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Abstract. Graphs have been used extensively in theoretical computer science to
model various discrete structures, most notably data structures. Chemists have also
utilized graphs to represent and quantify molecules and more recently, graphs have
appeared in the literature as biomolecules such as RNA and protein structures. In this
work, we quantify a graphical representation of secondary RNA structures using trees.
By identifying a subset of the trees whose elements are known to model secondary RNA
structure, we train a neural network to recognize the patterns of graphical invariants
of trees that are RNA-like in structure. What is of particular interest is that these
invariants are tools primarily from the field of theoretical computer science. We then
identify additional trees that are potential representations of RNA secondary structure
that may either occur naturally and have not been identified or may be considered a
viable candidate for synthetically produced RNA.

1. Introduction

At one time scientists believed that the number of genes in the human genome would

far exceed the number of genes found in less complex species. It is now known that this

not the case, but that instead the genome of less complex species contain approximately

the same number of genes as the human genome and in some cases even more. The gene

regulatory network is now known to be much more complex than previously thought,

and the paradigm of the DNA to RNA to proteins is under new scrutiny. It is now

well established that RNA molecules in particular play multiple interacting roles and

the class of non coding RNA’s is rapidly expanding.[1] It has been shown, for example,

that a large percentage of the mouse transcriptome is primarily composed of non coding

RNAs[2] and evidence suggests that approximately half of the human RNAs are non

coding.[3] In fact, the widespread conservation of secondary structure points to a very

large number of functional RNAs in the human genome.[4, 5] Therefore it is apparent
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that a comprehensive database of RNA motifs is an essential component for further

research and a thorough examination of the structural properties of secondary RNA is

merited.

Unlike the protein counterpart where sequence alignment methods have proven to

be highly successful, many secondary RNA structures can exhibit highly similar fea-

tures while having very different primary sequences.[6] Consequently, many classes of

RNA molecules are characterized by highly conserved secondary structures having little

detectable sequence similarity. Multiple sequence alignment methods alone cannot be

considered reliable for determining RNA structural characteristics which implies that

both sequential and structural information is required in order to expand the current

RNA databases.[7] It is assumed that the natural tendency of the RNA molecule is to

fold to its most stable conformation and this assumption is the basis for the lowest

energy model. Combining sequential and structural information has led to the design

of an efficient algorithm for local motif recognition by calculating a structure conser-

vation index based on the minimum free energy paradigm.[4] However, algorithms that

incorporate structural information based on the minimum free energy assumption are

not always correct. A novel method based on Boltzmann-weighted structures showed

marked improvement over structures based on the minimum free energy paradigm.[8]

Thus, structural information that does not rely upon the assumption of minimum free

energy alone deserves attention. In this work we demonstrate that when a secondary

RNA structure is represented by a graph and quantified by graphical invariants, these

numerical values are indicative of RNA structure. These graphical values are indepen-

dent of the minimum free energy constraints.

Secondary RNA structures have frequently been represented by various modeling

methods as graph-theoretic trees. RNA tree graphs utilized in this work were first

developed by Le et al.[9] and Benededetti and Morosetti[10] to determine structural

similarities in RNA. Although trees have been used previously to model secondary RNA

structure, applying the graphical invariants of the corresponding graphs has been lim-

ited. This is unfortunate since using graph theory as modeling tool allows the vast

resources of graphical invariants to be utilized. In previous work by Knisley et.al.[11] it

was shown that graphical invariants commonly applied in fields such as computer net-

work design or invariants studied in a purely mathematical setting are in fact indicative

of secondary RNA structures. In this paper, we expand upon our findings and intro-

duce additional graph-theoretic parameters. We then use parameters defined in terms
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of graph invariants to train a neural network to recognize a tree that is RNA-like in

structure. The neural network then identifies additional trees as candidates for novel

secondary RNAs.

