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Abstract 
 It has been shown that previously published [1] probability density functions (PDFs) 

for several common signal-to-noise ratio (SNR) definitions are simply minor algebraic 

variants of the noncentral t distribution- based PDF results recently published by Nadarajah 

and Kotz [2].  The previously published, but unevaluated, integral expression for the PDF of 

quotients of SNRs has been shown to be in excellent quantitative agreement with Monte 

Carlo results.  Furthermore, it has been shown that the same integral expression also yields 

the PDF for quotients of relative standard deviations (RSDs) and the PDF for quotients of 

simple detection limits.  The latter was validated by comparison with detailed Monte Carlo 

simulations, with the result that accurate expectation values and detection limit 95% 

confidence intervals were obtained.  As a consequence, a major step has been taken toward 

the goal of being able to compare simple detection limits on a fair basis and being able to 

perform a statistical test, precisely analogous to a standard F test, to determine whether a 

given pair of experimental detection limits are plausibly from the same chemical 

measurement system with the same measurement system parameters and measurement 

protocol. 
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Introduction 

 In 1997, I published a paper [1] in which the PDFs of three commonly used SNR 

definitions were derived, along with the PDF for the relative standard deviation (RSD).  

These PDFs were shown to be in excellent agreement with detailed Monte Carlo simulation 

results, and then an expression was derived for the quotient, defined as R, of two 

independent, identically distributed (iid) SNRs [1, eqn 12].  It was stated at the time that 

“Lack of a closed-form expression for the PDF for x / s  effectively guarantees that quotients 

of two such ratios are cumbersome multiple integrals, as in eq 12, which are very time 

consuming to process numerically.  Therefore, it was decided to bypass eq 12 until more 

computing power becomes available and instead use Monte Carlo techniques to generate 

accurate histographic approximations of the desired R PDF.” 

 Recently, Nadarajah and Kotz [2] have demonstrated the important result that the 

three SNR variant definitions considered previously, and that of the RSD as well, are all 

fundamentally based on the noncentral t distribution [3, 4].  Although it has been known in 

the statistics literature at least as far back as 1940 [5] that the coefficient of variation (i.e., the 

RSD) was based on the noncentral t distribution, this connection was not known in analytical 

chemistry and Nadarajah and Kotz have done a service to the profession by explicating this 

matter.  They go on to state “Often, in the chemistry literature, tables of critical values of 

quotients of experimental SNRs are obtained by Monte Carlo simulation, see e.g. Voigtman 

(1997).  We feel that this is unnecessary because, as explained below, a better treatment could 

be provided by what is known in the statistics literature.”  They then derived the PDF 

expressions for SNR, SN ′R , SNRe, and RSD (see below for definitions of these 4 variates), 

and a formidable expression [2, eq 20] for the PDF of two independent noncentral t variates.  

They did not present evidence to substantiate the latter expression, which is a double infinite 

summation of Gauss hypergeometric functions. 

 Given the central importance of SNRs and RSDs in analytical chemistry and related 

measurement sciences, and the obvious, but subtle, relationship between RSDs and the most 

commonly used simple limit of detection definitions, i.e., those of the form ksblank/b, it is of 

interest to know how the previous results compare with those of Nadarajah and Kotz.  

Specifically, how well do the previous PDFs agree with those based on the noncentral t 

distribution and, now that more computing power has become available, how well does the 

previous expression for the R PDF actually work?  Answering these questions is important 

for another reason as well: since SNRs and RSDs are reciprocally related, quotients of RSDs 
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are governed by the same equation, with appropriate attention paid to degrees of freedom.  

Furthermore, quotients of detection limits (of the simple form given above) are also governed 

by the same equation as that for quotients of RSDs.  Hence, all three problems fall if any one 

falls and this “hat trick” is what is demonstrated below. 

