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Abstract

Let G be a simple, undirected and connected graph. By M1(G) and RMTI(G) we mean the
first Zagreb index and the reciprocal Schultz molecular topological index of G, respectively. In
this paper, we determined, respectively, the maximal elements with respect to M1(G) among
all graphs having prescribed vertex-connectivity, edge-connectivity, vertex-independence num-
ber, and edge-independence number. As applications, all maximal elements with respect to
RMTI(G) are also determined among the above mentioned graph families, respectively.

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). For a vertex

i ∈ V (G) = {1, 2, · · · , n}, let NG(i) denote the set of its (first) neighbors in G and the degree

dG(i) of i is |NG(i)|, or simply denoted as d(i) = |N(i)| if there is no confusion arising. The

degree sequence of G is d = (d1, · · · , dn), where di = d(i).

The first Zagreb index M1 and the second Zagreb index M2 of G are defined as follows:

M1 = M1(G) =
∑

i∈V (G)

d2
i and M2 = M2(G) =

∑
ij∈E(G)

didj

The reader is referred to [2–5] for the main properties of M1 and M2. In particular, for some

recent results on M1(G), see for example [6–19].
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Let G be a connected graph with n vertices. The distance matrix D of G is an n×n matrix

( Dij) such that Dij is the distance between the vertices i and j in G [21].

For a connected graph G with n vertices, the reciprocal distance matrix R, also called the

Harary matrix (see for instance [20,22]), is defined as an n×n matrix (Rij) such that Rij = 1
Dij

if i �= j and 0 otherwise. The reciprocal molecular topological index RMTI [23] of G is defined

as

RMTI = RMTI(G) = d(A + R)1,

where 1 is a n × 1 vector with all its entries equal to 1. If we set Ri =
n∑

j=1
Rij in the above

equation, then we obtain

RMTI = RMTI(G) =
n∑

i=1

R2
i +

n∑
i=1

diRi.

In [23], RMTI and other formulations of reciprocal and constant-interval reciprocal Schultz-

type topological indices have been discussed and their use illustrated by the QSPR studies on

physical constants of alkanes and cycloalkanes.

More recently, Zhou and Trinajstić [24] reported some properties of the reciprocal molecu-

lar topological index RMTI. They also derived the upper bounds for RMTI in terms of the

number of vertices and the number of edges for various classes of graphs under some restricted

conditions.

In this paper, we determined, respectively, the maximal elements with respect to M1(G)

among all graphs having prescribed graph invariants, such as, vertex–connectivity, edge–

connectivity, vertex–independence number, and edge–independence number. As applications,

all maximal elements with respect to RMTI(G) are also determined among the above men-

tioned graph families, respectively.

2 Lemmas and results

As usual, we begin with some notations and terminology. The diameter of a graph G, denoted

by Diam(G), is the maximum cardinality among all distances of any one pair of vertices in G.

Suppose that G1 and G2 are graphs with V (G1)
⋂

V (G2) = ∅. By G1 + G2 we denote the sum

of G1 and G2 with V (G1 +G2) = V (G1)∪V (G2) and E(G1 + G2) = E(G1)∪E(G2). The join

of G1 and G2, denoted by G1 ∨G2 , is the graph with vertex set V (G1 ∨G2) = V (G1)∪V (G2)

and edge set E(G1 ∨ G2) = E(G1) ∪ E(G1) ∪ {xy|x ∈ V (G1) and y ∈ V (G2)}.
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For S ⊆ V (G), the induced subgraph of S, denoted by G[S], is the graph whose vertex set

is S and edge set is composed of those edges with both ends in S. For E
′ ⊆ E(G), the induced

subgraph of E
′
, denoted by G[E

′
], is the graph whose edge set is E

′
and vertex set is composed

of those vertices which is an end of edge in E
′
. For other notations and terminology not defined

here, see [1].

We start with a lemma which will be frequently used in the subsequent part of this paper.

