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Abstract

The Wiener index of a graph is the sum of all pairwise distances of vertices of
the graph. Fischermann et al [5] characterized the trees which minimize the Wiener
index among all trees with the maximum degree at most Δ. They also determined
the trees which maximize the Wiener index, but in a much more restricted family
of trees which have two distinct vertex degrees only.

In this note, we fully solve the latter problem and determine the trees which
maximize the Wiener index among all graphs with the maximum degree Δ. We
also determine all graphs whose Wiener index differs by less than n − Δ from the
maximum value.

1 Introduction

The Wiener index is considered as one of the most applicable graph invariant, used as one

of the topological indices for predicting physicochemical properties of organic compounds.

Its many applications range from the one when the chemist H. Wiener in 1947 used it as

a measure for the degree of molecular branching [10, 11] to a recent proposal to use it in
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the prediction of conformational switching in RNA structures [1, 2]. For a recent survey

the reader may see [3], and for a more general introduction [6, 9].

In the drug design process, one wants to construct a chemical compound with cer-

tain properties, which are quantitatively represented via some topological indices of its

molecular graph. The basic idea is to construct chemical compounds from the most com-

mon molecules so that the resulting compound has the expected Wiener index. However,

before constructing too many different compounds, it may be helpful to a researcher to

know in advance what are the extremal values of the Wiener index in a certain class of

(molecular) graphs, and also what structural properties of a graph ensure that its Wiener

index is close to the extremal values.

It is long known [4] that the path Pn has the maximum Wiener index among the

connected graphs on n vertices, while the minimum Wiener index is attained by the star Sn

among the trees with n vertices, and, of course, by the complete graph Kn among the

connected graph on n vertices. However, as every atom has a certain valency, chemists are

often interested in (molecular) graphs having bounded vertex degrees. Thus, it becomes

plausible to study the extremal values of the Wiener index among graphs or trees with

bounded maximum degree. The trees attaining the minimum Wiener index among trees

with the maximum degree at most Δ have been determined by Fischermann et al. in [5]

and, independently, by Jelen and Trisch in [7, 8]. Fischermann et al. [5] have also attacked

the opposite problem and determined the trees which maximize the Wiener index, but in

a much more restricted family of trees which have two distinct vertex degrees only.

We are interested here to find graphs which maximize the Wiener index and also

to find graphs whose Wiener index is close to the maximum value. In order to better

understand these graphs, we consider the set Gn,Δ, Δ ≥ 2, of connected graphs with

n vertices having the fixed value of the maximum degree Δ. Otherwise, if we only bound

the maximum degree by Δ, the maximum graphs will inevitably be the paths. Still, even

with the requirement that a graph contains a vertex of degree Δ, the extremal graphs

resemble a pathlike structure.

All graphs in this paper will be finite, simple and undirected, and we follow the

standard graph-theoretic terminology, which may be found, for example, in [12]. For a

simple graph G, let dG(u, v) denote the distance between vertices u and v in G. The
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distance dG(u) of a vertex u is defined as the sum of distances from u to all other vertices

of G,

dG(u) =
∑

v∈V (G)

dG(u, v).

The Wiener index WG of a graph G is then defined as the sum of distances between all

distinct pairs of its vertices,

W (G) =
1

2

∑
u∈V (G)

dG(u) =
∑

{u,v}∈(V (G)
2 )

dG(u, v),

where
(

V (G)
2

)
denotes the set of all two element subsets of V (G).

Definition 1 Let Tn,Δ be the tree on n vertices obtained by taking a path Pn−Δ+1 and an

empty graph KΔ−1, and joining one end-vertex of a path with every vertex of an empty

graph.

Let T ∗
n,Δ, n ≥ Δ + 2, be the tree obtained by taking Tn−1,Δ and attaching a pendent

vertex to one of the leaves adjacent to a vertex of degree Δ in Tn−1,Δ.

Figure 1: The trees T10,4 and T ∗
10,4.

The trees T10,4 and T ∗
10,4 are shown in Fig. 1. Further,

Definition 2 Let Tn,Δ,m, 0 ≤ m ≤
(

Δ−1
2

)
, be a set of graphs on n vertices obtained by

taking a path Pn−Δ+1 and any graph with Δ − 1 vertices and m edges, and joining one

end-vertex of a path with every vertex of a chosen graph.

