients of Permanental Polynomials of C60(Ih)

power coef power coef power coef

60 1 40 569449505688 20 710621056476228

59 0 39 -158182834960 19 -578519459274960

58 90 38 2380335416640 18 625754567921040

57 0 37 -804652301040 17 -500278613296800

56 3825 36 8408990831870 16 469829444630760

55 -24 35 -3389325032352 15 -359724534008944

54 102160 34 25214502300660 14 296904253790400

53 -1920 33 -11895419970480 13 -212445045923280

52 1925160 32 64398351077070 12 154600765396265

51 -72240 31 -34934337399360 11 -100775700006240

50 27245040 30 140511485229952 10 64144215349698

49 -1700880 29 -86082995358720 9 -36955969021840

48 300943940 28 262623196342200 8 20115770813385

47 -28129920 27 -178262235393200 7 -9828560060520

46 2662284480 26 421523399452800 6 4379799518800

45 -347730064 25 -310447923987216 5 -1700971266048

44 19206772020 24 582246374792420 4 572188221600

43 -3338031600 23 -454705832096640 3 -156907042080

42 114493986320 22 693042081727920 2 33654621840

41 -25522356960 21 -559816055470000 1 -4912398240

0 395974320

- 357 -

References

[1] G. G. Cash, A fast computer algorithm for finding the permanent of adjacency matrices, J. Math. Chem. 18

(1995) 115-119.

[2] G. G. Cash, The permanental polynomial, J. Chem. Inf. Comput. Sci. 40 (2000) 1203-1206.

[3] G. G. Cash, A differential-operator approach to the permanental polynomial, J. Chem. Inf. Comput. Sci. 42

(2002) 1132-1135.

[4] P. Dagum, M. Luby, M. Mihail, U. V. Vazirani, Polytopes, permanents and graphs with large factors,

Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science (1988) 412-421.

[5] I. Gutman, G. G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and

benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 45 (2002) 55-70.

[6] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1966)

1563-1581.

[7] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (1969) 416-429.

[8] Y. Huo, H. Liang, F. Bai, An efficient algorithm for computing pemanental polynomials of graphs, Comput.

Phys. Commun. 175 (2006) 196-203.

[9] H. Liang, F. Bai, A partially structure-preserving algorihm for the permanents of adjacency matrices of

fullerenes, Comput. Phys. Commun. 163 (2004) 79-84.

[10] A. Nijenhuis, H. S. Wilf, Combinatorial Algorithms for Computers and Calculators, 2nd ed.; Academic Press,

New York, 1978.

[11] H. Ryser, Combinatorial Mathematics, Mathematical Association of America, Washington DC., 1963.

[12] H. Tong, H. Liang, F. Bai, Permanental polynomials of the larger fullerenes, MATCH Commun. Math.

Comput. Chem. 56 (2006) 141-152.

[13] L. Valliant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189-201.

[14] N. Trinajstić, Chemical Graph Theory, 2nd ed.; CRC Press: Boca Raton, FL, 1992.

- 358 -