In the following section, we discuss the combinatorics of simple trees and then follow

with a section that describes the modeling method by which simple trees are utilized

to represent secondary RNA structure. We reference the RNA database RAG which

catalogs all simple trees with eleven or fewer vertices.[12] In the RAG database, all trees

of orders 2 through 11 are represented. For trees of orders 2 through 8, each tree has been

classified as an RNA tree, an RNA-like tree or not RNA-like tree. For trees of order nine

and above, trees that represent a known secondary RNA structure are identified as an

RNA tree, but no trees are shown to be candidate structures, i.e. RNA-like. By finding

graphical invariants of the trees of orders seven, eight and using the four additional trees

of order nine as well, we train a neural network to identify new RNA-like structures of

order nine.

2. Graph-theoretic Trees

2.1. Combinatorial aspects of trees. Trees have been highly studied in graph theory,

both for application purposes and theoretical pursuits. A tree is frequently defined

as a connected graph with the property that no two vertices lie on a cycle. These

two properties of trees (connected and acyclic) completely characterize a tree since the

removal of any edge will disconnect the graph and the addition of any edge will generate

a cycle. This property of trees also implies that every tree with n vertices has exactly

n − 1 edges. In fact, given any positive integer n, the exact number of trees with n

vertices is given by a formula derived by Harary and Prins.[13] Applying combinatorial

enumeration techniques, they determined the counting polynomial for unlabeled trees.

In particular, they determined the generating polynomial
∑

anx
n where the coefficient

of xn is the number of trees with n vertices. By the first 10 terms below, we see that

there is exactly one tree with 1, 2, or 3 vertices, two trees with 4 vertices, three trees

with 5 vertices, six trees with 6 vertices, eleven trees with 7 vertices, twenty three trees

with 8 vertices and forty seven trees with 9 vertices and so forth.

p(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8 + 47x9 + · · ·

Thus for unlabeled trees, the exact number of trees that can be drawn is known.

Figure 1 contains the 11 trees of order 7.
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Figure 1. The 11 trees of order 7.

2.2. Tree Representation of Secondary RNA Structures. In the classic work of

Waterman et.al.,[14] secondary RNA structure is defined as a graph where each vertex ai

represents a nucleotide base. If ai pairs with aj and ak is paired with al where i < k < j,

then i < l < j. Combinatorial techniques have been applied to enumerate small order

graphs with these given constraints. The combinatorial counting results of Waterman

are extended by enumerating a variety of sub-classes of secondary graphs by Hofacker

et.al.[15] Their work was not concerned with the physical rules that govern the folding

process, rather it was concerned with combining structural elements into a new valid

structure using combinatorial techniques.

In this work we use the RNA database RAG and the tree model developed by Schlick

et.al.[12] Unlike the classic model developed by Waterman et.al. where atoms are rep-

resented by vertices and bonds between the atoms by edges in the graph, this model

represents stems as edges and breaks in the stems that result in bulges and loops as

vertices. A nucleotide bulge, hairpin loop or internal loop are each represented by a

vertex when there is more than one unmatched nucleotide or non-complementary base

pair. This modeling method is illustrated in Figure 2.

3. Domination invariants

There are a number of graphical invariants that are highly sensitive to even a slight

change in the structure of a tree. The domination number of a graph is an example of

such an invariant. The idea of domination is based on sets of vertices that are near (dom-

inate) all the vertices of a graph. The domination number of a graph is the minimum
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Figure 2. Illustration of the Modeling Method

number of vertices in a vertex set S with the property that all remaining vertices not in

S are adjacent to at least one of the vertices in S. In [11] two parameters based on the

domination number and variations on the domination number are defined by two classes

of invariants and are subsequently shown to be indicative of secondary RNA structure.

In one class, the domination numbers increase as the amount of branching in the tree

increases while in the other class the opposite is true. That is, the numbers decrease as

the branching increases. Hence we defined two distinct parameters, P1 and P2, grouping

the invariants by their behavior. The domination number, total domination number and

the global alliance number are used to define P1 and differentiating domination number

and the locating domination number are used for P2.

P1 =
γ + γt + γa

n

P2 =
γL + γD

n

In this work we also utilize the line graph of a tree and we calculate the diameter, the

radius and the number of blocks of the line graph for each tree. These values are used

to define P3. To normalize the results, the sums were divided by the total number of

vertices in the tree. Before proceeding, we formally define the invariants listed above.

