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Abstract

The Wiener index of a (molecular) graph is defined as W (G) =
∑

u,v dG(u, v),
where dG(u, v) is the distance between u and v in G and the sum goes over
all the pairs of vertices. In this paper, we obtain the trees with minimum
and second-minimum Wiener indices among all the trees with n vertices and
diameter d, respectively.

1. Introductions

It is well known that a topological index is a map from the set of chemical

compounds represented by molecular graphs to the set of real numbers. There are
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more than hundred topological indices available in the literature (see [11]-[14]). Many

topological indices are closely correlated with some physico-chemical characteristics

of the underlying compounds. In 1947, Harold Wiener introduced the first chemical

index, now call the Wiener index, and published a series of papers [15]-[18] to show

that there are excellent correlations between the Wiener index of the molecular graph

of an organic compound and a variety of physical and chemical indices of molecular

compound. The vast majority of chemical applications of the Wiener index deal with

acyclic organic molecules; for reviews see [4, 5, 6, 8]. The molecular graphs of these

are trees (see [7]).

The Wiener index of a graph G, defined in [15], is

W (G) =
∑
u,v

dG(u, v),

where dG(u, v) is the distance between u and v in G and the sum goes over all the

pairs of vertices.

Recently, finding the graphs with minimum or maximum topological indices

attracted the attention of a few researchers and many results are achieved (see

[1, 3, 4, 9, 19, 20]). In this paper, the minimum and second-minimum Wiener indices

of trees in the set Tn,d (3 ≤ d ≤ n − 3) are characterized.

All graphs considered here are finite and simple. Undefined terminology and

notation may refer to [2]. For a vertex x of a graph G, we denote the neighborhood

and the degree of x by NG(x) and dG(x), respectively. A pendant vertex is a vertex

of degree 1. Denote NG[x] = NG(x) ∪ {x}. For two vertices x and y (x �= y), the

distance between x and y is the number of edges in a shortest path joining x and y.

The diameter of a graph G, denoted by diam(G), is the maximum distance between

any two vertices of G. The distance of a vertex x ∈ V (G), denoted by DG(v), is

the sum of distances between x and all other vertices of G. We will use G − x or

G − xy to denote the graph that arises from G by deleting the vertex x ∈ V (G) or

the edge xy ∈ E(G). Similarly, G + xy is a graph that arises from G by adding an

edge xy /∈ E(G), where x, y ∈ V (G).

A tree is a connected acyclic graph. Let T be a tree of order n with diameter

d. If d = n − 1, then T ∼= Pn, a path of order n; and if d = 2, then T ∼= K1,n−1,

a star of order n. Therefore, in the following, we assume that 3 ≤ d ≤ n − 2. Let

Tn,d = {T : T is a tree with order n and diameter d, 3 ≤ d ≤ n − 2}.
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2. Lemmas

First we give some lemmas which are used in the proof of our results.

Lemma 2.1 [10]. Let H, X, Y be three connected, pairwise disjoint graphs. Sup-

pose that u, v are two vertices of H, v′ is a vertex of X, u′ is a vertex of Y . Let G be

the graph obtained from H, X, Y by identifying v with v′ and u with u′, respectively.

Let G∗
1 be the graph obtained from H, X, Y by identifying vertices v, v′, u′, and let G∗

2

be the graph obtained from H, X, Y by identifying vertices u, v′, u′. Then

W (G∗
1) < W (G) or W (G∗

2) < W (G).

By Lemma 2.1, we have the following result.

Corollary 2.1. Let G be a graph and v, u ∈ V (G). Suppose that Gs,t be the

graph obtained from G by attaching s, t pendant vertices to v, u, respectively (see

Fig. 1). Then

W (Gs−i,t+i) < W (Gs,t) for 1 ≤ i ≤ s

or W (Gs+i,t−i) < W (Gs,t) for 1 ≤ i ≤ t.

s

{
t

}
v uG

Gs,t

Fig. 1

Let H1, H2 be two connected graphs with V (H1) ∩ V (H2) = {v}. Let H1vH2

be a graph defined by V (G) = V (H1) ∪ V (H2), V (H1) ∩ V (H2) = {v} and E(G) =

E(H1)∪E(H2). By the definition of the Wiener index, we have the following result.

Lemma 2.2. Let H be a connected graph and Tl be a tree of order l with V (H)∩
V (Tl) = {v}. Then

W (HvTl) ≥ W (HvK1,l−1)

and equality holds if and only if HvTl
∼= HvK1,l−1, where v is identified with the

center of the star K1,l−1 in HvK1,l−1.
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Lemma 2.3 [4]. Let G be a graph of order n, v a pendant vertex of G and u the

vertex adjacent to v. Then

W (G) = W (G − v) + DG−v(u) + n − 1.

