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Abstract. We present new numerical characterization of DNA sequences that is based

on the modified graphical representation proposed by Hamori. While Hamori embeds the

sequence into Euclidean space, we use analogous embedding into the strong product of

graphs, K4 ¤×Pn, with weighted edges. Based on this representation, a novel numerical

characterization is proposed which is based on the products of ten eigenvalues from the

start and the end of the descending ordered list of the eigenvalues of the L/L matrices

associated with DNA. The examination of similarities/dissimilarities among coding se-

quences of the first exon of the β-globin gene of different species illustrates the utility of

the approach.

1 Introduction

Nowadays the automated DNA sequencing techniques have led to an explosive growth

in the number and the length of DNAs sequences from different organisms. This has

resulted in a large accumulation of data in the DNA databases, but has also called for the

development of suitable techniques for rapid viewing and analysis of the data. Graphical

representations of DNA sequences were initiated by Hamori [4] and later expanded by
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many others, see the review [21] and a number of more recent papers, for example [8, 9,

10, 12, 13, 14, 15, 22, 23, 24], the list being by no means exhaustive.

The advantage of graphical representation of DNA sequences is that they allow visual

inspection of data, helping in recognizing major differences among similar DNA sequences.

These techniques provide useful insights into local and global characteristics and the

occurrences, variations and repetition of the nucleotides along a sequence which are not

as easily obtainable by other methods. Two-dimensional plots are obviously useful for

visual communication of the results of an analysis, but can also be useful to help checking

for the presence of an effect by human eye rather by a computer program, and finally, they

are used for identifying unsuspected structures in the data. Recently, it has been shown

that some of the graphical representations lead to numerical characterizations of DNA

sequences and quantitative measures of the degree of similarity/dissimilarity between

the sequences [13, 14, 15, 21, 23]. Similarly as topological indices used as molecular

descriptors can dramatically improve the search for synthesis of compounds with a desired

property [20], it is hoped that the numerical descriptors of DNA may be used to predict

some properties of the DNA sequences. An important advantage of a characterization of

structures by invariants, as opposed to use of codes, is the simplicity of the comparison

of numerical sequences based on invariants. The price paid is a loss of information on

some aspects of the structure that accompany any characterization based on invariants.

The loss of the information, however, can in part be reduced by use of larger number of

descriptors (invariants) [16, 17].

By a graph we mean a set V (G) of vertices, together with a set E(G) of edges. A

graph is the complete graph Kn if any two of its distinct vertices are adjacent. A graph

is the path Pn if it is isomorphic to a graph on n distinct vertices v1, v2, . . . , vn and n− 1

edges vi, vi+1, 1 ≤ i < n.

As the four bases A, G, C, and T are regarded independent, at least four dimen-

sions are needed for an embedding that is free of using some arbitrary conventions. A

number of graphical representations first embeds the DNA sequence into an Euclidean

space of some dimension, using a projection to 2-D plot, where for the projection again

some more or less arbitrary choice has to be made. In this paper, we essentially use a

more dimensional presentation, but instead of working with Euclidean coordinates we
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rather embed the sequence into a graph, more precisely into a strong product of K4 times

a path. A geometric representation would then be more than two dimensional as an

isometric drawing of K4 is only possible in three dimensions. In figures here we use a

particular drawing of the graph, which in our opinion seems to give a good impression of

the sequence to the observer. The one dimensional plot of K4 is of course not isometric

(i.e. the edges in the plot have different lengths) but we believe that the resulted drawing

may be a reasonable compromise between the arbitrary projection(s) and a unique more

dimensional embedding which can, of course, easily be found by an isometric embedding

of the complete graph K4 into Euclidean space, for example by mapping A, C, G, and

T to the edges of a tetrahedron in 3D or to the four unit vectors in 4D. Furthermore,

based on this graph representation we propose a novel numerical characterization of the

DNA sequence. In contrast to some other numerical characterizations that are based on

the graphical representations [9, 12, 15, 23], our representation is free of arbitrary choices

because it is based on the graph and not on its drawing, i.e. embedding and projection.

The numerical characterization uses eigenvalues of a matrix that is based on the graph

distances. The numerical invariant is computed for the first exon of the β-globin gene for

the 10 different species, a dataset shown in Table 1, that is used in many recent studies

[8, 9, 10, 12, 13, 14, 15, 22, 23] and is taken from EMBL-EBI database [25]. This dataset

is one of the primary tools for comparison of different graphical and numerical character-

izations and was first used by Nandy [11] and later by other authors [8, 12, 13, 15, 22].

