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Abstract

The second Zagreb index M2(G) of a (molecule) graph G is the sum of the
weights d(u)d(v) of all edges uv in G, where d(u) denotes the degree of the vertex u.
In this paper, we give a sharp upper bound on the second Zagreb index of conjugated
trees (trees with a perfect matching) in terms of the number of vertices. A sharp
upper bound on the second Zagreb index of trees with a given size of matching is
also given.
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1 Introduction

For a molecular graph G, the first Zagreb index M1(G) and the second Zagreb index
M2(G) are defined in [6] as

M1(G) =
∑

u∈V (G)

(d(u))2, M2(G) =
∑

uv∈E(G)

d(u)d(v),

where d(u) denotes the degree of the vertex u of G. The research background of Zagreb
index together with its generalization appears in chemistry or mathematical chemistry.
The readers is referred to literatures [1] [4] [5] [8] [9] [12] [14] and the references therein.

Recently, finding bounds for the topological index of graphs, as well as related problem
of finding the graphs with maximum or minimum value of the respective index, attracted
the attention of many researchers and many results were obtained (see [3] [10] [16]– [18]).
Zhou [17] presented sharp upper bounds for the Zagreb indices M1 and M2 of a graph,
especially for triangle-free graphs, in terms of the number of vertices and the number of
edges. Additionally, sharp upper and lower bounds on the second Zagreb index of trees
and unicyclic graphs with n vertices and k pendant vertices were respectively given in [11]
and [15], in terms of n and k.

In this paper we confined ourselves to conjugated trees (trees with a perfect matching).
A sharp upper bound on the second Zagreb index of trees with a given size of matching
is given, and the corresponding extremal graphs are characterized.

2 Definitions and notations

We only consider finite, undirected and simple graphs. For undefined terminology and
notations, the readers are referred to [2]. A connected acyclic graph is called a tree. The
sets of vertices and edges of a tree T are denoted by V (T ) and E(T ), respectively. For a
vertex x of a tree T , we denote the neighborhood and the degree of x by NT (x) and dT (x),
respectively. The maximum degree of T is denoted by Δ(T ). A pendant vertex is a vertex
with degree one. We denote the set of pendant vertices in T by PV (T ). We will use
T − xy (T − x, respectively) to denote the graph that arises from T by deleting the edge
xy ∈ E(T ) (the vertex x ∈ V (G), respectively).

Let PT (u, v) be the path in T starting from u to v. The distance between u and v in
T , denoted by dT (u, v), is the length of PT (u, v). Namely, dT (u, v) = |E(PT (u, v))|. The
diameter of T is the maximum distance between two vertices of T , denoted by diam(T ). If
u ∈ V (T ) satisfies dT (w, u) = max{dT (v, u) : v ∈ V (T )} = diam(T ), we call u a peripheral
vertex of T . It is easy to see that a peripheral vertex of T must be a pendant vertex. A
subset M ⊆ E(T ) is called a matching in T if no two elements in M are adjacent. If some
edge of M is incident with a vertex v, v is said to be M -saturated, or M saturates v. If
every vertex of T is M -saturated, the matching M is perfect. A matching M is said to
be an m-matching, if |M | = m and for every matching M ′ in T , |M ′| ≤ m. From this
definition, it is evident that if M is an m-matching, then M is a maximum matching in
T .

Let n and m be positive integers with n ≥ 2m. Let T n
m be a tree on n vertices obtained

from the star graph Sn−m+1 by attaching a pendant edge to each of certain m − 1 non-
central vertices of Sn−m+1. Obviously, T n

m is a tree on n vertices with an m-matching.
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Figure 1. (a) the star graph Sn−m+1; (b) T n
m

3 Main results

We first give some lemmas that will be used in the proof of our theorems.

Lemma 3.1 Let T be a tree. If u,w ∈ V (T ) and dT (w, u) is maximum, then w is a
pendant vertex.

Proof. By contradiction. If w is not a pendant vertex, then there exists z ∈ NT (w)
such that dT (z, u) = dT (w, u) + 1 > dT (w, u), contradicting that dT (w, u) is maximum.�

Lemma 3.2 Let T be a tree with a perfect matching. If u,w ∈ V (T ) and dT (w, u) is
maximum, then w is adjacent to a vertex with degree two.

