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Abstract

We provide upper and lower bounds on the reverse Wiener index for connected

graphs with given numbers of vertices, edges and diameter, and determine respectively

the n-vertex trees of fixed number of pendent vertices, the n-vertex trees of fixed

maximum degree, the n-vertex trees of fixed matching number, and the n-vertex

trees of a given bipartition with greatest reverse Wiener indices. We also consider the

Nordhaus–Gaddum–type result for the reverse Wiener index.

1. INTRODUCTION

We consider simple graphs. The Wiener index W (G) of a connected graph G is

the sum of distances between all unordered pairs of vertices of G [1]. It is one of

the most thoroughly studied molecular–graph–based structure–descriptors, see, e.g.,

[2, 3, 4]. Its mathematical properties and its use in the structure–property–activity
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modeling can be found in [5–11]. However, its degeneracy and low discriminating

power have resulted in lack of unambiguousness and uniqueness in its properties [12].

With the aim to overcome the shortcomings of Wiener index, a number of mathe-

matical chemists have come up with the modifications, extensions and variants of this

index. Randić et al. [13] introduced a novel Wiener matrix, for its potential utilization

in structure–property studies. Gutman et al. [14] introduced a multiplicative version

of Wiener index, π(G), which is equal to the product of distances between all pairs of

vertices of G, and it has also been reported that in the case of alkanes, π and W are

highly correlated. Ivanciuc et al. [15] introduced Wiener index extension by counting

even/odd graph distances. Balaban et al. [16] proposed a novel structure–descriptor,

the reverse Wiener index.

Let G be a connected graph with n vertices. Then the reverse Wiener index of G

is defined as [16]

Λ = Λ(G) =
1

2
n(n − 1)d − W (G)

where d is the diameter of G . In [16], general formulae for Λ were presented for several

classes of graphs, including complete graph, star, path, cycle and linear polyacenes,

relationships between Λ and other structure–descriptors, especially Wiener index,

were discussed, and QSPR investigations demonstrated the usefulness of this index.

Ivanciuc et al. [17] have shown that Λ is able to produce fair QSPR models for

standard Gibbs energy of formation and refractive index for C6 − C10 alkanes.

Let Pn and Sn be respectively the n-vertex path and n-vertex star. Let T be a tree

with n > 4 vertices, different from Sn and Pn . Zhang and Zhou [18] reported that

Λ(Sn) < Λ(T ) < Λ(Pn) . Thus the reverse Wiener index can be used as a branching

index.

In this paper, we establish some further properties of the reverse Wiener index of

a connected graph. We provide upper and lower bounds on the reverse Wiener index

for connected graphs with given numbers of vertices, edges and diameter. Moreover

we characterize trees that have maximum reverse Wiener index within some classes

of trees. Besides the number of vertices, these classes are specified by the number

of pendent vertices, maximum degree, matching number and the numbers of vertices

in the bipartition, respectively. We also consider the Nordhaus–Gaddum–type result

[19] for the reverse Wiener index.

2. PROPERTIES OF Λ FOR GENERAL GRAPHS

In this section, we present some properties of the reverse Wiener index of a con-

nected graph. A pendent vertex is a vertex of degree one. Let Kn denote the complete

graph with n vertices.
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Theorem 1. Let G be a connected graph with n ≥ 2 vertices, m edges and diameter

d . Then

(d − 1)m ≤ Λ(G) ≤ n(n − 1)

2
(d − 2) + m

with either equality if and only if d ≤ 2 .

Proof: Note that

m + 2

[
n(n − 1)

2
− m

]
≤ W (G) ≤ m + d

[
n(n − 1)

2
− m

]

i.e.,

n(n − 1) − m ≤ W (G) ≤ n(n − 1)

2
d − (d − 1)m

with either equality if and only if d ≤ 2 . Now the result follows by the definition of

Λ(G) . �

Let G be a class of connected graphs with n vertices, in which every graph possesses

f(n) edges, where f(n) is a function of n with n − 1 ≤ f(n) < n(n−1)
2

. By Theorem

1, for any G ∈ G, Λ(G) ≥ f(n) with equality if and only if the diameter of G is 2 . In

particular, if f(n) = n − 1, i.e., G is a tree with n vertices, then Λ(G) ≥ n − 1 with

equality if and only if G = Sn , while if f(n) = n, i.e., G is a unicyclic graph with n

vertices, then for n ≥ 4, Λ(G) ≥ n with equality if and only if G is a quadrangle, a

pentagon, or the the graph obtained by attaching n − 3 pendent vertices to a vertex

of a triangle.