The reason why Nandy decided to use this gene lies in the fact that β globin sequences

represent a conservative gene, that is, the gene that changes little from one species to

another. The differences between the values of the invariant are used as a measure of

similarity/dissimilarity among the species. We do not attempt to extensively comment

the results because this is not an area of our expertise. However we wish to note that

our results are not like those obtained by a similar computations which are based on

eigenvalues of the graphical representations [12], but are based on graphs, therefore our

approach is using less computational effort. For example in [12] one has to compute 12

different permutations of the graphical representation before the actual characterization,

while our approach computes only one.

The rest of the paper is organized as follows. In the next section we recall the Hamori
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curve representation and explain our modification. Our numerical characterization is

explained in Section 3, and in Section 4 we give results of application to a data sample.

2 Modified Hamori curve representation

We based our research on DNA sequence representation introduced by Hamori [4]. In this

method, the information content of a DNA sequence is mapped into a three-dimensional

space function (H curve). The positive x-direction is used to count the number of bases

in the sequence. At each point of x on the corresponding yz plane the four corners (NW,

NE, SE and SW as four points on the compass) are taken to represent the four bases A,

C, G and T . Basic rule for the construction of the sequence map is to move one unit in

the corresponding direction depending on which nucleotide (base) is being plotted and

to draw a connected line of all such points plotted, one for each unit in the x-direction.

Thus a sequence like ATGGTGCACCTGACT... will generate a spiral along the x-axis.

H-curve representation is sensitive to the directions chosen for four bases. For example

representation with bases ACGT corresponding to four corners is different from AGCT ,

since the distance from base A to base G is different in this two cases.

We modified this approach by putting the corners of four bases on the K4 and weighted

all the edges in K4 with 1. This way we avoided the drawback of the original representa-

tion. Edges in the x direction or along Pn are weighted with 1 if the base in the coding

sequence is the same as the previous one and with
√

2 otherwise.

Formally, a sequence of the length n in this paper is a path in the strong product of the

graphs K4 and Pn. The strong product G1 ¤×G2 of graphs G1 and G2 has as vertices the

pairs (g, h) where g ∈ V (G1) and h ∈ V (G2). Vertices (g1, h1) and (g2, h2) are adjacent

if either {g1, g2} is an edge of G1 and h1 = h2 or if g1 = g2 and {h1, h2} is an edge of G2

or if {g1, g2} is an edge of G1 and {h1, h2} is an edge of G2. The strong product is one of

the standard graph products [7].

Here K4 is a complete graph on vertices A,C, G, T and Pn is a path on the vertices

1, 2, . . . , n. The edges of the product are weighted as follows:

W ((i, j)(k, `)) =

{
1 i = k or j = `√

2 i 6= k and j 6= `
(1)

Figure 1 shows modified Hamori curve, where first few edges between the K4’s have

weights indicated with the numbers on gray background. The factor K4 is drawn on a
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circle and projected to obtain a 2-D drawing. Any other possibly nicer drawing of the

graph K4 ¤×Pn can be used [1, 2]. However, we find our way of drawing the graph and

the path a reasonable compromise that can be used as a help for easier understanding of

our concept. Note that all the edges within the vertical factor (K4) and all the horizontal

edges have weight 1 while all edges between K4 factors that are not horizontal have weight
√

2. The motivation for choosing
√

2 is the intuitive assumption that the two factors in

the product are orthogonal, hence the corresponding edge is the diagonal of a unit square.

Figure 1: Modified Hamori curve

3 Numerical characterization of DNA sequences

In order to numerically characterize a DNA sequence given by the 2-D graphical repre-

sentation based on our approach one can associate with a corresponding zigzag curve a

matrix and consider matrix invariants that are sensitive to the form of the curve. This

approach was first outlined and used by Randić et al. [13]. One of the possible matrices

they use is the L/L matrix (the length/length matrix) whose elements are defined as the

quotient of the distance between a pair of the vertices (dots) of the zigzag curve and the
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Table 1: The coding sequences of the first exon of β-globin gene of 10 different species
Species Coding sequence
Human ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAA-
(92 bases) GGTGAACGTGGAGTAAGTTGGTGGTGAGGCCCTGGGCAG
Opossum ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTAAG-
(92 bases) GTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG
Gallus ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTGGGGCAA-
(92 bases) GGTCAATGTGGCCGAATGTGGGGCCGAAGCCCTGGCCAG
Lemur ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGGGCAA-
(92 bases) GGTGGATGTAGAGAAAGTTGGTGGCGAGGCCTTGGGCAG
Mouse ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGTCTCTTGCCTGTGGGGAAA-
(92 bases) GGTGAACTCCGATGAAGTTGGTGGTGAGGCCCTGGGCAG
Rabbit ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGCAA-
(90 bases) GGTGAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC
Rat ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTGGGGAAA-
(92 bases) GGTGAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG
Gorilla ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAA-
(93 bases) GGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG
Bovine ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGCCTTTTGGGGCAAGGTGAA-
(86 bases) AGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAG
Chimpanzee ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAA-
(105 bases) GGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGG

sum of distances between the same pair of vertices measured along the zigzag curve. Here

we use analogous matrix based on the weighted graph representation of DNA, i.e. the

entries of the L/L matrix are the quotients between the graph distance and the weighted

graph distance. Using this weights we can construct L/L matrix as is shown in Table 2

where we used first 10 bases of the first exon of β-globin gene of human. For example, the

first three entries of the first row are 1√
2
' 0.707, 2√

2+
√

2
' 0.707, and 3√

2+
√

2+1
' 0.783.