 

Background 

 It is assumed that N independent samples are chosen from N:μ,σ, i.e., from a 

Gaussian distributed population having population mean (μ) and population standard 

deviation (σ).  Further, it is assumed that μ ε 0, for SNRs, and μ ε 4σ, for RSDs.  The sample 

mean ( x ), sample standard deviation (s) and sample standard error (se) are computed from 

the N replicates in the customary fashion, where se = s/N1/2 and the population standard error 

(σe) is σ/N1/2.  The degrees of freedom (ν) are N-1 and the biased sample standard deviation 

( ′s ) is (ν/N)1/2s. 

 With these assumptions, the experimental SNR and RSD definitions are as follows: 

 SNR ≡ x / s  (1) 

 SN ′R ≡ x / ′s  (2) 

 SNRe ≡ x / se  (3) 

 RSE ≡ se / x ≡ 1/ SNRe  (4) 

and 

 RSD ≡ s / x ≡ 1/ SNR  (5) 

where RSE in eq 4 is defined as the relative standard error.  The PDFs of these five variates 

are given in Table 1 and all are from [2], except for the PDF of RSE, which was trivially 

derived from that of SNRe. 

Table 1. Probability density functions for several SNR and RSD variates. 
 

u  pu (u)  
u ≡ SNR ≡ x / s  N1/2 t (uN1/2 |ν,δ )  
u ≡ SN ′R ≡ x / ′s  ν1/2 t (uν1/2 |ν,δ )  
u ≡ SNRe ≡ x / se  t(u |ν,δ )  
u ≡ RSE ≡ se / x  u−2 t(u−1 |ν,δ )  
u ≡ RSD ≡ s / x  N1/2u−2 t(N1/2u−1 |ν,δ )  
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Table 2 gives the previously described PDFs [1], plus a newly derived analogous PDF for 

RSE.  The α, K, β, γ and u expressions in Table 2 are substituted, as necessary, in the 

following master equation [1, eq 10]: 

 pα (α ) = K uνe−βu2 +γ udu
0

∞

∫  (6) 

Table 2. Previously published PDFs for several SNR and RSD variates. 
 

α K β γ u 
SNR  νν /2 (ν +1)1/2

σ ν+12(ν−1)/2 Γ(ν / 2)π 1/2 e−(ν+1)μ2 /2σ 2

 ν + (ν +1)α 2

2σ 2  
(ν +1)μα

σ 2  s  

SN ′R  (ν +1)(ν+1)/2

σ ν+12(ν−1)/2 Γ(ν / 2)π 1/2 e−(ν+1)μ2 /2σ 2

 (ν +1)(1+ α 2 )
2σ 2  

(ν +1)μα
σ 2  ′s  

SNRe  νν /2 (ν +1)(ν+1)/2

σ ν+12(ν−1)/2 Γ(ν / 2)π 1/2 e−(ν+1)μ2 /2σ 2

 (ν +1)(ν + α 2 )
2σ 2  

(ν +1)μα
σ 2  

se  

RSE  νν /2αν−1

σ e
ν+12(ν−1)/2 Γ(ν / 2)π 1/2 e− μ2 /2σ e

2

 1+ να 2

2σ e
2  

μ
σ e

2  x  

RSD  νν /2 (ν +1)1/2αν−1

σ ν+12(ν−1)/2 Γ(ν / 2)π 1/2 e−(ν+1)μ2 /2σ 2

 ν +1+ να 2

2σ 2  
(ν +1)μ

σ 2  x  

 

Comparison of the PDFs in Tables 1 and 2 requires numerical evaluation of the noncentral t 

distribution and numerical integration of eq 6. Likewise, for R defined as 

 R ≡ SNR2 / SNR1 = (x2 / s2 ) / (x1 / s1)  (7) 

the previously given PDF for R [1, eq 12] 
 

 
pR (R) = SNR10

∞

∫ s1 ps1
(s1)px1

(s1 ⋅SNR1)ds10

∞

∫⎡
⎣⎢

⎤
⎦⎥

×

                     s2 ps2
(s2 )px2

(s2 ⋅ R ⋅SNR1)ds20

∞

∫⎡
⎣⎢

⎤
⎦⎥
dSNR1

 (8) 

must also be numerically integrated (see below). 
 