¿From [20, Theorem 2], we have

Theorem 2. Let G be a graph with n vertices and diameter d . Then

Λ(G) ≤ n(n − 1)d

2
− d(d + 1)(d + 2)

6
− n − d − 1

2

(
n +

⌊
d2 + 1

2

⌋)

with equality if and only if there is a vertex v0 such that the distance layers Vi, where

Vi is a subset of the vertex set consisting of the vertices that are at distance i from

v0 for i = 0, 1, . . . , d, fulfill the condition that the subgraphs induced Vi−1 ∪ Vi are

complete whenever 1 ≤ i ≤ d and all noncentral layers are trivial.

Corollary 3. Let G be a connected graph with n ≥ 2 vertices. Then

0 ≤ Λ(G) ≤ n(n − 1)(n − 2)

3

with left equality if and only if G = Kn, and with right equality if and only if G = Pn .

Proof. Let m and d be respectively the number of edges and the diameter of G .

Note that d ≥ 1 with equality if and only if G = Kn . By Theorem 1, Λ(G) ≥ 0 with

equality if and only if G = Kn .
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Let

F (n, d) =
n(n − 1)d

2
− d(d + 1)(d + 2)

6
− n − d − 1

2

(
n +

⌊
d2 + 1

2

⌋)
,

where 1 ≤ d ≤ n− 1. If d = n− 1, then G = Pn and so Λ(G) = n(n−1)(n−2)
3

. Suppose

that 1 ≤ d ≤ n − 2 . If d is even, then

F (n, d + 1) − F (n, d) =
n(n − d)

2
+

d2

4
− n

2
> 0 .

If d is odd, then

F (n, d + 1) − F (n, d) =
n(n − d)

2
− 3

4
+

d2

4
− d

2
> 0 .

In either case, we have F (n, d) < F (n, d + 1) . Now by Theorem 2, we have

Λ(G) ≤ F (n, d) < F (n, d + 1) ≤ · · · ≤ F (n, n − 1) = Λ(Pn) .

Thus Λ(G) ≤ Λ(Pn) with equality if and only if G = Pn . �

Corollary 4. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

n − 1 ≤ Λ(G) ≤ n(n − 1)(n − 2)

3

with left equality if and only if G = Sn, and with right equality if and only if G = Pn .

Proof. Let m and d be respectively the number of edges and the diameter of G .

Note that d ≥ 2 and m ≥ n − 1 with both equalities if and only if G = Sn . Now the

result follows from Theorem 1 and Corollary 3. �

3. PROPERTIES of Λ FOR TREES

Recall that a caterpillar is a tree in which removal of all pendent vertices gives a

path. Let Pn,d,i be the caterpillar obtained from the path Pd+1 labelled as v0, v1, · · · , vd

by attaching n−d−1 pendent vertices labelled consecutively as vd+1, . . . , vn−1 to the

vertex vi of the path, where 3 ≤ d ≤ n − 2 (see Fig. 1). Clearly, Pn,d,i has diameter

d for any 1 ≤ i ≤ d − 1 .

� � � � � � � � � � �

� � � � �

�
��

�
��

v0 v1 vi vd−1 vd

vd+1 vn−1

Fig. 1. The graph Pn,d,i .
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Lemma 5. [18] Let T be a tree with n vertices and diameter d, where 3 ≤ d ≤ n− 2 .

If T �= Pn,d,� d
2
�, then Λ(T ) < Λ

(
Pn,d,� d

2
�
)
.

Lemma 6. [18] For 3 ≤ d ≤ n − 3, Λ
(
Pn,d,� d

2
�
)

< Λ
(
Pn,d+1,� d+1

2
�
)
.

Let T be a tree with n vertices, p of which are pendent vertices, where 2 ≤ p ≤
n − 1 . Obviously, if p = 2 then T = Pn, and if p = n − 1 then T = Sn . So we can

assume that 3 ≤ p ≤ n − 2 .

Theorem 7. Let T be a tree with n vertices, p of which are pendent vertices, where

3 ≤ p ≤ n − 2 . Then Λ(T ) ≤ Λ
(
Pn,n−p+1,�n−p+1

2
�
)

with equality if and only if

T = Pn,n−p+1,�n−p+1
2

� .