Lemma 1.(Zhou and Trinajstić [24]) Let G be a connected simple graph with n vertices

and m edges. Then

RMTI(G) ≤ 3
2
M1(G) + (n − 1)m

with equality if and only if Diam(G) ≤ 2.

A subset S of the vertex set V (G) is said to be a vertex-independent set of G if G[S]

is an empty graph, namely, a graph having no edges. Let S be a vertex-independent set

of G. When G is connected, we have V (G) − S �= ∅. If for any vertex x in V (G) − S,

N(x)
⋂

S �= ∅, then S is called a maximal vertex-independent set of G. Let i(G) = min{|S| :

S is a maximal vertex-independent set of G}, i(G) is then said to be the vertex-independence

number of G. If X is a maximal vertex-independent set of G with |X| = i(G), then X is also

said to be an i(G)−set of G.

A subset T of the edge set E(G) is said to be an edge-independent set of G if T contains

exactly one edge or any two edges in T (if do exist!) share no common vertices. Let T be an

edge-independent set of G. When G is connected, we have E(G)−T �= ∅. For any e in E(G)−T ,

if {e}∪T is no longer an edge-independent set of G, then T is called a maximal edge-independent

set of G. Let m(G) = min{|T | : T is a maximal edge-independent set of G}, m(G) is then

said to be the edge-independence number of G.

For a connected graph G, we evidently have 1 ≤ m(G) ≤ �n
2 �. As for the vertex-independence

number i(G), we also have the same property.

Proposition 2. Let G be a connected simple graph with n vertices and i(G) = k. Then

1 ≤ k ≤ �n
2 �.

Proof. The left-hand side of the above inequality is obvious. Now, we prove the right-hand

one. If G ∼= Sn, the result is evident. Suppose that G � Sn and we proceed by induction on
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n. When 2 ≤ n ≤ 4, it’s easy to check that the result holds. Now let n ≥ 5. Since G � Sn,

there must exist an edge, say e, in G such that G − {e} = G1 ∪ G2 with 2 ≤ n1 ≤ n − 2 and

2 ≤ n2 ≤ n − 2, where n1 and n2 are orders of G1 and G2, respectively. Then by induction

hypothesis, we have i(G) ≤ i(G1) + i(G2) ≤ �n1
2 � + �n2

2 � = �n
2 �. This concludes the proof. �

For 2 ≤ k ≤ n−1
2 , we define a graph Gn1, ··· , nk

as follows:

For 2 ≤ ni ≤ n − 2k + 2, i = 1, · · · , k, let Kn1 , · · · , Knk
be k complete graphs of orders

n1, · · · , nk, respectively. Also, we let V (Kni) = {vi1, · · · , vini} for i = 1, · · · , k. Then we

write Gn1, ··· , nk
= (Kn1 − {v11}) ∨ (Kn2 − {v21}) ∨ · · · ∨ (Knk

− {vk1}). For k = 2, let Ḡn1, n2

be the graph obtained from Gn1, n2 by adding the edge v11v21. Now, we have the following:

Theorem 3. Let G be a connected simple graph with n vertices and i(G) = k(1 ≤ k ≤ �n
2 �).

Then we have

(i). If k = 1, then M1(G) ≤ n(n − 1)2 with equality if and only if G ∼= Kn.

(ii). If k = 2, then M1(G) ≤ (n − 1)(n − 2)2 + 4 with equality if and only if G ∼= Ḡ2, n−2.

(iii). If 3 ≤ k ≤ n−1
2 , then M1(G) ≤ (n − k)3 + (n − 2k + 1)2 + k − 1 with equality if and

only if G ∼= G2, ··· , 2, n−2k+2.

(iv). If k = n
2 , then M1(G) ≤ n3

4 with equality if and only if G ∼= Kk,k.

Proof. We first prove a claim stated as follows.

Claim. Let G be a connected simple graph with n vertices and i(G) = k(1 ≤ k ≤ �n
2 �). Then

d(x) ≤ n − k for any vertex x in G.