Experimental 
 Extensive Monte Carlo calculations were performed to test the PDFs in Tables 1 and 

2 and eq 8.  All simulations were performed using the author’s LightStone simulation 

software libraries together with the Extend simulation program that runs it (Imagine That, 

Inc., San Jose, CA, USA, www.imaginethatinc.com). The LightStone and Extend combination 

runs on both Windows-based PCs and on Macintosh computers.  The present work was 

carried out on several iMacs (Apple, Inc., Cupertino, CA, USA).  The LightStone software, 

- 336 -



relevant information concerning Extend, and the simulation models described below, are 

available for free, with full, annotated source code, at the author’s web site: 

www.chem.umass.edu/~voigtman/LightStone/. 

 For evaluation of the noncentral t distribution, the version given by Keeping [4, eq 

8.12.1] was programmed into a LightStone block, with one typographical error correction: 

e−nk2 /t2

 should be e−nk2 /2t2

.  Four of the PDFs in Table 2 were already in LightStone, so all that 

was necessary was to add the PDF for RSE and program eq 8 into a LightStone block.  All of 

the Monte Carlo histograms described below contained 107 independent results, in 400 bins. 

 

Results 

A.  Comparing histograms with the PDFs in Tables 1 and 2 

 Figure 1 shows how the histograms were generated for each of the SNR and RSD 

variates in Tables 1 and 2.  For each of 107 simulation steps, in ten simulations of 106 steps 

each, values of SNR and RSD were computed and binned into histograms.  From the SNR 

variates, SN ′R  and SNRe variates were computed, exactly as shown, and then binned.  

Similarly, RSE variates were computed from the SNRe variates and binned.  The time 

required to run the simulations was 195 seconds. 

 
Fig 1: Monte Carlo simulation model for the generation of 107 event histograms for SNR, 
SN ′R , SNRe, RSD and RSE. 
 

 Figure 2 shows the histograms (markers only) for SNR, SN ′R and SNRe.  Each 

histogram was overplotted with its PDF from Table 1 and also with its PDF from Table 2 and 

it is immediately apparent that the pairs of PDFs cannot be visually distinguished.  By 

computing quotients of PDFs, of the form PDFTable1/ PDFTable2, it was found that the 

maximum deviation from unity, for comparisons in the regions where the PDFs were visibly 

above the zero baseline, was less than 0.5 parts per billion (ppb).  The cause of this excellent 

agreement is simple: Keeping’s expression for the PDF of the noncentral t distribution is 

based on the Airey function Hh(k) [4, eq 8.12.2]: 
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 Hh(k) ≡ (uν /ν!)
0

∞

∫ e−(u+k )2 /2du  (9) 

so the PDFs in Table 2 are simply algebraic variants of those based on Keeping’s integral 

expression of the noncentral t distribution. 

 
Fig. 2: Plots of the 107 event SNR, SN ′R , SNRe histograms produced by the simulation in Fig 
1, each overplotted with both of its corresponding PDFs from Tables 1 and 2. 
 

 Figure 3 shows the results for the RSD and RSE histograms and, as for the SNRs, 

each histogram was overplotted with its PDF from Table 1 and also with its PDF from Table 

2.  For quotients of the form PDFTable1/ PDFTable2, the maximum deviation from unity, for 

comparisons in the regions where the PDFs were visibly above the zero baseline, was less 

than 0.9 ppb. 

 Given the excellent agreement with the detailed Monte Carlo results, it is clear that 

Nadarajah and Kotz properly derived the PDFs for the SNR and RSD variates under 

consideration, as did the present author, though without having any idea that they were 

fundamentally related to the noncentral t distribution. 

 One immediate advantage of knowing that the SNR PDFs are based on the noncentral 

t distribution is that the moments of the noncentral t distribution are readily available [3, 6].  

Thus Table 2 in [1] is supplanted by the following equation [3]: 

 E[x / s] =
μ
σ

⎛
⎝⎜

⎞
⎠⎟

ν
2

⎛
⎝⎜

⎞
⎠⎟

1/2 Γ((ν −1) / 2)
Γ(ν / 2)

   for ν > 1 (10) 
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which corrects minor errors at ν = 2, 500 and 700, and a bigger one at ν = 1, where the 

expectation value simply does not exist.  More importantly, though, eq 8 makes it possible to 

entirely eliminate the previous SNR ratio tables and to directly compute risks, rather than 

having to settle for the limited risk values in the tables.  This is demonstrated in the next 

section. 