For a graph G ∈ Tn,Δ,m, the path Pn−Δ+1 will be called the spine of G. The end-vertex

of the spine with degree Δ in G will be called the atlas of G, while the other end-vertex of

the spine with degree 1 in G will be called the distant leaf of G.

Note that Tn,Δ,0 = {Tn,Δ}.
Our main results are the following
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Theorem 1 For every graph G ∈ Gn,Δ, it holds that

W (G) ≤ W (Tn,Δ),

with equality if and only if G is isomorphic to Tn,Δ.

Theorem 2 A graph G ∈ Gn,Δ satisfies

W (G) > W (Tn,Δ) − (n − Δ) (1)

if and only if G ∈ Tn,Δ,m for some m < n − Δ or G ∼= T ∗
n,3.

The proofs are given in Section 2, while in Section 3 we further discuss the ordering

of graphs from Gn,Δ by their Wiener index on a specific example.

2 The proofs

The small values of Δ in previous theorems represent degenerate cases for which their

statements are obvious. Namely, as we work with connected graphs only, the case Δ = 1

becomes possible only when n = 2. Similarly, for Δ = 2 the only elements of Gn,Δ are the

path Pn and the cycle Cn.

Thus, we may assume that Δ ≥ 3 holds in the sequel. We start our proofs with a very

simple lemma.

Lemma 3 The diameter of a graph G ∈ Gn,Δ is at most n − Δ + 1.

Proof. Let u be a vertex of degree Δ in G, and let P be a path of length diam(G) in G.

At least Δ − 2 neighbors of u do not belong to P , since:

• if u belongs to P , then at most two neighbors of u belong to P as well;

• if u does not belong to P , then at most one neighbor of u belongs to P .

Thus, P contains at most n − Δ + 2 vertices, and so, its length is at most n − Δ + 1.

Lemma 4 Let G be a graph in Gn,Δ. Then

dG(u) ≤ (n − Δ + 1)(n + Δ − 2)

2

holds for any vertex u of G, with equality if and only if G ∈ Tn,Δ,m for some m and u is

a distant leaf of G.
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Proof. Let ecc(u) be the eccentricity of vertex u in G, i.e., the largest distance from u

to all other vertices of G. Then the vertices on a path from u to (one of) its farthest

vertices must lie at distances 1,2,. . . ,ecc(u) from u, while the distance of the remaining

vertices of G is at most ecc(u). Thus,

dG(u) ≤ (1 + 2 + . . . + ecc(u)) + ecc(u) (n − 1 − ecc(u))

= ecc(u)

(
n − ecc(u) + 1

2

)
.

The function f(x) = x
(
n − x+1

2

)
is strictly increasing for x < n − 1

2
, and so, for

ecc(u) ≤ diam(G) ≤ n − Δ + 1 < n − 1
2
, it holds that

dG(u) ≤ f(ecc(u)) ≤ f(n − Δ + 1) =
(n − Δ + 1)(n + Δ − 2)

2
.

The equality holds if and only if dG(u) = f(ecc(u)) and ecc(u) = diam(G) = n−Δ+1.

Thus, there exists exactly one vertex at distance d from u for every d = 1, 2, . . . , ecc(u)−1,

while all other vertices are at distance ecc(u) from u. This shows that G ∈ Tn,Δ,m with

u being its distant leaf (where m is the number of edges in G among the vertices at

distance ecc(u) from u).

Taking u to be the distant leaf of Tn,Δ in the previous lemma, from W (Tn,Δ) =

W (Tn−1,Δ) + dT (n,Δ)(u), we get the following recurrence

W (Tn,Δ) = W (Tn−1,Δ) +
(n − Δ + 1)(n + Δ − 2)

2
. (2)

By either solving this recurrence or by direct calculation, we get that

W (Tn,Δ) =

(
n − Δ + 2

3

)
+ (Δ − 1) · (n − Δ + 1)(n − Δ + 2)

2
+ (Δ − 1)(Δ − 2).

Now, it is easy to see that the values W (Tn,Δ) satisfy

W (Pn) = W (Tn,2) > W (Tn,3) > W (Tn,4) > . . . > W (Tn,n−1) = W (Sn).