Proof. Assume to the contrary that there exists a vertex y in G such that d(y) ≥ n− k + 1.

Then we can obtain a maximal vertex-independent set Y = {y} ∪ Z(G − N [y]) of G, where

Z(G − N [y]) denotes a maximal vertex-independent set of G − N [y]. But then

i(G) ≤ |Y | ≤ 1 + (n − d(y) − 1) = n − d(y) ≤ n − (n − k + 1) = k − 1,

which contradicts the fact that i(G) = k. So for each vertex y in G, we have d(y) ≤ n − k,

which completes the proof. �

The proofs of (iv) and (i). When n = 2k, we clearly have d(x) = n
2 = n − k for each

vertex x in Kk,k, a complete bipartite graph of a bipartition (k, k). By the above claim, we

know that M1(Kk,k) achieves the maximum cardinality among the set of graphs with k = n
2
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since each vertex attains its largest degree. Moreover, i(Kk,k) = k. This proves (iv). Similarly,

we can prove (i) holds. �

The proofs of (ii) and (iii). Let G be the graph that among all connected simple graphs

with n vertices and i(G) = k has maximum cardinality of M1(G).

Let X = {v11, · · · , vk1}, 2 ≤ k ≤ n−1
2 , be an i(G)−set of G. We clearly have M1(G[G−X]) ≤

M1(Kn−k) with equality holding if and only if G[G − X] ∼= Kn−k. Note that every vertex in

Kn−k is of degree n− k − 1. Thus, if G[G−X] ∼= Kn−k, then every vertex in V (G)− V (X) is

adjacent to at most one vertex in X by the Claim. Furthermore, every vertex in V (G)−V (X)

must be adjacent to one vertex X by the choice of G. Now, we must have G ∼= Gn1, ··· , nk
,

where ni = d(vi1) + 1 for i = 1, 2, · · · , k. Since G is connected, then ni = d(vi1) + 1 ≥ 2 for all

i = 1, 2, · · · , k.

Without loss of generality, we may suppose now that 2 ≤ n1 ≤ · · · ≤ nk. We claim that for

3 ≤ k ≤ n−1
2 , G ∼= G2, ··· , 2, n−2k+2. If not so, there must exist two integers ni and nj such that

ni ≥ nj ≥ 3, and then we delete the edge between vjnj and vj1, and add one edge between vjnj

and vi1. Then we obtain the graph Gn1, ··· ,(nj−1), ···(ni+1),··· , nk
, and thus

M1(Gn1, ··· ,(nj−1), ···(ni+1),··· , nk
) − M1(Gn1, ··· , nk

) = [(ni − 1) + 1]2 + [(nj − 1) − 1]2

−(nj − 1)2 − (ni − 1)2 > 0,

which contradicts the choice of G.

It’s easy to check that for 3 ≤ k ≤ n−1
2 , i(G2, ··· , 2, n−2k+2) = k. So, for 3 ≤ k ≤ n−1

2 ,

M1(G) ≤ M1(G2, ··· , 2, n−2k+2) with equality if and only if G ∼= G2, ··· , 2, n−2k+2.

Similarly, when k = 2 and G � Ḡ2, n−2, we must have G ∼= G2, n−2, otherwise, we can prove

that M1(G) < M1(G2, n−2), a contradiction to the choice of G. Obviously, i(Ḡ2, n−2) = 2

and M1(G2, n−2) < M1(Ḡ2, n−2), and thus M1(G) ≤ M1(Ḡ2, n−2) with equality if and only if

G ∼= Ḡ2, n−2. This concludes the proofs of (ii) and (iii). �

Therefore, the proof of the present theorem is completed. �

Corollary 4. Let G be a connected simple graph with n vertices and i(G) = k(1 ≤ k ≤ �n
2 �).

Then we have

(i). If k = 1, then RMTI(G) ≤ 2n(n − 1)2 with equality if and only if G ∼= Kn.