 
Fig. 3: Plots of the 107 event RSD and RSE histograms produced by the simulation in Fig 1, 
each overplotted with both of its corresponding PDFs from Tables 1 and 2. 
 

B.  Comparing SNR quotient histograms with eq 8 

 Figure 4A shows the Monte Carlo model used to generate quotients of SNRs of the 

form 

 R ≡ SNR2 / SNR1 ≡ (x2 / s2 ) / (x1 / s1)  (11) 

Two representative situations are presented, denoted as Case 1 and 2.  For Case 1, a single 

Gaussian distribution was used to obtain the requisite SNRs.  Specifically, 7 replicates were 

chosen from N:0.4,0.04 and used to compute SNR2, another 7 replicates were chosen and 

used to compute SNR1, and then R was computed.  This was done 107 times and the results 

were binned into a histogram block.  This scenario is precisely analogous to the null 

hypothesis situation in a standard F test in that what is of interest is knowing how far from 

unity R can be before it becomes unlikely that only a single distribution has been sampled. 
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Fig 4: A)  Monte Carlo simulation model for the generation of 107 event histograms for 
quotients of SNRs (as shown) or RSDs.  B)  Simulation model that computes the PDF for the 
quotient of SNRs (or RSDs) and overplots with SNR (or RSD) histogram results. 
 

 Case 2 was more complicated in that two different Gaussian distributions were used 

to obtain the requisite SNRs from which the 107 R variates were computed and binned.  In 

this case, the distribution from which SNR2 variates were computed was N: μ2, σ2, with μ2 = 

1, σ2 = 0.07, and N2 = 3 replicates, and the distribution from which SNR1 variates were 

computed was N: μ1, σ1, with μ1 = 0.31, σ1 = 0.04, and N1 = 4 replicates. 

 Figure 4B shows the block (“R PDF 1”) that implemented eq 8.  The required inputs 

for the block, aside from R values, were the four population parameters μ2, σ2, μ1, and σ1, and 

the numbers of replicates, N2 and N1.  Since eq 8 involved three integrals with infinite upper 

limits, the block also allowed for user-specification of the necessarily finite upper limits.  

These were simply multiples, typically by factors of 5 - 15, of μ1/σ1, σ1, and σ2, in left to 

right order in eq 8.  This flexibility was important due to the long tails of the SNR 

distributions, particularly at low degrees of freedom.  The integration itself was performed 

with a simple forward Euler algorithm. 

 Figure 5 shows the results for the two situations described above.  For Case 1, with 

the taller histogram and overplotted R PDF, the agreement between the histogram results and 

the R PDF was excellent and it is evident that the mode is significantly below unity, i.e., the 

ratio of population SNRs.  From the histogram, the expectation value of R, E[R], was 1.1059 
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and the central 95% confidence interval (95% CI) was 0.40 - 2.42.  Figure 6 shows how the R 

PDF was numerically integrated to obtain the cumulative distribution function (CDF), which 

resulted in a 95% CI of 0.42 - 2.44, and how E[R] was computed to be 1.1059.  The 

agreement between expectation values and CIs was excellent and, with the CDF in hand, it is 

immediately obvious that risks may be computed for any given experimental R value, e.g., for 

this particular case, the probability that R exceeds 2 happens to be 6.0%.  Thus the previously 

published tables are no longer necessary, exactly as Nadarajah and Kotz suggested was 

desirable [2]. 

 
Fig. 5: Plot of two 107 event SNR ratio histograms produced by the simulation in Fig 4A, 
overplotted with their corresponding PDFs computed via the model in Fig 4B. 
 