Proof of Theorem 1. Let G be a graph in Gn,Δ. Note first that removing an edge {u, v}
from G strictly increases its Wiener index: the distance between any pair of vertices does

not decrease, while the distance between u and v strictly increases. Thus, for any spanning

tree T of G it holds that

W (G) ≤ W (T ),
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with equality if and only if G = T . As any graph in Gn,Δ has a spanning tree with the

same maximum degree Δ, we may thus in the sequel restrict our proof to such trees only.

We shall now prove the theorem by induction on n. For n = Δ + 1, there exists only

one tree with Δ + 1 vertices and the maximum degree Δ: the star K1,Δ
∼= TΔ+1,Δ. Thus,

the statement holds in this case.

Suppose now that Tn,Δ, n ≥ Δ + 1, attains the maximum Wiener index in Gn,Δ and

let T be any tree in Gn+1,Δ.

The tree T contains a leaf q whose removal does not decrease the maximum degree

of T . Otherwise, T would contain only one vertex of degree Δ and all leaves would

be adjacent to that vertex, yielding that T would be isomorphic to a star, which is a

contradiction with n + 1 ≥ Δ + 2.

Let p be the unique neighbor of q in T . For any vertex u of T it holds that

dT (u, q) = dT−q(u, p) + 1,

while the distance between all other pairs of vertices of T − q remains intact. Thus, it

holds that

W (T ) =
∑

{u,v}∈(V (T )
2 )

dT (u, v)

=
∑

{u,v}∈(V (T−q)
2 )

dT−q(u, v) +
∑

u∈V (T−q)

dT (u, q)

= W (T − q) +
∑

u∈V (T−q)

(dT−q(u, p) + 1)

= W (T − q) + dT−q(p) + n.

From the inductive hypothesis it follows that

W (T − q) ≤ W (Tn,Δ) (3)

and from Lemma 4 it follows that

dT−q(p) ≤ (n − Δ + 1)(n + Δ − 2)

2
. (4)

Thus,

W (T ) ≤ W (Tn,Δ) +
(n − Δ + 1)(n + Δ − 2)

2
+ n = W (Tn+1,Δ)
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by (2).

The equality holds above if and only if the equality holds in (3) and (4). Then we

have, by the inductive hypothesis, that T − q ∼= Tn,Δ and that p is a distant leaf of Tn,Δ.

This shows that T ∼= Tn+1,Δ, and thus, Tn+1,Δ is the sole graph in Gn+1,Δ that attains the

maximum value of the Wiener index.

Lemma 5 Let G ∈ Gn,Δ. If Δ < n − 1, then there exists a vertex u of G such that

G − u ∈ Gn−1,Δ.

Proof. Let v be a vertex of degree Δ in G and let T be a spanning tree of G containing

all edges incident with v. Since Δ < n − 1, there exists a leaf u of T not adjacent to v.

Then G − u ∈ Gn−1,Δ, as it contains a connected subgraph T − u and v has degree Δ

in G − u.

Proof of Theorem 2. Suppose first that G ∈ Tn,Δ,m for some m < n − Δ. The leaves

adjacent to the vertex of degree Δ in Tn,Δ are all distance two apart from each other.

However, m pairs of them are joined by edges in G, and so

W (G) = W (Tn,Δ) − m > W (Tn,Δ) − (n − Δ).

Further, if G ∼= T ∗
n,3 (and so Δ = 3) then it is easy to see that

W (T ∗
n,3) = W (Tn,3) − (n − 5) > W (Tn,3) − (n − 3).

We will prove the opposite direction by induction on n for any fixed Δ. For n = Δ+1,

we have that (1) implies that W (G) = W (Tn,Δ) and it follows from Theorem 1 that

G ∼= Tn,Δ ∈ Tn,Δ,0 in this case.

Suppose now that this direction has been proved for all connected graphs with less

than n vertices for some n > Δ + 1. Let G ∈ Gn,Δ be a graph such that (1) holds. By

Lemma 5, let u be the vertex of G such that G−u ∈ Gn−1,Δ. When u is removed from G,

the distance between any two vertices of G − u does not decrease, and so

W (G) ≤ W (G − u) + dG(u).