Proof. By Lemma 3.1, we have that w is a pendant vertex, so w has the unique neighbor
x. If dT (x) �= 2, then we have dT (x) ≥ 3, which means that there exists y ∈ NT (x) such
that dT (y, u) = dT (w, u). By Lemma 3.1, we have that y is a pendant vertex. Since T has
a perfect matching and both w and y are pendant vertices, we have wx, yx ∈ M , which
yields a contradiction. �

From the proof above, we also have the following simple result.

Lemma 3.3 Let T be a tree with a perfect matching and v ∈ V (T ). Then |NT (v) ∩
PV (T )| ≤ 1.

Denote
f(n,m) = (n − m)(n − 1) + 2(m − 1).

Theorem 3.4 Let T be a tree on 2m vertices with a perfect matching. Then

M2(T ) ≤ f(2m,m)

with equality holds if and only if T ∼= T 2m
m .

Proof. By induction on m. If m = 1, M2(T ) = 1 ≤ f(2, 1).
Suppose the theorem true for all trees on fewer than 2m vertices with a perfect match-

ing. Let T be a tree on 2m ≥ 4 vertices with a perfect matching M . Let u be a peripheral
vertex and dT (w, u) = max{dT (v, u) : v ∈ V (T )}. Since T has a perfect matching and
n ≥ 4, we have dT (w, u) ≥ 3 (Note that dT (w, u) = 3 only if T = P4 = T 4

2 holds). By
Lemma 3.1, we have that w is a pendant vertex. Let wx ∈ E(T ). By lemma 3.2, let
NT (x) = {y, w}, where y ∈ PT (u, x), and NT (y) = {y1, y2, . . . , ys, z}, where z ∈ PT (u, y)
and y1 = x (Note that if z = u, then T = P4 = T 4

2 ).

- 59 -



We distinguish two cases:

Case 1. yz ∈ M .

Then NT (y) \ {z} ∩ PV (T ) = ∅. Otherwise, there exists a vertex v ∈ NT (y) \ {z} ∩
PV (T ) such that v is not M -saturated, which contradicts that M is a perfect matching of
T . Then we have dT (yi) ≥ 2, 1 ≤ i ≤ s. By Lemma 3.1, we have NT (yi) \ {y} ⊂ PV (T ),
1 ≤ i ≤ s. Combined with Lemma 3.3, we have dT (yi) = 2, 1 ≤ i ≤ s. Let N(yi) \ {y} =
{wi}, 1 ≤ i ≤ s, where w1 = w. Note that yiwi ∈ M , 1 ≤ i ≤ s. Let T ∗ = T − y1 − w1.
Then T ∗ is a tree on 2m − 2 vertices with a perfect matching. By induction hypothesis,
we have M2(T

∗) ≤ f(2m − 2,m − 1). Moreover,

dT (z) + dT (y) +
s∑

i=1

(dT (yi) + dT (wi)) = dT (z) + (1 + s) + 3s ≤
n∑

i=1

dT (vi) = 2(n − 1) =

4m − 2. Then

M2(T ) = M2(T
∗) + dT (z) +

s∑
i=2

dT (yi) + 2dT (y) + 2

= M2(T
∗) + dT (z) + 2(s − 1) + 2(s + 1) + 2

≤ f(2m − 2, m − 1) + dT (z) + 2(s − 1) + 2(s + 1) + 2

= f(2m,m) − 4m + 1 + dT (z) + 4s + 2

≤ f(2m,m),

with the equality holds only if M2(T
∗) = f(2m−2,m−1) and V (T ) = {z, y}∪

s⋃
i=1

{yi, wi},
which implies that z = u, s = 1 and T ∗ = T 2

1 . So we have T ∼= T 4
2 .

Case 2. yz /∈ M .