Proof. By the definition of the Wiener index, we have

W (G) =
∑

x,y∈V (G)−v

dG(x, y) +
∑

x∈V (G)

dG(x, v)

= W (G − v) + DG−v(u) + n − 1.

Lemma 2.4. Let G be a non-trivial connected graph and let v ∈ V (G). Suppose

that two paths P = vv1v2 · · · vk, Q = vu1u2 · · ·um of lengths k, m (k ≥ m ≥ 1) are

attached to G by their ends vertices at v, respectively, to form G∗
k,m. Then

W (G∗
k,m) < W (G∗

k+1,m−1).

Proof. By Lemma 2,3, we have

W (G∗
k,m) = W (G∗

k,m−1) + DG∗
k,m−1

(um−1) + |G∗
k,m| − 1;

W (G∗
k+1,m−1) = W (G∗

k,m−1) + DG∗
k,m−1

(vk) + |G∗
k+1,m−1| − 1.

Therefore W (G∗
k,m) − W (G∗

k+1,m−1) = DG∗
k,m−1

(um−1) − DG∗
k,m−1

(vk) < 0.

Lemma 2.5. Let P = v0v1 · · · vd be a path of order d + 1. Then

DP (vj) =
2j2 − 2dj + d2 + d

2

for 1 ≤ j ≤ d − 1. Moreover, if 1 ≤ i < j ≤ d/2, then DP (vi) > DP (vj), and if

d/2 ≤ i < j ≤ d − 1, then DP (vi) < DP (vj).

Proof. By the definition of the function D, we have

DP (vj) = (1 + 2 + · · · + j) + (1 + 2 + · · · + (d − j)) =
2j2 − 2dj + d2 + d

2
.

Thus the result holds.
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3. Conclusions

In this section, we will give the minimum and the second minimum Wiener index

in the set Tn,d (3 ≤ d ≤ n − 2). In order to formulate our results, we need to define

some trees (see Fig. 2) as follows.

Let Tn,d(p1, . . . , pd−1) be a tree of order n created from a path Pd+1 = v0v1 . . . vd−1vd

by attaching pi pendant vertices to vi, 1 ≤ i ≤ d−1, respectively, where n = d+1+∑d−1
i=1 pi, pi ≥ 0, i = 1, 2, . . . , d − 1. Denote Tn,d,i = Tn,d(0, . . . , 0︸ ︷︷ ︸

i−1

, n − d − 1, 0, . . . , 0)

and Zn,d,i,j = Tn,d(0, . . . , 0︸ ︷︷ ︸
i−1

, n − d − 2, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 1, 0, . . . , 0). Then Tn,d,i = Tn,d,d−i.

n − d − 2︷ ︸︸ ︷ vd+1

viv0 v1 vdvd−1vj

Zn,d,i,j

n − d − 1︷ ︸︸ ︷
viv0 v1 vdvd−1

Tn,d,i

n − d − 3︷ ︸︸ ︷
vi

v0

v1 vdvd−1

vd+2
vd+1

Xn,d,i

v0

n − d − 2︷ ︸︸ ︷
viv0 v1 vd−1 vd

Yn,d,i

vd+2
vd+1

Fig. 2

For 2 ≤ i ≤ d − 2, let Xn,d,i be a graph obtained from Tn−1,d,i by attaching a

pendant vertex to one pendant vertex of Tn,d,i, except for v0, vd, and let Yn,d,i be a

graph obtained from Td+2,d,i by attaching n− d− 2 pendant vertices to one pendant

vertex of Td+2,d,i, except for v0, vd. Then Xn,d,i = Xn,d,d−i and Yn,d,i = Yn,d,d−i.

Denote T 0
n,d = {Tn,d,i : 1 ≤ i ≤ d − 1}, T ∗

n,d = {Xn,d,i : 2 ≤ i ≤ d − 2},
T ′

n,d = {Yn,d,i : 2 ≤ i ≤ d − 2} and T ′′
n,d = {Zn,d,i,j : 1 ≤ i < j ≤ d − 1}.

Lemma 3.1. For any 1 ≤ j < i ≤ �d
2
�, we have W (Tn,d,i) < W (Tn,d,j).

Therefore, for any tree T ∈ T 0
n,d, W (T ) ≥ W (Tn,d,� d

2
�) with equality if and only

if T ∼= Tn,d,� d
2
�.

Proof. We only need to prove the case j = i − 1. Take v = vi and take two

paths P = v0v1 · · · vi, Q = vivi+1 · · · vd in Lemma 2.4, we obtain the desired result.
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Note that the analogous inequality hold for Xn,d,i and Yn,d,i, and hence W (T ) ≥
W (Xn,d,� d

2
�) for T ∈ T ∗

n,d; and W (T ) ≥ W (Yn,d,� d
2
�) for T ∈ T ′

n,d.