(ii). If k = 2, then RMTI(G) ≤ 1
2(4n3 − 21n2 + 31n − 2) with equality if and only if

G ∼= Ḡ2, n−2.
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(iii). If 3 ≤ k ≤ n−1
2 , then RMTI(G) < 1

2(4n − 3k − 1)(n − k)2 + 1
2(n − 1)(n − k) + 3

2(n −
2k + 1)2 + 3

2(k − 1).

(iv). If k = n
2 , then RMTI(G) ≤ n2

8 (5n − 2) with equality if and only if G ∼= Kk,k.

Proof. When k = 1, 2, or n
2 , Diam(Kn) = Diam(Kk,k) = Diam(Ḡ2, n−2) = 2. Then by

Lemma 1 and Theorem 3, the result is immediate. But for 3 ≤ k ≤ n−1
2 , Diam(G2, ··· , 2, n−2k+2)

= 3, so the bound in (iii) can not be achieved. �

Theorem 5. Let G be a connected simple graph with n vertices and m(G) = k(1 ≤ k ≤ �n
2 �).

Then

M1(G) ≤ 2k(n − 1)2 + 4k2(n − 2k)

with equality if and only if G ∼= K2k ∨ (n − 2k)K1.

Proof. If n = 2k, the result is evident. Suppose that n ≥ 2k + 1 hereinafter. Let G

be the graph having maximum cardinality of M1(G) among all connected simple graphs with

m(G) = k. We now take a maximal edge-independent set X from G with |X| = k. By the choice

of G, we have G[X] ∼= K2k. Moreover, the graph induced by the vertices in V (G) − V (G[X])

must be an empty graph. Otherwise, if G[V (G)− V (G[X])] has an edge e, then {e} ∪X is an

edge-independent set of G, contradicting that X is a maximal edge-independent set of G. Also,

any vertex in V (G) − V (G[X]) must be adjacent to every vertex in V (G[X]) by the choice of

G. Thus G ∼= K2k ∨ (n − 2k)K1. It can be easily seen that m(K2k ∨ (n − 2k)K1) = k, and

M1(K2k ∨ (n − 2k)K1) = 2k(n − 1)2 + 4k2(n − 2k). This proves the theorem. �

Corollary 6. Let G be a connected simple graph with n vertices and m(G) = k. Then

RMTI(G) ≤ (n − 1)(5kn − 4k − 2k2) + 6k2(n − 2k)

with equality if and only if G ∼= K2k ∨ (n − 2k)K1.

Proof. The proof is immediate from the combination of Lemma 1 and Theorem 5 since

Diam(K2k ∨ (n − 2k)K1) = 2. �

If G is a connected simple graph of order n, which is different from the complete graph Kn,

the vertex-connectivity of G is then equal to k if all subgraphs of G, obtained from G by deleting

fewer than k vertices are connected, and a subgraph obtained from G by deleting exactly k

vertices is no longer connected. In this case G is said to be a k − vertex−connected graph.
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Obviously, the vertex-connectivity concept is not applicable to any complete graph. Thus, if

k is the vertex-connectivity of G, then 1 ≤ k ≤ n − 2. Likewise, if G is a connected graph of

order n, the edge-connectivity of G is then equal to k if all subgraphs of G, obtained by deleting

from G fewer than k edges are connected, and a subgraph obtained from G by deleting exactly

k edges is disconnected. In this case G is also said to be a k − edge−connected graph. If k is

the edge-connectivity of G, then 1 ≤ k ≤ n − 1. Here we can easily see that k = n − 1 if and

only if G ∼= Kn.

Theorem 7. Let G be a simple graph with n vertices and vertex-connectivity k(1 ≤ k ≤
n − 2). Then

M1(G) ≤ k(n − 1)2 + k2 + (n − k − 1)(n − 2)2

with equality if and only if G ∼= Kk ∨ (K1 + Kn−1−k).

Proof. Let G be the graph having maximum cardinality of M1(G) among all k-vertex-con-

nected graphs. Let X be a vertex cut of G with |X| = k. Set G − X =
s⋃

i=1
Gi. Then s ≥ 2.