 Figure 5 also shows the histogram results and the R PDF for Case 2 and again the 

agreement was excellent.  As expected, the mode was clearly below 1.8433, which is the ratio 

of population SNRs: (1/0.07)/(0.31/0.04).  For this case, E[R]histogram = 3.02 and E[R]eq 8 = 

3.00, so the expectation values differ by less than 1%.  There is also a small difference in 

confidence intervals, since 95% CIhistogram = 0.44 - 11.6 and 95% CIeq 8 = 0.48 - 11.7. 

 

C.  Comparing RSD quotient histograms with eq 8 

 A difficulty that arises with RSDs is that they are not intrinsically censored, i.e., 

nothing prevents a given experimental x from being arbitrarily close to zero, thereby causing 

the RSD to be unbounded.  For this reason, expectation values of RSDs cannot exist, as is 

well known.  Furthermore, as Koopmans et al. proved [7], neither can confidence intervals 
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exist unless some constraint is imposed on x  relative to σ.  Traditionally, this is done by 

assuming μ ≥ 3σ  [8], or μ ≥ 4σ  [3, p. 143], as assumed above.  Nevertheless, it should be 

remembered that this does not afford absolute protection against small values of x  and 

confidence intervals for RSDs can only be approximations [3]. 

 
Fig. 6: Simulation model showing how expectation values and confidence intervals are 
computed for ratios of SNRs.  This also applies for ratios of RSDs and simple detection 
limits. 
 

 From the reciprocal relationship between SNRs and RSDs, an immediate consequence 

is that 

 R ≡
SNR2

SNR1

≡
x2 / s2

x1 / s1

=
s1 / x1

s2 / x2

≡
RSD1

RSD2

 (12) 

so ratios of RSDs are fundamentally governed by the same equation as ratios of SNRs, i.e., eq 

8.  Thus no separate testing was necessary.  A much more important consequence, however, 

is the fact that ratios of simple detection limit variates, i.e., of the general form ksblank/b, 

where b is the ordinary least squares (OLS) slope of a linear calibration curve, must be 

distributed in the same fashion as ratios of RSDs.  Accordingly, the next step was to generate 

107 event histograms of quotients of simple detection limits and compare with the PDF 

computed via eq 8.  This is demonstrated next. 
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D.  Comparing LOD quotient histograms with eq 8 

 Although simple detection limits of the type given above are a variety of RSD, they 

have a major advantage over ordinary RSDs in that they have finite expectation values and 

confidence intervals, if b is the OLS slope of a linear calibration curve and the measurement 

noise is Gaussian.  This has been explained in considerable detail elsewhere [9], so it suffices 

to say that, because the single-sided t test of the slope provides an intrinsic censorship of 

slopes that are small relative to their standard errors, simple detection limits must have finite 

upper and lower limits.  This fact then guarantees that the moments and confidence intervals 

exist. 

 Figure 7A shows the Monte Carlo model used to generate 107 quotients of simple 

detection limits of the form 

 Q ≡ L1 / L2 ≡ (k1sblank ,1 / b1) / (k2sblank ,2 / b2 )  (13) 

where k1 and k2 are “coverage” factors, b1 and b2 are OLS calibration curve slopes, and sblank,1 

and sblank,2 are sample standard deviations of the analytical blank.  Two representative 

situations are presented, denoted by Case 1 and 2.  For Case 1, the same chemical 

measurement system (CMS) was used to obtain the requisite detection limits in eq 13 above.  

Again this is analogous to the null hypothesis situation in a standard F test.  For this case, the 

CMS was assumed to be linear, without systematic error, and had β (true slope) = 2, α (true 

intercept) = 1, and homoscedastic, Gaussian noise with σ = 0.1.  There were 6 evenly spaced 

standards (Xi = 1, 2, …, 6), k1 = 3 = k2, and sblank,1 and sblank,2 were separately computed from 

two independent sets of 5 blank replicates each, with new blank replicates for each of the 107 

pairs of calibration curves.  The simulation required 574 seconds on an iMac 17. 