By Lemma 3.1, we have the following result.

Corollary 3.2. The last �d
2
� Wiener indices of trees in the set Tn,d with d = n−2

are as follows:

Tn,d,� d
2
�, Tn,d,� d

2
�−1, . . . , Tn,d,2, Tn,d,1.

Note that Tn,n−2 contains no other trees than the above listed.

Lemma 3.3. Suppose that 3 ≤ d ≤ n − 3. Then

(i) W (Zn,d,� d
2
�,� d

2
�+1) < W (Xn,d,� d

2
�) ≤ W (Yn,d,� d

2
�);

(ii) for d is odd, W (Zn,d,� d
2
�,� d

2
�+1) < W (Tn,d,� d

2
�−1);

(iii) for d is even, W (Zn,d,� d
2
�,� d

2
�+1) = W (Tn,d,� d

2
�−1).

Proof. By Lemma 2.3, we have

W (Zn,d,� d
2
�,� d

2
�+1) = W (Tn−1,d,� d

2
�) + DT

n−1,d,� d
2 �

(v� d
2
�+1) + n − 1,

= W (Tn−1,d,� d
2
�) + DPd+1

(v� d
2
�+1) + 2(n − d − 2) + n − 1,

W (Xn,d,� d
2
�) = W (Tn−1,d,� d

2
�) + DT

n−1,d,� d
2 �

(vd+1) + n − 1,

= W (Tn−1,d,� d
2
�) + DPd+1

(v� d
2
�) + d + 1 + 2(n − d − 3) + n − 1.

Thus by Lemma 2.5, we have

W (Zn,d,� d
2
�,� d

2
�+1) − W (Xn,d,� d

2
�) = DPd+1

(v� d
2
�+1) − DPd+1

(v� d
2
�) − d + 1

= 2�d

2
� + 2 − 2d

≤ 2 − d < 0.

Note that Xd+3,d,� d
2
� ∼= Yd+3,d,� d

2
�, and hence by Lemmas 2.3 and 2.5, we have

W (Xn,d,� d
2
�) − W (Yn,d,� d

2
�) = W (Xn−1,d,� d

2
�) − W (Yn−1,d,� d

2
�) − d + 1

< W (Xn−1,d,� d
2
�) − W (Yn−1,d,� d

2
�)

< · · · · · ·
< W (Xd+3,d,� d

2
�) − W (Yd+3,d,� d

2
�) = 0.
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Thus (i) holds.

By Lemma 2.5, DPd+1
(v� d

2
�+1) ≤ DPd+1

(v� d
2
�−1). Thus by Lemma 2.3,

W (Zn,d,� d
2
�,� d

2
�+1) − W (Tn,d,� d

2
�−1)

= W (Tn−1,d,� d
2
�) + DPd+1

(v� d
2
�+1) − W (Tn−1,d,� d

2
�−1) − DPd+1

(v� d
2
�−1) + n − d − 2

≤ W (Tn−1,d,� d
2
�) − W (Tn−1,d,� d

2
�−1) + n − d − 2

= DT
n−2,d−1,� d

2 �−1
(v0) − DT

n−2,d−1,� d
2 �−1

(vd−1) + n − d − 2

= (n − d − 2)(2�d

2
� − d). (∗)

Hence (ii) and (iii) hold by (∗).

Lemma 3.4. Let T ∈ T ′′
n,d \ {Zn,d,� d

2
�,� d

2
�+1}, 3 ≤ d ≤ n − 3. Then

W (T ) > W (Zn,d,� d
2
�,� d

2
�+1).

Proof. Denote T = Zn,d,i,j. Let P = v0v1 . . . vd−1vd be a path of length d in

T with d(v0) = d(vd) = 1, and let vd+1 be a pendant vertex of T adjacent to vj. We

choose T such that W (T ) is as small as possible. We first show the following facts.

Fact 1. i ≤ �d
2
�.

Proof of Fact 1. Assume that i > �d
2
�. Then j > �d

2
�+1. Note that Zn,d,i,j−v0

∼=
Zn,d,i−1,j−1 − vd

∼= Zn−1,d−1,i−1,j−1. Thus by Lemma 2.3,

W (Zn,d,i,j) − W (Zn,d,i−1,j−1) = DZn−1,d−1,i−1,j−1
(v0) − DZn−1,d−1,i−1,j−1

(vd−1)

= (n − d − 2)(2i − d − 1) + (2j − d − 1) > 0,

a contradiction with our choice.