These definitions can be found in Fundamentals of Domination in Graphs,[16] Chemical

Graph Theory,[17] or in Graph Theory and its Applications.[18]

3.1. Definitions. We denote the vertex set of a graph by V (G), or simply V . The

number of edges incident to a vertex v is the degree of the vertex deg(v), and two vertices

are adjacent if they are incident to the same edge. A vertex set S is a dominating set if

for every vertex u ∈ V − S, u is adjacent to at least one vertex in S. The domination

number γ(G) is the minimum cardinality among all dominating sets in G. A set S is

a total dominating set if for every vertex u ∈ V , u is adjacent to at least one vertex
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in S (note here that even the vertices in S must be adjacent to a vertex in S). The

total domination number γt(G) is the minimum cardinality among all total dominating

sets in G. The neighborhood of a vertex v, denoted by N(v), is the set of all vertices

adjacent to v and the closed neighborhood of a vertex u is N [u] = N(u) ∪ {u}. A

dominating set S is called a locating-dominating set if for any two vertices v, w ∈ V −S,

N(v) ∩ S 6= N(w) ∩ S. Thus, in a locating dominating set, every vertex in V − S is

dominated by a distinct subset of the vertices of S. The locating-domination number of

a graph G is the minimum cardinality among all locating dominating sets in G and is

denoted by γL(G). A dominating set S is called a differentiating dominating set if for

any two vertices v, w ∈ V , N [v]∩S 6= N [w]∩S. The differentiating domination number

of a graph G is the minimum cardinality among all differentiating dominating sets in

G and is denoted by γD(G). The global alliance number of a graph G is the minimum

cardinality among all global alliances of G, where a set S is a global alliance if S is a

dominating set and for each u ∈ S, the number of “allies” it has in S are at least as

many as it has in V − S. In other words, S is a dominating set and for each vertex

u ∈ S, it is true that |N [u] ∩ S| ≥ |N(u) ∩ (V − S)|.
The eccentricity of a vertex v is the maximum distance from v to any other vertex

u in the graph where distance is defined to be the length of the shortest path and is

denoted by d(v, u). The diameter of G, diam(G), is the maximum eccentricity where

this maximum is taken over all eccentricity values in the graph G. That is

diam(G) = max
u,v∈V

{d(v, u)}(1)

and the radius of a graph G, denoted by rad(G) is given by

rad(G) = min
x∈V

max
y∈V

{d(x, y}(2)

The line graph of a molecular graph is known to relay structural information about

the corresponding molecule[19]. These values are frequently used as descriptors for

QSAR models and properties of the second iterated line graphs also have been applied in

computational geometry techniques for biomolecular conformations.[20] The line graph

of G, denoted by L(G), is a graph derived from G in such a way that the edges in

G are replaced by vertices in L(G). Two vertices in L(G) are adjacent whenever the

corresponding edges in G share a common vertex. See Figures 3 and 4 for illustrations.

The block of a graph as a maximal connected subgraph H such that no vertex of H

can be removed resulting in a disconnected graph. Referring to Figure 3, T has 7 blocks

and its line graph, L(T ) has 3 blocks.

- 282 -



r r r
r

r

r

r
@

@
@

¡¡

r
T L(T )

r

r

r@@
@@r

r

¡
¡

¡

r
r

@@ ¡¡
@@

Figure 3. RNA-like tree T (8,15) and its associated line graph L(T ).
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Figure 4. A Not RNA-like tree T and its associated line graph L(T ).

3.2. Invariants as biomolecular quantifiers. Parameters P1 and P2 are normalized

sums of the graphical invariants defined in the preceding section:

The diameter and radius are indicative of the distances between the vertices and hence

with respect to the model, the invariants in P3 measure relative distance between the

helical stems. We also include the clustering aspects of the stems by the number of blocks

of the line graphs. Thus, P3 measures the ”average” of these invariants, normalized by

n and where L(T ) represents the line graph of the tree and |B| is the number of blocks

in the line graph of the tree.