 Case 2 was considerably more complicated in that two different linear CMSs were 

used to obtain the requisite detection limits from which the 107 quotients were computed and 

binned.  In this case, the “numerator” CMS, giving L1 detection limits, had the following 

parameters: β1 = 2, α1 = 1, σ1 = 0.1, M1 = 1 (see below), N1 = 6 standards (Xi = 1, 2, …, 6), 

sblank,1 was estimated as the sample standard error about (OLS) regression, and k1 ≡ t0.05,4η1
1/2 , 

where t0.05,4 was the critical t value for 95% confidence and 4 degrees of freedom 

( ≈ 2.13185 ) and 

 η1
1/2 = M1

−1 + N1
−1 + X1

2 / SXX ,1⎡⎣ ⎤⎦
1/2

≈ 1.36626  (14) 

Thus, k1 ≈ 2.91266 .  The “denominator” CMS, giving L2 detection limits, had the following 

parameters: β2 = 3.3, α2 = 0.5, σ2 = 0.23, M2 = 1 (see below), N2 = 8 standards (Xi = 1, 2, …, 
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8), sblank,2 was estimated as the sample standard error about (OLS) regression, and 

k2 ≡ t0.05,6η2
1/2 , where t0.05,6 was the critical t value for 95% confidence and 6 degrees of 

freedom ( ≈ 1.94318 ) and 

 η2
1/2 = M 2

−1 + N2
−1 + X2

2 / SXX ,2⎡⎣ ⎤⎦
1/2

≈ 1.26773 (15) 

Therefore, k2 ≈ 2.46343 and k2 / k1 ≈ 0.845767 . 

 
Fig. 7: A)  Monte Carlo simulation model for the generation of 107 event histograms for 
quotients of simple detection limits of the form ksblank/b.  B)  Simulation model that computes 
the PDF for the quotient of detection limits and overplots with LOD quotients histogram 
results. 
 

 Since eq 8 is directly applicable to quotients of SNRs, and since detection limits 

typically involve additional scale factors, e.g., coverage factors, provision must be made for 

the situation in Case 2 above, where k1 ≠ k2.  This was done by dividing the independent 

variate (Q) by k1/k2 and also dividing the PDF by the same factor.  This follows because, if x 

is a random variate with PDF px(x), and y = cx, where c is a positive constant, then the PDF 

of y is py(y) = (1/|c|) × px(y/c) [10].  In the present case 

 pQ (Q) = (k1 / k2 )−1 pR (Q / (k1 / k2 )) = (k2 / k1)pR (k2Q / k1)  (16) 
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This equation is directly implemented in Fig 7B and the resulting pQ(Q) PDF is shown as 

being plotted with the histogram of Q variates. 

 A second consequence of eq 8 having been derived for quotients of SNRs is that the 

parameters necessary in eq 8 must be identified with corresponding parameters relevant to the 

CMSs.  For the four population parameters, this is straightforward: μ1 = β1, μ2 = β2, σ1 = 

σblank,1, and σ2 = σblank,2.  For calculation of sblank,1 and sblank,2 from direct replicate 

measurements of the analytical blank, the N1 and N2 values are simply the respective numbers 

of replicate blank measurements.  However, if sblank,1 and sblank,2 are estimated by the sample 

standard error about regression (sr) or by the standard error of the intercept (sa), then 

equivalent values of N1 and N2 must be used.  These are given by Nequivalent,1 = Nstandards,1 - 1 = 

ν1 + 1, and Nequivalent,2 = Nstandards,2 - 1 = ν2 + 1.  For Case 2 above, Nequivalent,1 = 6 - 1 = 5 and 

Nequivalent,2 = 8 - 1 = 7. 

 Figure 8 shows the results for the two situations described above.  For Case 1, with 

the shorter histogram and overplotted Q PDF, the agreement between the histogram results 

and the Q PDF was excellent and the mode was below unity, as expected. 

 
Fig. 8: Plot of two 107 event LOD ratio histograms produced by the simulation in Fig 7A, 
overplotted with their corresponding PDFs computed via the model in Fig 7B. 
 