Proof. Let d be the diameter of T . It is easy to see that d ≤ n − p + 1 . If

d ≤ n − p, then by Lemmas 5 and 6, Λ(T ) ≤ Λ
(
Pn,d,� d

2
�
)
≤ Λ

(
Pn,n−p,�n−p

2
�
)

<

Λ
(
Pn,n−p+1,�n−p+1

2
�
)

. If d = n − p + 1 and T �= Pn,n−p+1,�n−p+1
2

�, then by Lemma 5,

Λ(T ) < Λ
(
Pn,n−p+1,�n−p+1

2
�
)

. Thus the result follows. �

Let T be a tree with maximum degree Δ, where 2 ≤ Δ ≤ n − 1 . Obviously,

if Δ = 2 then T = Pn, and if Δ = n − 1 then T = Sn . So we can assume that

3 ≤ Δ ≤ n − 2 . Note that the diameter is at most n − Δ + 1 . Similar to the proof

of Theorem 7, we have

Theorem 8. Let T be a tree with maximum degree Δ, where 3 ≤ Δ ≤ n − 2 . Then

Λ(T ) ≤ Λ
(
Pn,n−Δ+1,�n−Δ+1

2
�
)

with equality if and only if T = Pn,n−Δ+1,�n−Δ+1
2

� .

If T is a tree with n ≥ 2 vertices, then [1, 2] W (T ) =
∑

e∈E(T )
W (e, T ) , where

E(T ) is the edge set of T , W (e, T ) = nT,1(e) · nT,2(e) , nT,1(e) and nT,2(e) are the

respectively numbers of vertices of T lying on the two sides of the edge e . We will

use this fact in the proof of Lemmas 9 and 11.

A matching is a set of pairwise non-adjacent edges. A maximum matching is a

matching that contains the largest possible number of edges. The matching number

of a graph G is the size of a maximum matching, denoted by β(G) .

Let T be a tree with n vertices and matching number k, where 1 ≤ k ≤ �n
2
� . If

k = 1, then T = Sn . So we can assume that k ≥ 2 .

Lemma 9. For even k with 2 ≤ k ≤ �n
2
� − 1, Λ(Pn,2k−1,k−1) < Λ(Pn,2k,k−1) .

Proof. Note that

Λ(Pn,2k,k−1) − Λ(Pn,2k−1,k−1)
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=
n(n − 1)

2
− W (vk−1vk, Pn,2k,k−1) + W (vk−1vn−1, Pn,2k−1,k−1)

≥ n(n − 1)

2
− n2

4
+ W (vk−1vn−1, Pn,2k−1,k−1) > 0 .

The result follows. �

Lemma 10. For 2 ≤ k ≤ �n
2
� − 1, β (Pn,2k,k) = k if k is odd, and β (Pn,2k,k−1) = k

if k is even.

For a tree T with at least two vertices and u ∈ V (T ), du denotes the degree of

u in T . There are du components in T − u, each containing a neighbor of u in T .

These components are called the branches of T at u .

Lemma 11. Let T be a tree with n vertices and matching number k, where k is

even, 2 ≤ k ≤ �n
2
� − 1, and T �= Pn,2k,k−1 . If the diameter of T is 2k, then Λ(T ) <

Λ(Pn,2k,k−1) .

Proof. Let P (T ) = v0v1 · · · vd be a diametrical path of T , where d = 2k . There is a

matching of size k in P (T ) . So T is a caterpillar.

If there exists an even i0, 2 ≤ i0 ≤ d− 2, such that dvi0
≥ 3, then vi0w ∈ E(T ) for

some w outside P (T ), and so there is a matching of T containing the edge vi0w of size

1+ i0
2

+ d−i0
2

= k +1, a contradiction. Hence dvi
= 2 for all even i with 2 ≤ i ≤ d− 2 .

Suppose that there are two vertices vi, vj of degree at least three such that the

distance between vi and vj is as small as possible, where i and j are odd with 1 ≤
i < j ≤ d − 1 . Then the vertices vi+1, . . . , vj−1 have equal degree two. Let n1 (resp.

n2) be the number of vertices of the branch at vi+1 (resp. vj−1) containing vi (resp.

vj) . Then n1 + n2 + (j − i − 1) = n . Assume that n1 ≥ n2 . Let w be a pendent

vertex adjacent to vj . Let T ′ denote the tree formed from T by deleting edge vjw

and adding edge viw . It is easy to see that

Λ(T ′) − Λ(T ) = W (T ) − W (T ′)

= W (vivi+1, T ) − W (vj−1vj, T
′)

= n1(n − n1) − (n2 − 1)(n − n2 + 1) .

Since n2 − 1 < min{n1, n−n1}, we have Λ(T ′) > Λ(T ) . By iterating the transforma-

tion from T to T ′, we have Λ(T ) < Λ(Pn,2k,i) for some odd i with 1 ≤ i ≤ 2k − 1 .