Then there exists z′ ∈ NT (z) and yi ∈ NT (y) (i �= 1) such that zz′ ∈ M and yyi ∈ M .
Without loss of generality, we may assume that yys ∈ M . Then we claim that ys is a
pendant vertex. Otherwise, there exists vertex y′

s ∈ NT (ys) \ {y}. By Lemma 3.1, y′
s is

a pendant vertex. Since T has a perfect matching, we have y′
sys ∈ M , which contradicts

yys ∈ M . By Lemma 3.3 and a similar reasoning as in the proof of case 1, we have
dT (yi) = 2, 1 ≤ i ≤ s−1. Let N(yi)\{y} = {wi}, 1 ≤ i ≤ s−1, where w1 = w. Note that
yiwi ∈ M , 1 ≤ i ≤ s−1. Let T ∗ = T −y1−w1. Then T ∗ is a tree on 2m−2 vertices with a
perfect matching. By induction hypothesis, we have M2(T

∗) ≤ f(2m−2,m−1). Moreover,

1+dT (z)+(1+s)+3(s−1)+1 ≤ dT (z′)+dT (z)+dT (y)+
s−1∑
i=1

(dT (yi)+dT (wi))+dT (ys) ≤
n∑

i=1

dT (vi) = 2(n − 1) = 4m − 2. Then

M2(T ) = M2(T
∗) + dT (z) +

s−1∑
i=2

dT (yi) + dT (ys) + 2dT (y) + 2

= M2(T
∗) + dT (z) + 2(s − 2) + 1 + 2(s + 1) + 2

≤ f(2m − 2, m − 1) + dT (z) + 4s + 1

= f(2m,m) − 4m + 1 + dT (z) + 4s + 1

≤ f(2m,m),
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with the equality holds only if M2(T
∗) = f(2m − 2,m − 1), dT (z′) = 1 and V (T ) =

{z′, z, y, ys} ∪
s−1⋃
i=1

{yi, wi}, which implies that T ∗ ∼= T 2m−2
m−1 and T ∼= T 2m

m . �

In the following, by Tn,m we denote the set of trees on n vertices with an m-matching,
i.e., Tn,m = {T : T is a tree on n vertices with an m-matching}.

Theorem 3.5 Let T ∈ Tn,m. Then

M2(T ) ≤ f(n,m),

with equality holds if and only if T ∼= T n
m.

Proof. By induction on n. If n = 2m, then the theorem is true by Theorem 3.4.
Now suppose the theorem true for all trees on fewer than n vertices and n > 2m. Let

T be a tree on n vertices with an m-matching M . Let u be a peripheral vertex satisfying
dT (w, u) = max{dT (v, u) : v ∈ V (T )}. If dT (w, u) ≤ 2, then T = T n

1 , which means
M2(T ) = f(n, 1). Thus we may assume dT (w, u) ≥ 3. By Lemma 3.1, we have that
w is a pendant vertex. Let wx ∈ E(T ) and NT (x) = {y, x1, x2, . . . , xs} (s ≥ 1), where
y ∈ PT (u, x) and x1 = w. Note that xi is a pendant vertex, 1 ≤ i ≤ s.

We distinguish two cases.

Case 1. xy ∈ M .

Then x1 is not M -saturated. Since let T ∗ = T − x1. Then T ∗ ∈ Tn−1,m. By induction

hypothesis, we have M2(T
∗) ≤ f(n − 1,m). Moreover, we have 2(n − 1) =

n∑
i=1

dT (vi) >

dT (y) + dT (x) +
s∑

i=1

dT (xi) + m− 1 = dT (y) + (1 + s) + s + m− 1 = dT (y) + 2s + m (Note

that for each matching in T −{y, x, x1, x2, . . . , xs}, there are at least m− 1 edges). Then

M2(T ) = M2(T
∗) + dT (y) +

s∑
i=2

dT (xi) + dT (x)

= M2(T
∗) + dT (y) + (s − 1) + (s + 1)

≤ f(n − 1,m) + dT (y) + 2s

= f(n,m) − 2(n − 1) + m + dT (y) + 2s

< f(n,m).

Case 2. xy /∈ M .

Since M is the maximum matching in T , there exists xi ∈ NT (x) such that xxi ∈ M .
Without loss of generality, we may assume that xx1 ∈ M .

Subcase 2.1. s = 1.