P3 =
diam(L(T )) + rad(L(T )) + |B|

n

4. An Artificial Neural Network

The graph theoretic parameters for the 26 trees of order 7, 8, or 9 that are either

verified as RNA trees or classified as not RNA-like are used to predict the RNA-like

status of the 55 remaining trees of order 7, 8, or 9. This method of classification yields

results similar to the statistical analysis by the authors in a previous work and provided

us with a predictive tool for the forty seven trees of order nine. These preliminary findings

using graphical invariants as input values for the neural network are very promising

and suggest that many other objectives in proteomics and genomics may be achieved

by combining graph-theoretic models with neural network classifiers. In the following

sections, we discuss the particulars of the training, the design of the algorithm, and the

analysis of the training results.

4.1. Algorithm and Implementation. Our approach is to train a multi-layer per-

ceptron (MLP) artificial neural network using a standard back-propagation algorithm.
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Results from a back-propagation MLP can be reproduced independently by other re-

searchers and can also provide information beyond simple predictions.

In an MLP, the ith perceptron is an artificial neuron with an activation xi that satisfies

xi = σ

(∑

j 6=i

wijxj − θi

)

where wij is the weight of the connection between the ith and jth perceptrons, where xj

is the activation of the jth perceptron, where θi is the threshold for the ith node, and

where

σ (t) =
1

1 + e−t

is the activation function.[21]

Figure 5. Node of an Artificial Neural Network.

A layer is a collection of perceptrons that are connected to other layers in the network

but not to each other.

A 3-layer MLP is used to predict the RNA-like status of the trees. The first layer,

or input layer, contains 3 perceptrons corresponding to P1, P2, and P3. The last layer,

or output layer, consists of 2 perceptrons with activations y1 and y2, where y1 = 1 and

y2 = 0 if the tree is predicted to be an RNA tree and where y1 = 0 and y2 = 1 if the

tree is not RNA-like. The middle layer, or hidden layer, is comprised of 12 perceptrons.

The weights between the input and hidden layers will be denoted by wjk and the weights

between the hidden and output layers will be denoted by αij.

Figure 6. MLP for RNA Trees
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The values of the 3 graphical parameters for the 26 trees that either are an RNA tree

or not RNA-like determine a training set

TS =
{(

pi,qi
)}26

i=1

where pi = 〈pi
1, p

i
2, p

i
3〉 is the vector of normalized graphical parameters, qi = 〈1, 0〉 if the

tree is known or predicted to be an RNA tree, and qi = 〈0, 1〉 if the tree is not RNA-like.

The backpropagation algorithm is used to implement a gradient following minimization

of the total squared error

E =
1

2

26∑
i=1

∥∥y
(
pi

)− qi
∥∥2

where y (pi) = 〈y1 (pi) , y2 (pi)〉 is the output due to an input of pi and the norm is

generated by the corresponding dot product.

The weights are initially assigned random values close to 0. Then for each pair

(pi,qi) , the weights αjk are adjusted using

αjk → αjk + λδjξk

where ξk = σ
(∑

wkjp
i
j − θk

)
, where λ > 0 is a fixed parameter called the learning rate,

and where

δj = yj (1− yj)
(
qi
j − yj

)

The weights wkr are adjusted using

wkl → wkl + λpi
l ξk (1− ξk)

2∑
j=1

αjkδj

In each training session, the patterns should be randomly permuted to avoid bias, and

training should continue until E is sufficiently close to 0.[21]

5. Results

The network was trained on the two classes of trees, RNA trees and not RNA-like

trees. The 15 RNA trees of order 7, 8 and 9 and the 11 trees of order 7 and 8 classified

as not RNA-like make up the training set of 26 trees. Figure 7 shows the 15 RNA trees

that were used in the training set. Typically, the network converged to E < 0.005 in

fewer than 2,000 training sessions, but for uniformity throughout testing and prediction

with the MLP, all networks were trained for 10,000 training sessions.