Formally, we assign the matrix LLx to the sequence x with

LLx(i, j) = j−i
d((xi,i),(xj ,j))

where d((xi, i), (xj, j)) is the distance in the weighted graph K4 ¤×Pn. More pre-

cisely, d((xi, i), (xj, j)) =
∑j−1

k=i W ((xk, k)(xk+1, k + 1)) for j > i. (For i = j we put

d((xi, i), (xj, j)) = 0 and for j < i we define d((xi, i), (xj, j)) = d((xj, j), (xi, i)).)

We will characterize the coding sequences of the first exon of β-globin gene of 10 species

(including human), shown in the Table 1, by means of the leading eigenvalues, λ, of the

L/L matrix. Eigenvalues of a matrix are one of the best known matrix invariants. If a

matrix is symmetric, as is the case with all the matrices considered here, the eigenvalues

are real. A set of eigenvalues can be viewed as a characterization of a structure, but as

is well known such characterization is not unique. In other words, different graphs and

different structures may have the same set of eigenvalues. Such graphs are known as

isospectral and have received considerable attention in mathematics [5, 3] and chemistry

[6], of which we only indicated some earlier contributions. While it was initially thought
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that the complete coincidence of all eigenvalues may be an exception rather than a rule,

the subsequent research revealed that isospectral graphs are more a rule than exception.

That, however, does not diminish their utility, although they would fail to discriminate

structures in testing for isomorphism [16]. On other hand, if two structures are similar

they are likely to have similar eigenvalues and consequently similar product of leading

eigenvalues. In a recent study in which the DNA sequence was characterized by average

distances between various nucleic acid bases was shown that is very sensitive already when

a single nucleic base has been changed [19].

Our characterization begins with computing the L/L matrix and then computing

eigenvalues of this matrix. First few eigenvalues for each species are shown in descending

order in the Table 3. In the next step we order the eigenvalues from largest to the smallest.

Then we compute the product of first ten and last ten leading eigenvalues of such ordering.

Species have different lengths of DNA sequence, shortest is DNA sequence of the bovine

(86 bases) and longest of the Chimpanzee (105 bases), therefore we needed to find some

common number of eigenvalues. We decided to take 10 eigenvalues from the start and

the end of the descending ordered list of the eigenvalues. (Note that the choice of 10

was arbitrary. We have performed the same procedure using 9 and 11 eigenvalues and

obtained very similar results which gives some evidence that the method is robust, i.e.

not too sensitive to the choice of the number of eigenvalues.)

Formally, the numerical characterization of the sequence x = (x1, x2, . . . , xn), xi ∈
{A,C,G, T} is a product of first ten and last ten eigenvalues of the descending ordered

eigenvalues list of the matrix LLx,

Λ(x) = λ1(LLx)λ2(LLx) . . . λ10(LLx)λn−9(LLx)λn−8(LLx) . . . λn(LLx). (2)

4 Similarities/dissimilarities among the coding sequ-

ences of the first exon of β-globin gene of the dif-

ferent species

We will illustrate the use of novel quantitative characterization of the DNA sequences with

the examination of the similarities/dissimilarities among the 10 coding sequences shown

in Table 1. The analysis of similarity/dissimilarity is based on the assumption that two
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Table 2: The upper triangle of the L/L matrix of the sequence ATGGTGCACC

Base A T G G T G C A C C
A 0 0.707 0.707 0.783 0.762 0.751 0.743 0.737 0.733 0.756
T 0 0.707 0.828 0.783 0.762 0.751 0.743 0.737 0.762
G 0 1.00 0.828 0.783 0.762 0.751 0.743 0.771
G 0 0.707 0.707 0.707 0.707 0.707 0.743
T 0 0.707 0.707 0.707 0.707 0.751
G 0 0.707 0.707 0.707 0.762
C 0 0.707 0.707 0.783
A 0 0.707 0.828
C 0 1.00
C 0

Table 3: The 10 leading eigenvalues, λ, of the L/L matrices for the coding sequences