From Lemma 4, we have that

dG(u) ≤ (n − Δ + 1)(n + Δ − 2)

2
.
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If an equality holds above, then, by the same lemma, G ∈ Tn,Δ,m for some m with u being

its distant leaf. From the first part of this proof, it holds that W (G) = W (Tn,Δ)−m and

then from (1) it follows that m < n − Δ.

Thus, in the rest of the proof we may suppose that

dG(u) ≤ (n − Δ + 1)(n + Δ − 2)

2
− 1.

Now, if G − u does not belong to Tn−1,Δ,m for any m < (n − 1) − Δ, then by the

inductive hypothesis it holds that

W (G − u) ≤ W (Tn−1,Δ) − (n − 1 − Δ).

Therefore,

W (G) ≤ W (G − u) + dG(u)

≤ W (Tn−1,Δ) − (n − 1 − Δ) +

(
(n − Δ + 1)(n + Δ − 2)

2
− 1

)

≤ W (Tn,Δ) − (n − Δ),

which is in contradiction with (1).

Next, suppose that G − u belongs to Tn−1,Δ,m for some m < (n − 1) − Δ, so that

W (G − u) = W (Tn−1,Δ) − m ≤ W (Tn−1,Δ).

We divide the rest of the proof in two cases, depending on the type of neighbors of u.

First, if u is adjacent to a leaf adjacent to the atlas of G− u, then it is at distance at

most 3 from other atlas neighbors, and at distances at most 2, 3, . . . , n − Δ + 1 from the

vertices in the spine of G − u. Thus,

dG(u) ≤ 1 + (Δ − 2) · 3 + [2 + 3 + . . . + (n − Δ + 1)]

=
(n − Δ)(n − Δ + 3)

2
+ 3Δ − 5.

The equality holds here if m = 0 and u has no other neighbors in G. Then

W (G) ≤ W (G − u) + dG(u)

≤ W (Tn−1,Δ) +
(n − Δ)(n − Δ + 3)

2
+ 3Δ − 5

= W (Tn,Δ) − (n − Δ + 1)(n + Δ − 2)

2
+

(n − Δ)(n − Δ + 3)

2
+ 3Δ − 5

= W (Tn,Δ) − n(Δ − 2) + (Δ2 − 4). (5)
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If Δ = 3 the above inequality (5) reads

W (G) ≤ W (Tn,3) − (n − 5).

The equality holds if and only if G − u ∼= Tn−1,3 and u is a leaf in G, i.e., if and only if

G ∼= T ∗
n,3. If the inequality is strict, then (1) implies that W (G) = W (Tn,3) − (n − 4).

However, if u is adjacent to another vertex of G−u, then dG(u) becomes less than its upper

bound by at least two, and in such case W (G) ≤ W (Tn,3)−(n−3), which is in contradiction

with (1). Similarly, if G− u �∼= Tn−1,3, then it must hold that W (G− u) = W (Tn−1,3)− 1,

and by the inductive hypothesis, G−u belongs to Tn−1,3,1. In that case, the distance from u

to the other atlas neighbor becomes two instead of three, and thus, dG(u) becomes less

than its upper bound by at least one, so that we again obtain W (G) ≤ W (Tn,3)− (n−3),

a contradiction with (1).

Further, for 4 ≤ Δ ≤ n − 2 we have that

−n(Δ − 2) + (Δ2 − 4) ≤ −n + Δ,

and, thus, (5) becomes W (G) ≤ W (Tn,Δ) − (n − Δ), which is in contradiction with (1).

On the other hand, if u is adjacent to the spine vertices only, let d be the distance

in G from the atlas to the nearest spine neighbor of u. Note that 0 ≤ d ≤ n−Δ−2, since

u may not be a distant leaf. Thus, its distance to the atlas is d + 1, the distance to the

atlas neighbors (not the one on the spine) is d+2, while the distance to the spine vertices

goes from 1 to d + 1 towards the atlas, and from 1 to n − Δ − d towards the distant leaf

of G − u. Therefore,

dG(u) ≤ (Δ − 1)(d + 2) + [1 + 2 + . . . + (d + 1)] + [2 + 3 + . . . + (n − Δ − d)]

= (Δ − 1)(d + 2) +
(d + 1)(d + 2)

2
+

(n − Δ − d + 2)(n − Δ − d − 1)

2

= d2 − d(n − 2Δ) +

(
n2

2
+

Δ2

2
− nΔ +

n

2
+

3Δ

2
− 2

)

= fn,Δ(d).