Fact 2. W (Zn,d,i,j) ≥ W (Zn,d,i,� d
2
�+1).

Proof of Fact 2. Note that Zn,d,i,j − vd+1
∼= Tn−1,d,i. If j > �d

2
� + 1, then by

Lemmas 2.3 and 2.5,

W (Zn,d,i,j) − W (Zn,d,i,� d
2
�+1) = DTn−1,d,i

(vj) − DTn−1,d,i
(v� d

2
�+1)

> DP (vj) − DP (v� d
2
�+1) > 0.
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Fact 3. W (Zn,d,i,� d
2
�+1) > W (Zn,d,� d

2
�,� d

2
�+1).

Proof of Fact 3. Note that Zn,d,i,j −vd+1
∼= Tn−1,d,i. If i < �d

2
�, then by Lemmas

2.3 and 3.1,

W (Zn,d,i,� d
2
�+1) − W (Zn,d,� d

2
�,� d

2
�+1)

=
(
W (Tn−1,d,i) − W (Tn−1,d,� d

2
�)

)
+

(
DTn−1,d,i

(v� d
2
�+1) − DT

n−1,d,� d
2 �

(v� d
2
�+1)

)
> DTn−1,d,i

(v� d
2
�+1) − DT

n−1,d,� d
2 �

(v� d
2
�+1) > 0.

By Facts 1, 2 and 3, the proof of the lemma is complete.

Lemma 3.5. Let T ∈ Tn,d \ (T 0
n,d ∪ {Zn,d,� d

2
�,� d

2
�+1}) with 3 ≤ d ≤ n − 3. Then

W (T ) > W (Zn,d,� d
2
�,� d

2
�+1).

Proof. Let Pd+1 = v0v1 · · · vd−1vd be a path of length d of T with d(v0) =

d(vd) = 1. Let Vd = {vi : d(vi) ≥ 3, 1 ≤ i ≤ d − 1}. Since n ≥ d + 3, Vd �= ∅. We

consider two cases.

Case 1. |Vd| ≥ 2.

In this case, we first obtain a tree T1
∼= Tn,d(p1, . . . , pd−1) such that W (T ) ≥

W (T1) and equality holds if and only if T ∼= T1 by Lemma 2.2.

Since T �∈ T 0
n,d, we have pi, pj �= 0, 1 ≤ i < j ≤ d− 1. Thus by Corollary 2.1, we

can obtain a tree T2
∼= Zn,d,i,j such that W (T1) > W (T2), and by Lemma 3.4, we have

W (T2) > W (Zn,d,� d
2
�,� d

2
�+1). Therefore W (T ) ≥ W (T1) > W (T2) > W (Zn,d,� d

2
�,� d

2
�+1).

Case 2. |Vd| = 1.

In this case, we let vi ∈ Vd and N(vi) \ {vi−1, vi+1} = {x1, . . . , xs} with d(xj) ≥
2, 1 ≤ j ≤ r, and d(xr+1) = · · · = d(xs) = 1. Then r ≥ 1 as T �∈ T 0

n,d. Let Ti(xj)

be subtrees of T − vi which contain xj, and |V (Ti(xj))| = sj + 1, 1 ≤ j ≤ r. By

Lemma 2.2, we can obtain a tree T3 created from Td+s+1,d,i by attaching sj pendant

vertices to xj, 1 ≤ j ≤ s, respectively, such that W (T ) ≥ W (T3). By Corollary 2.1,

we can obtained a tree T4 ∈ T ∗
n,d ∪ T ′

n,d such that W (T3) ≥ W (T4). If T4 ∈ T ∗
n,d,

then, by Lemma 3.3, W (T ) ≥ W (T3) ≥ W (T4) ≥ W (Xn,d,� d
2
�) > W (Zn,d,� d

2
�,� d

2
�+1).
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If T4 ∈ T ′
n,d, then, by Lemma 3.3, W (T ) ≥ W (T3) ≥ W (T4) ≥ W (Yn,d,� d

2
�) >

W (Zn,d,� d
2
�,� d

2
�+1).

By Lemmas 3.1, 3.3 and 3.5, we have the following results.

Theorem 3.6. (i) The minimum Wiener index of trees in the set Tn,d with

3 ≤ d ≤ n − 2 is Tn,d,� d
2
�;

(ii) For d is odd, the second-minimum Wiener index of trees in the set Tn,d with

3 ≤ d ≤ n − 3 is Zn,d,� d
2
�,� d

2
�+1;

(iii) For d is even, the second-minimum Wiener index of trees in the set Tn,d

with 3 ≤ d ≤ n − 3 is Tn,d,� d
2
�−1 or Zn,d,� d

2
�,� d

2
�+1.
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