Now suppose that T = Pn,2k,i for some odd i with 1 ≤ i ≤ 2k − 1 . Since

T �= Pn,2k,k−1, we may assume that 1 ≤ i ≤ k − 3 . It is easy to see that

Λ(Pn,2k,i+2) − Λ(Pn,2k,i)

- 100 -



= W (vivi+1, Pn,2k,i) − W (vivi+1, Pn,2k,i+2)

+W (vi+1vi+2, Pn,2k,i) − W (vi+1vi+2, Pn,2k,i+2)

= [(n − 2k + i)(2k − i) − (i + 1)(n − i − 1)]

+ [(n − 2k + i + 1)(2k − i − 1) − (i + 2)(n − i − 2)] .

Since i + 1 < min{n− 2k + i, 2k − i} and i + 2 < min{n− 2k + i + 1, 2k − i− 1}, we

have Λ(Pn,2k,i+2) > Λ(Pn,k,i) . Iterating the procedure, we prove the lemma. �

Theorem 12. Let T be a tree with n vertices and matching number k, where 2 ≤
k ≤ �n

2
� .

(i) If k = �n
2
�, then Λ(T ) ≤ Λ(Pn) with equality if and only if T = Pn .

(ii) If k ≤ �n
2
� − 1 and k is odd, then Λ(T ) ≤ Λ(Pn,2k,k) with equality if and only if

T = Pn,2k,k .

(iii) If k ≤ �n
2
�− 1 and k is even, then Λ(T ) ≤ Λ(Pn,2k,k−1) with equality if and only

if T = Pn,2k,k−1 .

Proof. Note that Λ(T ) < Λ(Pn) for any n-vertex tree different from Pn and that

β(Pn) = �n
2
� . Hence (i) follows easily.

Suppose that k ≤ �n
2
� − 1 . Let d be the diameter of T . Obviously, k ≥ �d+1

2
�,

i.e., d ≤ 2k .

Suppose that k is odd. If d ≤ 2k − 1, then by Lemmas 5 and 6, we have Λ(T ) ≤
Λ

(
Pn,d,� d

2
�
)

≤ Λ(Pn,2k−1,k−1) < Λ(Pn,2k,k) . If d = 2k and T �= Pn,2k,k, then by

Lemma 5, Λ(T ) < Λ(Pn,2k,k) . Furthermore, by Lemma 10, we have β (Pn,2k,k) = k .

Hence (ii) follows.

Now suppose that k is even. If d ≤ 2k − 1, then by Lemmas 5, 6 and 9, we have

Λ(T ) ≤ Λ
(
Pn,d,� d

2
�
)
≤ Λ(Pn,2k−1,k−1) < Λ(Pn,2k,k−1) . If d = 2k and T �= Pn,2k,k−1,

then by Lemma 11, Λ(T ) < Λ(Pn,2k,k−1) . Furthermore, by Lemma 10, we have

β (Pn,2k,k−1) = k . Hence (iii) follows. �

The vertex set of a connected bipartite graph G with at least two vertices can be

uniquely partitioned into two disjoint sets V1 and V2 such that all edges join a vertex

in V1 to a vertex in V2 . In this case we say that G has a (|V1|, |V2|)-bipartition.

Let T be a tree with an (s, n − s)-bipartition, where 1 ≤ s ≤ �n
2
� . If s = 1,

then T = Sn . So we can assume that s ≥ 2 . Note that Pn has the bipartition(
�n

2
�, n − �n

2
�
)

and that the diameter of T is at most 2s if s ≤ �n
2
� − 1 . Similar to

the proof of Theorem 12, we have
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Theorem 13. Let T be a tree with an (s, n − s)-bipartition, where 2 ≤ s ≤ �n
2
� .

(i) If s = �n
2
�, then Λ(T ) ≤ Λ(Pn) with equality if and only if T = Pn .

(ii) If s ≤ �n
2
� − 1 and s is odd, then Λ(T ) ≤ Λ(Pn,2s,s) with equality if and only if

T = Pn,2s,s .

(iii) If s ≤ �n
2
� − 1 and s is even, then Λ(T ) ≤ Λ(Pn,2s,s−1) with equality if and only

if T = Pn,2s,s−1 .

4. THE NORDHAUS–GADDUM–TYPE RESULT FOR Λ

Nordhaus and Gaddum [19] reported bounds for the chromatic numbers of a graph

and its complement. Eventually, Norhaus–Gaddum–type relations were established

for many other graph invariants, see, e.g., [21]. Now we are ready to give bounds of

this kind for the reverse Wiener index.

For simplicity, let m(G) and d(G) be respectively the number of edges and the

diameter of the graph G .