The bound fn,Δ(d) is a quadratic function in d, which, having in mind that the range of d

is [0, n − Δ − 2], reaches its maximum at d = n − Δ − 2. Thus,

W (G) ≤ W (G − u) + dG(u)

- 79 -



≤ W (Tn−1,Δ) +
n2 − Δ2 − 3n + 3Δ

2
+ 2

= W (Tn,Δ) − (n − Δ + 1)(n + Δ − 2)

2
+

n2 − Δ2 − 3n + 3Δ

2
+ 2

= W (Tn,Δ) − (n − 3)

≤ W (Tn,Δ) − (n − Δ),

which is also in contradiction with (1).

3 Further observations

Let T †
n,Δ be the graph obtained from Tn,Δ by joining two atlas neighbors with an edge:

one that is a leaf and the other one that belongs to the spine. It holds that

W (T †
n,Δ) = W (Tn,Δ) − (n − Δ).

Further, let T �
n,Δ be the graph obtained from Tn−1,Δ by duplicating its distant leaf. We

have that

W (T �
n,Δ) = W (Tn,Δ) − (n − 3).

The graphs T †
10,4 and T �

10,4 are shown in Fig. 2.

Figure 2: The trees T †
10,4 and T �

10,4.

In the list of graphs from Gn,Δ ordered by the non-increasing value of the Wiener

index, the graphs from Tn,Δ,m, m < n − Δ, will always appear first. However, from the

proof of Theorem 2 it is also evident that the graphs T †
n,Δ, T �

n,Δ and T ∗
n,Δ will appear high

in the list. Such a list for (n, Δ) = (10, 4), containing the first thirty graphs, is shown in

Table 1.

The first thing we may notice from Table 1 is a more-or-less general conclusion that,

whatever the set of graphs is given, maximizing the Wiener index means finding the

structure with the largest diameter, while minimizing the Wiener index means finding

the structure with the least diameter. This is in accordance not only with the results
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proved here, but also with the results of [5, 7, 8] both on minimizing the Wiener index

of trees with maximum degree at most Δ and on maximizing the Wiener index in the

restricted set of trees with two distinct vertex degrees only. These principles also emerge

from the old results stating that the paths have the maximum Wiener index among the

connected graphs, while the complete graphs and the stars minimize the Wiener index

among the connected graphs and among the trees, respectively.

Further, the graphs in Table 1 share some prominent similarities to Tn,Δ:

• their diameter is very close to the upper bound from Lemma 3, equal to either 6

or 7 in all thirty graphs,

• a vertex of degree Δ is found near the end of the longest path, at the distance 1 or

2 from its end.

The number of graphs in Gn,Δ is much larger than the maximum Wiener index, and

so there will be many graphs having the same Wiener index. In order to follow the

change in the Wiener index, we may consider a lattice of graphs, where the graphs are

positioned in levels according to their Wiener index, with two graphs being related if one

can be obtained from another by a small perturbation. Theorems 1 and 2 thus describe

the top of this lattice. At least close to the lattice top, the Wiener index will in most

cases decrease by one by adding an edge between the leaves having a common neighbor.

However, it will also make bigger changes, especially at the lower levels when the graphs

become denser.

In the case of trees with maximum degree at most Δ, the bottom of corresponding

lattice is very well described in the papers [5, 7, 8]. However, we have to leave as an open

problem the characterization of the graphs from Gn,Δ having the minimum Wiener index.

Acknowledgement: The author would like to thank Ivan Stanković who performed
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1. W = 146 2. W = 145 3. W = 144 4. W = 143 5. W = 140

6. W = 139 7. W = 139 8. W = 139 9. W = 138 10. W = 138

11. W = 138 12. W = 138 13. W = 138 14. W = 137 15. W = 137

16. W = 137 17. W = 137 18. W = 136 19. W = 136 20. W = 136

21. W = 136 22. W = 136 23. W = 135 24. W = 135 25. W = 135

26. W = 135 27. W = 135 28. W = 134 29. W = 134 30. W = 134

Table 1: The first thirty graphs with 10 vertices and the maximum degree 4, ordered by
the non-increasing value of the Wiener index
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