If dT (y) = 2, let NT (y) = {x, z}, where z ∈ PT (u, y). Note that if z = u, then
T = P4 = T 4

2 . So we may assume that z �= u. Let T ∗ = T −{x1, x}. Then T ∗ ∈ Tn−2,m−1.
By induction hypothesis, we have M2(T

∗) ≤ f(n−2, m−1). Moreover, we have 2(n−1) =
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n∑
i=1

dT (vi) > dT (z) + dT (y) + dT (x) + dT (x1) = dT (z) + 5, since dT (w, u) ≥ 4. Then

M2(T ) = M2(T
∗) + dT (z) + 4 + 2

≤ f(n − 2, m − 1) + dT (z) + 6

= f(n,m) − 2(n − 1) − n + 2m − 1 + dT (z) + 6

= f(n,m) − 2(n − 1) − (n − 2m) + dT (z) + 5

< f(n,m).

Now suppose that dT (y) ≥ 3. Let NT (y) = {x, z, y1, . . . , yt} (t ≥ 1), where z ∈
PT (u, y). Note that if z = u, then yi is a pendant vertex, 1 ≤ i ≤ t. Then T = T n

2 .
So we may assume that z �= u and zz′ ∈ E(T ). Let T ∗ = T − {x1, x}. Then T ∗ ∈
Tn−2,m−1. By induction hypothesis, we have M2(T

∗) ≤ f(n − 2,m − 1). Moreover, we

have 2(n−1) =
n∑

i=1

dT (vi) ≥ dT (z′)+dT (z)+dT (y)+
t∑

i=1

dT (yi)+dT (x)+dT (x1)+m−3 ≥

1 + dT (z) + (2 + t) +
t∑

i=1

dT (yi) + 2 + 1 + m − 3 = dT (z) +
t∑

i=1

dT (yi) + t + m + 3, since

there are at least m− 3 M -saturated vertices in V (T )− {x1, x, y, z, z′, y1, y2, . . . , yt}. We
also have n = |V (T )| ≥ |{x1, x, y, z, z′, y1, y2, . . . , yt}| + m − 3 = t + m + 2. Then

M2(T ) = M2(T
∗) + dT (z) +

t∑
i=1

dT (yi) + 2(t + 2) + 2

≤ f(n − 2,m − 1) + dT (z) +
t∑

i=1

dT (yi) + 2t + 6

= f(n,m) − 2(n − 1) − n + 2m − 1 + dT (z) +
t∑

i=1

dT (yi) + 2t + 6

= f(n,m) − 2(n − 1) + dT (z) +
t∑

i=1

dT (yi) + t + m + 3 + (t + m + 2 − n)

≤ f(n,m) .

Equalities in the above expressions hold only if M2(T
∗) = f(n−2, m−1), dT (z′) = 1 and

n = |{x1, x, y, z, z′, y1, y2, . . . , yt}| + m − 3 , which implies that T ∗ ∼= T n−2
m−1 and T ∼= T n

m.

Subcase 2.2. s ≥ 2.

Then xi is not M -saturated, 2 ≤ i ≤ s. Since dT (w, u) ≥ 3, we have yz ∈ E(T ), where
z ∈ PT (u, x1). Let T ∗ = T − x2. Then T ∗ ∈ Tn−1,m. By induction hypothesis, we have

M2(T
∗) ≤ f(n−1,m). Moreover, we have 2(n−1) =

n∑
i=1

dT (vi) > dT (z)+dT (y)+dT (x)+

s∑
i=1

dT (xi) + 2(m− 2) = 1 + dT (y) + (s + 1) + s + 2m− 4 ≥ dT (y) + 2s + m, since for each
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matching in T − {y, x, x1, x2, . . . , xs}, there are at least m − 2 edges. Then

M2(T ) = M2(T
∗) + dT (y) +

s∑
i=3

dT (xi) + 1 + (s + 1)

≤ f(n − 1,m) + dT (y) + s − 2 + 1 + s + 1

= f(n,m) − 2(n − 1) + m + dT (y) + 2s

< f(n,m).

This completes the proof of the theorem. �
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[19] D. Vukičević, A. Graovac, Comparting Zagreb M1 and M2 indices for acyclic
molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 587–590.

[20] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57
(2007) 591–596.

[21] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs
and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597–616.

[22] B. Liu, I. Gutman, Estimating the Zagreb and the general Randić indices, MATCH
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