The MLP artificial neural network was tested using leave one out (LOO) cross-

validation in which each of the 26 known trees was omitted from the training set, the

MLP was trained with the remaining 25, and then the trained network was used to
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Figure 7. The 15 RNA Trees of the Training Set.

predict the classification of the omitted tree. Leave one out cross-validation is a reli-

able measure of the generalization error of the network when the training set is not too

large.[22]

The RMS error across all 26 LOO trials is 0.1456. The individual errors are shown

in Table 1. The RNA tree in Figure 3 is the only tree that the MLP had difficulty

Table 1. Error in Predicting the Class of the Given Tree using Leave
One Out Cross Validation

RAGa Classb Errorc RAG Class Error
7.1 1 3.8268E-07 8.14 0 1.7051E-05
7.2 1 8.4021E-02 8.15 1 7.3690E-01
7.3 1 7.9215E-08 8.17 0 2.2156E-02
7.6 1 2.1239E-05 8.18 0 3.2810E-08
7.9 0 9.9406E-08 8.19 0 6.5133E-08
7.10 0 9.5272E-08 8.20 1 3.1600E-07
7.11 0 1.8141E-08 8.21 0 2.2388E-02
8.3 1 2.2135E-08 8.22 0 2.3965E-08
8.5 1 5.3006E-08 8.23 0 3.1796E-09
8.7 1 1.2076E-06 9.6 1 2.8982E-07
8.9 0 2.6632E-05 9.11 1 5.4533E-08
8.10 1 2.8906E-08 9.13 1 8.7496E-05
8.11 1 2.8228E-08 9.27 1 7.3754E-08

a Labels from the RAG RNA database [12].
b Class = 1 if an RNA tree, Class = 0 if not RNA-Like.
c Average deviation from predicted class.
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classifying during the LOO analysis. Performance of the MLP was improved somewhat

by designating trees 8.17 and 8.21 as unclassified rather than as not RNA-like. In

particular, when LOO analysis is performed on the remaining 24 trees, the RMS error

reduces to 0.0605, and the error in predicting 8.15 reduces to 0.2954. However, the

overfitting of data–an issue considered in depth for this project–is a greater concern for

this reduced data set.

More generally, the MLP was also tested by predicting complements, in which the

26 known trees are randomly partitioned into a training set and a complement (also

known as leave-v-out cross-validation). Once the network was trained, the RMS error

in predicting the complement was calculated. Predicting complements was performed

over 10 trials for each of 6, 13, and 20 trees, respectively, in the complement, with the

results shown in Table 2. Again, the results in Table 2 can be improved slightly by

Table 2. |Comp| = Number of Trees in Complement

|Comp| = 6 |Comp| = 13 |Comp| = 20
Average Error 0.084964905 0.161629391 0.305193489

Standard Deviation 0.125919698 0.127051425 0.188008046

designating trees 8.17 and 8.21 as unclassified rather than as not RNA-like.

The MLP was subsequently re-trained over the entire 26 tree training set, and then

the MLP was used to predict whether or not unclassified trees of orders 7, 8, or 9 could

be predicted to be an RNA tree or to be not RNA-like. The results are shown in Table

3. Predictions produced by the reduced training set formed by designating trees 8.17

and 8.21 as unclassified rather than as not RNA-like differs only slightly from Table 3.

Specifically, the two trees of orders 7 and 8 predicted to be not RNA-like in Table 3 are

predicted to be RNA trees in the reduced training set. For trees of order 9, only the

prediction for tree 9.9 differs for the reduced training set.