From the histogram, E[Q] = 1.178 and 95% CI = 0.31 - 3.08.  The Q PDF was numerically 

integrated as per Fig 6, yielding E[Q] = 1.176 and 95% CI = 0.34 - 3.12.  The agreement 

between expectation values and CIs was excellent. Figure 8 also shows the histogram results 
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and the Q PDF for Case 2 and again the agreement was excellent.  As expected, the mode 

was clearly below 1.3939, which is simply (β1/σ1)/(β2/σ2).  For this case, E[Q]histogram = 0.918 

and E[Q]eq 8 = 0.917.  Similarly, 95% CIhistogram = 0.27 - 2.11 and 95% CIeq 8 = 0.29 - 2.13.  

Again, the agreement between expectation values and CIs was excellent. 

 

Discussion 
 Shortly after publishing a paper [11] on the statistical properties of several variant 

simple detection limit instantiations, Montville and Voigtman extended that work to the case 

of quotients of such detection limits.  An expression other than eq 8 was derived and 

preliminary results, which included direct comparison of theory, Monte Carlo simulations 

and experimental detection limits obtained for thousands of calibration curves, was presented 

as a poster [12].  Further work, based on Montville’s Ph.D. dissertation [13], is currently 

being written up for publication.  However, there were computational difficulties with that 

work which were never fully resolved, although reasonably effective workarounds were 

found. 

 In the results presented above, agreement between the Monte Carlo results and eq 8 

has been shown to be excellent and, similarly, agreement between the respective confidence 

intervals and expectation values has generally been excellent or close to it.  However, the 

integration routine employed (forward Euler) is the most primitive of all integration 

algorithms, having only the advantages of being trivially simple in both concept and 

implementation.  The resulting inefficiencies are such that relatively large numbers of 

integration steps (e.g., hundreds or thousands) are required for each integral in eq 8, which, 

aside from being time consuming, can cause numerical problems, especially for small values 

of σ. 

 It is possible to work around this problem by suitable scaling of σ values and other 

standard tactics, but, ultimately, a better solution would be replacement of the integration 

algorithm with one that is more robust and time efficient and this is currently under 

investigation.  Therefore, it is probably wisest to conclude that eq 8 provides the correct 

PDFs for quotients of SNRs, quotients of RSDs, and quotients of simple detection limits, but 

there is much room for improvement in the matter of accurately and efficiently obtaining 

numerical results from it.  Another option is to investigate the performance of the equation 

derived by Nadarajah and Kotz (vide supra), and this, too, is currently under investigation. 

 

 

- 346 -



Conclusions 

 It has been shown that previously published PDFs for several variant SNR definitions, 

plus that of the customary RSD [1], are simply minor algebraic variants of the elegant results 

recently published by Nadarajah and Kotz [2], who demonstrated that all of the PDFs were 

fundamentally based on the noncentral t distribution.  The previously published, but 

unevaluated, integral expression for the quotient of two SNRs, eq 8 above, was shown to be 

in excellent quantitative agreement with quotients of SNRs obtained by detailed Monte Carlo 

simulations, even when the SNRs were computed from samples from different populations 

and with different degrees of freedom.  It was shown that quotients of RSDs also have PDFs 

given by eq 8, and this immediately lead to recognition of the important result that quotients 

of simple detection limits must also have PDFs given by eq 8, with suitable identification of 

the relevant necessary parameters and degrees of freedom.  This latter conclusion was also 

substantiated by detailed Monte Carlo simulations and both expectation values and 95% 

detection limit confidence intervals were given, with excellent agreement between the Monte 

Carlo results and the results obtained by numerical integration of eq 8. 

 As a consequence of eq 8 giving the PDFs for ratios of SNRs and also for ratios of 

RSDs, there is no need for tables of critical values for comparison purposes.  In particular,  

the SNR ratio tables previously published [1] are now supplanted by use of eq 8, as has been 

demonstrated.  With regard to ratios of detection limits, tables never would have been viable 

because of the large number of possible variations in calibration parameters.  Thus, knowing 

that eq 8 gives the PDF for such ratios is a significant step toward the goal of being able to 

compare simple detection limits on a fair basis and being able to perform a statistical test, 

precisely analogous to a standard F test, to determine whether a given pair of experimental 

detection limits are plausibly from the same CMS.  It is hoped that the above results will 

prove useful to the analytical community. 
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