If s ≥ 3, we may connect any two components of G − X by a newly added edge, and then

we get a graph G
′

with the same vertex connectivity as that of G, but M1(G
′
) > M1(G),

a contradiction. Therefore, s = 2. By a similar argument, we can prove that any vertex in

G1 ∪ G2 is adjacent to every vertex in X. Also, G[X], G1 and G2 should be complete graphs

by the choice of G. Thus, G ∼= Kk ∨ (Kn1 + Kn2), where n1 and n2 are respectively the orders

of G1 and G2. Suppose without loss of generality that 1 ≤ n2 ≤ n1 ≤ n − k − 1.

We claim that n2 = 1. If n2 ≥ 2, we have

M1(Kk ∨ (K(n1+1) + K(n2−1))) − M1(Kk ∨ (Kn1 + Kn2))

= (n1 + 1)[(n1 − 1 + k) + 1]2 + (n2 − 1)[(n2 − 2) + k]2 − n1(n1 − 1 + k)2

−n2(n2 − 1 + k)2

= · · ·

= (3n + k − 2)(n1 − n2) − 4 + n + 3k + 4n2 > 0,

a contradiction to the choice of G. Hence, G ∼= Kk ∨ (K1 + Kn−1−k). An easy computation

gives M1(Kk ∨ (K1 + Kn−1−k)) = k(n − 1)2 + k2 + (n − k − 1)(n − 2)2. The proof is thus

completed. �

Corollary 8. Let G be a simple graph with n vertices and vertex-connectivity k(1 ≤ k ≤
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n − 2). Then

RMTI(G) ≤ 3
2
[k(n − 1)2 + k2 + (n − k − 1)(n − 2)2] + (n − 1)[k +

(n − 1)(n − 2)
2

]

with equality if and only if G ∼= Kk ∨ (K1 + Kn−1−k).

Proof. The proof is immediate from the combination of Lemma 1 and Theorem 7 since

Diam(Kk ∨ (K1 + Kn−1−k)) = 2. �

Theorem 9. Let G be a simple graph with n ≥ 4 vertices and edge-connectivity k(1 ≤ k ≤
n − 1). Then

M1(G) ≤ k(n − 1)2 + k2 + (n − k − 1)(n − 2)2

with equality if and only if G ∼= Kk ∨ (K1 + Kn−1−k).

Proof. If k = n − 1, the result is evident. So we may assume that 1 ≤ k ≤ n − 2 in what

follows. Let G be the k−edge-connected graph such that M1(G) is maximum. We shall prove

that G ∼= Kk ∨ (K1 + Kn−1−k).

Let Y be an edge cut of G with |Y | = k. Then G−Y has exactly two components, say G1 and

G2. Let the orders of G1 and G2 be n1 and n2, respectively. By the maximality of M1(G), we

must have G1
∼= Kn1 and G2

∼= Kn2 . Set |V (G[Y ])
⋂

V (G1)| = b1 and |V (G[Y ])
⋂

V (G2)| = b2,

where G[Y ] is the subgraph of G induced by Y . Obviously, n1 ≥ b1 ≥ 1 and n2 ≥ b2 ≥ 1. If

n1 = 1 or n2 = 1, the result is obvious. Now, suppose that n1 ≥ 2 and n2 ≥ 2. If b1 = 1 (or

b2 = 1), then one vertex, say v1 in G1, has exactly k neighbors in G2 and all other vertices in

G1 have no neighbors in G2, and thus we can obtain a new graph G
′
by adding edges between

vertices in V (G1) − {v1} and vertices in V (G2) and thus M1(G
′
) > M1(G), a contradiction to

the choice of G.

So it will be assumed that b1 ≥ 2 and b2 ≥ 2 below. We distinguish between two cases.

Case 1. {b1, b2} �= {n1, n2}.
We may suppose that b2 �= n2.