Leading eigenvalues
Human Opussum Gallus Lemur Mouse Rabbit Rat Gorilla Bovine Chimpanzee
70.224 68.652 70.267 69.071 69.792 68.464 70.390 71.033 66.916 80.584
0.065 0.023 0.092 0.227 0.327 0.044 0.307 0.069 0.312 0.087
-0.236 -0.156 -0.122 -0.017 -0.218 -0.237 -0.113 -0.236 -0.224 -0.213
-0.275 -0.363 -0.237 -0.205 -0.239 -0.248 -0.229 -0.275 -0.319 -0.273
-0.378 -0.397 -0.377 -0.244 -0.321 -0.388 -0.265 -0.396 -0.377 -0.349
-0.396 -0.440 -0.389 -0.353 -0.378 -0.397 -0.327 -0.378 -0.426 -0.381
-0.426 -0.444 -0.413 -0.467 -0.426 -0.425 -0.420 -0.419 -0.447 -0.396
-0.433 -0.460 -0.435 -0.488 -0.461 -0.432 -0.439 -0.432 -0.459 -0.415
-0.461 -0.471 -0.487 -0.501 -0.475 -0.447 -0.457 -0.461 -0.483 -0.433
-0.475 -0.485 -0.503 -0.513 -0.503 -0.484 -0.495 -0.475 -0.490 -0.461

DNA sequences are similar if the corresponding differences between the products of ten

leading eigenvalues are small.

In Table 4 we give the similarity/dissimilarity matrix. The smallest entries in Table 4

are associated with the pairs (human, chimpanzee), (human, gorilla) and (gorilla, chim-

panzee) which is in accordance with our intuitive expectations and, not surprisingly, also

in accordance with other studies [8, 13]. On the other hand the largest entries in the

similarity/dissimilarity matrix appear in rows belonging to bovine and opossum. On the

basis of these findings we conclude that the presented numerical characterization via L/L

matrices as well products of leading eigenvalues have captured some important features

of the DNA sequences considered.

Formally we can define similarity relations as follows:

similarity(x, y) = |Λ(x)− Λ(y)|, where x, y are sequences of the species
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Table 4: The similarity/dissimilarity matrix for the coding sequences of Table 1 based on
product of first ten leading values of L/L matrix

Species Human Chimpanzee Gorilla Opussum Gallus Lemur Mouse Rabbit Rat Bovine
Human 0 0,002299 0,000652 0,00862 0,003545 0,009986 0,041185 0,005268 0,007074 0,100412
Chimpanzee 0,002299 0 0,001646 0,010919 0,005843 0,012284 0,038886 0,007566 0,004775 0,098113
Gorilla 0,000652 0,001646 0 0,009272 0,004197 0,010638 0,040532 0,00592 0,006421 0,099759
Opussum 0,00862 0,010919 0,009272 0 0,005075 0,001366 0,049805 0,003352 0,015694 0,109032
Gallus 0,003545 0,005843 0,004197 0,005075 0 0,006441 0,044729 0,001723 0,010618 0,103956
Lemur 0,009986 0,012284 0,010638 0,001366 0,006441 0 0,05117 0,004718 0,017059 0,110397
Mouse 0,041185 0,038886 0,040532 0,049805 0,044729 0,05117 0 0,046452 0,034111 0,059227
Rabbit 0,005268 0,007566 0,00592 0,003352 0,001723 0,004718 0,046452 0 0,012341 0,105679
Rat 0,007074 0,004775 0,006421 0,015694 0,010618 0,017059 0,034111 0,012341 0 0,093338
Bovine 0,100412 0,098113 0,099759 0,109032 0,103956 0,110397 0,059227 0,105679 0,093338 0

5 Conclusion

Our objective was to arrive at a numerical characterization of DNA sequences, which as

can be seen from Table 4, may be accomplished in a relatively simple algebraic manner and

make the proposed approach very attractive for the characterization of DNA sequences

having 1,000 or more bases. Needles to say that the outlined approach is suitable for

characterization of local fragments of DNA, which is precisely how one may look on the

truncated DNA fragment considered in this work. Conceptually and computationally the

approach is simple and therefore can be very useful in the field of the bioinformatics.

While the existence of isospectral graphs implies that there are structures that can

not be distinguished by any spectral method, another important reason for losing the

structural information may be due to the method of generating a graph (or matrix) from

the sequence (e.g. choice of the representation and/or choice of the subset of eigenvalues)

as pointed out by one of the referees. In our case, it is clear that the method does

not distinguish between sequences in which the letters are permuted. Such sequences

give rise to isomorphic graphs and hence the spectrums are identical. This can be a

serious drawback if arbitrary sequences are compared, but it seems extremely unlikely

that it would be of any importance when comparing DNA sequences. For example, when

restricted to certain gene (or, DNA fragment) from different species it would mean that

we have two working genes at two different species that differ by a permutation of letters

which means that their distance measured in mutations is very large and hence extremely

unlikely (or, impossible).
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