Finally, it appears that the relationships between P1, P2, and P3 vary between the RNA

and not RNA-like trees, as is illustrated in Table 4. Indeed, Table 4 seems to reinforce

the discussion above about the significance of the graphical invariants. Averages for the

reduced training set formed by designating 8.17 and 8.21 as unclassified rather than as

not RNA-like are similar.
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Table 3. Predictions for the 55 unclassified trees

RAGa Classb Errorc RAG Class Error RAG Class Error
7.4 0 0.00947 9.9 0 0.0554 9.31 1 0.0247
7.5 1 0.0245 9.10 1 2.65E-06 9.32 0 1.99E-06
7.7 1 7.45E-05 9.12 1 5.28E-07 9.33 1 0.0462
7.8 1 1.64E-07 9.14 1 2.32E-07 9.34 1 0.00280
8.1 1 1.05E-06 9.15 0 1.82E-04 9.35 0 2.46E-06
8.2 1 1.24E-06 9.16 1 5.35E-04 9.36 0 7.41E-05
8.4 1 0.0138 9.17 1 6.24E-06 9.37 0 7.41E-05
8.6 1 0.0138 9.18 1 4.87E-07 9.38 1 4.86E-05
8.8 1 5.43E-05 9.19 1 6.06E-07 9.39 0 2.46E-06
8.12 1 3.59E-06 9.20 1 0.0247 9.40 0 4.79E-08
8.13 0 0.0157 9.21 1 6.38E-05 9.41 0 4.79E-08
8.16 1 8.81E-06 9.22 1 0.0247 9.42 1 2.51E-07
9.1 1 1.48E-07 9.23 0 7.41E-05 9.43 1 4.86E-05
9.2 1 0.0151 9.24 1 1.47E-05 9.44 1 0.0247
9.3 1 0.0121 9.25 0 3.85E-07 9.45 0 7.41E-05
9.4 1 4.05E-07 9.26 1 1.48E-04 9.46 0 4.79E-08
9.5 1 5.24E-05 9.28 0 7.41E-05 9.47 0 2.33E-08
9.7 1 6.38E-05 9.29 1 3.61E-07
9.8 1 6.38E-05 9.30 1 1.47E-05

aLabels from the RAG RNA database [12].
bClass = 1 if predicted to be an RNA tree, Class = 0 if not RNA-Like
cAverage deviation from predicted class.

Table 4. Averages for P1, P2, and P3 over subsets of trees of orders 7, 8,
and 9.

P1 P2 P3

Overall 1.2418 1.2262 1.1440

Classified Trees (26) 1.2453 1.2399 1.1023
RNA trees Trees (15) 1.4085 1.0776 1.3701
not RNA-like Trees (11) 1.0227 1.4610 0.7370

Unclassified Trees (55) 1.2403 1.2198 1.1637
Predicted RNA trees (38) 1.3261 1.1374 1.3063
Predicted not RNA-like (17) 1.0484 1.4040 0.8450

6. Conclusion

Using graphical invariants of RNA trees of orders 7, 8, and 9 together with trees of

orders 7, 8, and 9 classified as not RNA-like, we train an artificial neural network to

recognize a tree as an RNA tree or as not RNA-like in structure. We then predict RNA

tree or not RNA-like for all remaining trees of orders seven, eight and nine. The results

for the trees of orders seven and eight agree with the RNA database RAG classification
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with the exception of two trees out of the possible 34 tree structures. We also classify the

forty four trees of order nine which are not classified in the database. This approach has

many implications for the emerging area of RNA as a tool for drug development since

RNA-based drug discovery requires general structural information to guide rational drug

design.[23, 24, 25] It is clear that structural information on secondary RNA molecules

is needed from a variety of standpoints. Functional clusters of RNAs are a valuable

source of diagnostic targets for methods of managing disease. RNA-based drug discovery

requires general approaches for detecting and quantifying RNA-protein interactions.

In this work we demonstrate that graphical invariants from the field of mathemati-

cal graph theory can be used to numerically identify characteristics of secondary RNA

structures sufficiently well that an artificial neural network can be trained to recognize

the difference. These invariants do not rely upon the minimum free energy paradigm,

but rather they measure the structural characteristics of the molecule when represented

as a graph. This does not imply that the minimum free energy supposition is invalid,

but rather that it is inherent in the structure. The field of graph theory is a rich source

of invariants that can be utilized as biomolecular descriptors. Given that a biomolecule

may be represented as a graph, the wealth of graphical invariants and the implications

of their values with respect to the corresponding structural characteristics of the graph

provides an extensive, unexplored means for quantification and interpretation.
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