Set V (G[Y ])
⋂

V (G1) = {v1, · · · , vb1} and V (G[Y ])
⋂

V (G2) = {u1, · · · , ub2}. Let X denote

the union of the set of neighbors of all vertices in {v2, · · · , vb1} in G2. Let m be the number of

neighbors of v1 in G2. Then 1 ≤ m ≤ k−1 since b1 ≥ 2. Moreover, we have m ≤ n2−1 since v1

is not adjacent to at least one vertex in V (G2) (by the fact that b2 �= n2 ). Now, we delete all

edges between v1 and all other vertices in V (G1)−{v1}, and we add all possible edges between
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vertices in V (G1) − {v1} and those in G2. Also, we can always find any k − m vertices from

(V (G2)−Z)
⋃

(V (G1)−{v1}) and add edges between these vertices and v1, where Z is the set

of neighbors of v1 in G2. In fact, we have now ”turned” the graph G into Kk ∨ (K1 +Kn−1−k).

From the above process, we can find that each vertex in V (G)−{v1} is now of degree n− 2 or

n− 1 in Kk ∨ (K1 +Kn−1−k) which is not less than that in G. Let w ∈ V (G2)−{u1, · · · , ub2},
then w is adjacent to no vertex in G1, that is, d(w) = n2 − 1. since k ≤ n − 2, we may think

that w is one of the vertices not adjacent to v1 in Kk ∨ (K1 + Kn−1−k).

So M1(Kk ∨ (K1 + Kn−1−k)) − M1(G)

≥ [k2 − (n1 − 1 + m)2] + [(n − 2)2 − (n2 − 1)2]

= (k2 − m2) − (n1 − 1)2 − 2(n1 − 1)m + (n1 − 1)2 + 2(n2 − 1)(n1 − 1)

= (k2 − m2) + 2(n1 − 1)(n2 − m − 1) > 0,

a contradiction to the choice of G.

Case 2. {b1, b2} = {n1, n2}.
In this case, all vertices in both G1 and G2 are incident with at least one cut edge. It can be

seen that for any 2 ≤ n2 ≤ n−2, there exists k ≤ n−2 ≤ (n−n2−1)n2 = (n1−1)n2. Without

loss of generality, we may suppose that d(v1) = min{d(x) : x ∈ V (G1)}. Now, we delete

all cut edges between v1 and its neighbors in V (G2) and add the equal number of cut edges

between the neighbors of v1 in V (G2) and some vertices, say vj1, · · · , vjs, in V (G1) − {v1}.
Since k ≤ (n1 − 1)n2, we can guarantee that the above procedure is effective. Now, we have

obtained a new graph G∗ which is still k − edge−connected. Let the number of neighbors of

v1 in V (G2) be m. Also, we let dG∗(vji) = d(vji) + ti, i = 1, · · · , s. Note that
s∑

i=1
ti = m.

Thus M1(G∗) − M1(G) = [(d(v1) − m)2 − d2(v1)] +
s∑

i=1
[(d(vji) + ti)2 − d2(vji)] > −2md(v1) +

2
s∑

i=1
d(vji)ti + m2 ≥ 2

s∑
i=1

d(v1)ti − 2md(v1) + m2 = m2 > 0. Thus, M1(G) < M1(G∗), a

contradiction once again.

From the combination of Cases 1 and 2 it follows the theorem as desired. �

Corollary 10. Let G be a simple graph with n vertices and edge-connectivity k(1 ≤ k ≤
n − 2). Then

RMTI(G) ≤ 3
2
[k(n − 1)2 + k2 + (n − k − 1)(n − 2)2] + (n − 1)[k +

(n − 1)(n − 2)
2

]
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with equality if and only if G ∼= Kk ∨ (K1 + Kn−1−k).

Proof. Since Diam(Kk ∨ (K1 +Kn−1−k)) = 2, the proof is immediate from the combination

of Lemma 1 and Theorem 9. �
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istry, Mathematical Chemistry Monographs No. 3 (University of Kragujevac, Kragujevac,

2007), pp. 5-50.
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