Lemma 14. Let G be a graph with n ≥ 6 vertices. If d(G) = d(G) = 3, then

Λ(G) + Λ(G) < (n−1)(n−2)(2n+3)
6

.

Proof. Since d(G) = d(G) = 3, we have W (G) + W (G) > m(G) + 2m(G) + m(G) +

2m(G) = 3
2
n(n − 1) . Thus

Λ(G) + Λ(G) =
1

2
n(n − 1) · 6 − [W (G) + W (G)]

< 3n(n − 1) − 3

2
n(n − 1)

=
3

2
n(n − 1) <

(n − 1)(n − 2)(2n + 3)

6
.

The last inequality holds because n ≥ 6 . �

Lemma 15. Let G be a graph of order n ≥ 5 . If d(G) = 2, then Λ(G) + Λ(G) ≤
(n−1)(n−2)(2n+3)

6
with equality if and only if G ∼= Pn .

Proof. Let d = d(G) . By Corollary 2, Λ(G) ≤ Λ(Pn) with equality if and only if

G = Pn .

Since n ≥ 5, we have d(G) = d(Pn) = 2, and so Λ(G) = m(G) ≤ n(n−1)
2

−(n−1) =

m(Pn) = Λ(Pn) with equality if and only if G is a tree whose complement has diameter
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2 . Note that

Λ(Pn) + Λ(Pn) =
n(n − 1)(n − 2)

3
+

n(n − 1)

2
− (n − 1)

=
(n − 1)(n − 2)(2n + 3)

6
.

The result follows easily. �

Remark. (i) There is exactly one pair of connected graphs G and G with 4 vertices:

P4 and P4 = P4 . Obviously, d(P4) = 3 and Λ(P4) + Λ(P4) = 16 .

(ii) There are exactly five pair of connected graphs G and G with 5 vertices, in

which three pairs satisfy d(G) = d(G) = 3: T and T , U1 and U1, U2 and U2 = U2,

where T be the unique tree with 5 vertices and diameter 3, U1 is the graph formed

from T by adding an edge between its two pendent vertices with a common end vertex,

and U2 is formed from the path P5 by adding a edge between the two neighbors of its

center. The values of Λ(G) + Λ(G) for them are respectively 27, 27 and 28 . The two

other pairs are P5 and P5, C5 and C5 = C5 . Note that Λ(P5) + Λ(P5) = 26 .

Theorem 16. Let G be a graph on n ≥ 6 vertices with a connected G . Then

1

2
n(n − 1) ≤ Λ(G) + Λ(G) ≤ (n − 1)(n − 2)(2n + 3)

6

with left equality if and only if G and G have equal diameter 2 and with right equality

if and only if G = Pn or Pn .

Proof. By Theorem 1,

Λ(G) + Λ(G) ≥ m(G) + m(G) =
1

2
n(n − 1)

with equality if and only if G and G have equal diameter 2 .

If d(G) = d(G) = 3, and by Lemma 14, we have Λ(G) + Λ(G) < (n−1)(n−2)(2n+3)
6

.

If d(G)=2, then by Lemma 15, we have Λ(G)+Λ(G) ≤ (n−1)(n−2)(2n+3)
6

with equal-

ity if and only if G = Pn . Similarly, if d(G) = 2, then Λ(G) + Λ(G) ≤ (n−1)(n−2)(2n+3)
6

with equality if and only if G = Pn .

Note that if d(G) ≥ 3 then d(G) ≤ 3 . The result follows. �

5. CONCLUSIONS

The Wiener index is a well-known measure of graph or network structures with

similarly useful variant of the reverse Wiener index. In this paper, we establish

some properties of the reverse Wiener index of a connected graph. In particular, we
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provide (in Theorems 1 and 2) upper and lower bounds on the reverse Wiener index

for connected graphs with given numbers of vertices, edges and diameter, we show (in

Theorems 7, 8, 12 and 13) that Pn,n−p+1,�n−p+1
2

� is the unique tree with the greatest

reverse Wiener index in the class of n-vertex trees with p pendent vertices or with

maximum degree p, where 3 ≤ p ≤ n − 2, and Pn for k = �n
2
�, Pn,2k,k for odd k with

2 ≤ k ≤ �n
2
� − 1 and Pn,2k,k−1 for even k with 2 ≤ k ≤ �n

2
� − 1 is the unique tree

with the greatest reverse Wiener index in the class of n-vertex trees with matching

number k or with a (k, n − k)-bipartition, where 2 ≤ k ≤ �n
2
� and we also give (in

Theorem 16) the Nordhaus–Gaddum–type result for the reverse Wiener index.
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