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Abstract

Recently, it has been conjectured that 1 2/ /M n M m  holds for each simple graph ,G V E

with n V  vertices and m E  edges, where 1M  and 2M  are the first and second Zagreb 

index. This claim has been disproved in [1] for connected as well as for disconnected graphs, 

but it was shown that it holds for trees [2]. Here, we analyze generalizations of this claim for 

variable Zagreb indices of trees. 

Introduction
The first and second Zagreb indices are among the oldest and best known topological indices 
(see [3-6] and references within) and they are defined as:
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where V  is the set of vertices, E  is set of edges and  is degree of vertex . These indices 
have been generalized to variable first and second Zagreb indices [7] defined as
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Recently, the system AutoGraphiX [8-9] proposed the following conjecture: 

Conjecture 1. For all simple connected graphs G ,

1 2/ /M n M m

and the bound is tight for complete graphs.

In paper [1], this claim has been disproved for general graphs and in paper [2] it has been 
proved for trees. In paper [10] the generalization of this claim to the variable Zagreb indices 
have been analyzed for general graphs. Here, in the fourth paper in this series, we analyze 
variable Zagreb indices for trees. 

We prove as our main result that: 

Theorem 2. 1 2/ /M n M m  for all trees if and only if 0,1 .

Main results 

The following Theorems A and B are given in paper [10] and Theorem C is given in paper 
[2]: 

Theorem A. For all graphs  and all G 0,1/ 2 , it holds that 1 2/ /M G n M G m .

Theorem B. Let \ 0,1R  and  be any complete unbalanced bipartite graph. Then, G

1 2/ /M G n M G m .

Here, unbalanced refers to different cardinalities of white and black vertices and complete 
denotes the fact that each white vertex is adjacent to all black vertices. 

Theorem C. Let  be a tree with at least two vertices. Then, T 1 2/ /M n M m . The equality 
holds if and only if T  is star. 

Since a star with at least three vertices is an unbalanced complete bipartite graph, it follows 
that it is sufficient to prove: 
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Proposition 3. 1 2/ /M n M m  for all trees and for all 1/ 2,1 .

First, we prove that: 

Proposition 4. Let  be vertex of tree T  such that . Then, v 2vd 1 2 vM M d  for all 
.1/ 2,1

Proof: Using the notation given in [2], we denote by  the neighbors of , by  the 

component of graph T
1,..., vdu u v iT

v  that contains , by iu i iE E T vui . Set  is decomposed 

as . Similarly, as in [2], it can be shown that 

E T

1 2 ...
vdE T E E E

2 1 2 1
1 2

1
.

v

q

d

i j i j
q ij E

M M d d d d

Therefore, it is sufficient to prove that 1 1

q

q i j i j
ij E

T d d d d d 1
v  for each 

. We prove the claim by induction on the number of vertices in . If , then 1,..., vq d qT 1qT

q qE uv  and . Hence, 1
qvd 2 1 1 2 1 1

q

i j i j v
ij E

d d d d d dv

v

 . We need to 

prove that: 2 1 11v vd d d , i.e. that: 

2 1 0 1
v v vd d d dv .

This follows from the fact that 1
t

vf t d  is a convex function ( 2
1 '' lnt

v vf t d d ). Now, 
suppose that  has qT x   vertices and that claim holds for all graphs with less then x  vertices. 

Suppose to the contrary that 1 1

q

q i j i j
ij E

T d d d d d 1
v .  Proceeding 

analogously as in [2], let l  be any leaf, namely any vertex of degree 1, in  (different from 

). Denote by  the only neighbor of l  and by 
qT

qu 'l 'N l  the set of neighbors of . Note that 'l

'N l  contains at least one vertex which is not a leaf. From the induction hypothesis, it 

follows that q qT l T , hence: 

0 q qT T l
2 1 2 1

11 1 1
' '

\
\

1 1

q

q q

i j i j
ij E

i j i j i l i l
ij E M im E

i N m l

d d d d

d d d d d d d d
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1 1
q

l l l l

i l i l i l i l
il E

i N l l

d d d d

d d d d d d d d

11 1
' ' ' ' ' '

'
' \

1 1
q

l l l i l l i l
il E

i N l l

d d d d d d d d 1 .

In order to obtain a contradiction, it is sufficient to prove the following two claims 

Claim A  for each 11
' ' ' '1 1l l l ld d d d d d 0 d N .

Claim B  for each 

, . 

11 1
' ' ' ' ' '1 1l l l l l ld d d d d d d d 1 0

0

d N 2d

Let us prove Claim A: 

Proof of Claim A: Note that left hand-side is decreasing in , hence it is sufficient to prove 
it for , i.e. we need to prove that: 

d
1d

11
' ' ' '1 1l l l ld d d d .

Since 2 1 , it is sufficient to prove that function 2 ' ' 1 tt
l lf t d d  is increasing 

function on  and this follows form 1/ 2,1 02 ' ' ' '' ln 1 ln 1tt
l l l lf t d d d d

1 0

.

Now, let us prove Claim B: 

Proof of Claim B: Again, note that left hand-side is decreasing in , hence it is sufficient to 
prove it for , i.e. we need to prove that: 

d
2d

11 1
' ' ' ' ' '1 2 1 2l l l l l ld d d d d d .

This expression can be rewritten as: 

11 1
' ' ' ' ' ' ' '1 1 2 1 1 1l l l l l l l ld d d d d d d d 0. *

Let us distinguish four cases:

CASE 1: .' 2ld

In this case  becomes * 1 11 2 2 1 2 2 1 2 2 0  and here 

equality obviously holds. 
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CASE 2: 0.99 , . ' 35ld

From the proof of Claim A, it follows that the third summand in (*) is negative, the second 
summand is obviously negative, hence (*) holds if 1

' '1 l ld d 0 . Note that 
2 1

3 1f t t t  is decreasing on 1,  in , because d 1  implies that 
2 2 1 1 2 1

3 ' 2 1 2 1f t t t t t t 0 . Hence, it is sufficient to show 

that .  The last inequality can be rewritten as 11 35 35 0
21 35 35 1 0

35
.

Solving 21 1 0
35

t t  one gets: 1 135 1085 35 1085
2 2

t . Note that 

1/ 2 0.991 135 1085 35 35 35 35 1085
2 2

, hence this case is proved.

CASE 3: 0.99 , '3 3ld 4 .

Let , : 0.5,0.99 0.500,0.501,...,0.989,0.990d uf f  be two functions that round down and 

up the number to the nearest 1 . More formally /1000 1 1000
1000df t t  and 

1 1000
1000uf t t , where  is the greatest integer t t  and t  is the smallest integer 

. Note that: t

11 1
' ' ' ' ' ' ' '

1
' ' ' '

11
' ' ' '

1 1 2 1 1

1 1 2 1

1 1 .

uu d d d

d uu d

l l l l l l l l

ff f f f
l l l l

f ff f
l l l l

d d d d d d d d

d d d d

d d d d

1

Hence, it is sufficient to prove that: 

0.0010.001 1

1 0.0010.001 1

1 1 2 1

1 1

tt t t t

t tt t

d d d d

d d d d 0.

34For each  and each 3 d 0.500,0.501,...,0.989t  a computer check shows that this is 
true.

CASE 4:  0.99, 3d .

From the proof of  Claim 1, it follows that it is sufficient to prove that: 
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1
' ' ' '1 1 2l l l ld d d d 1 0 ,

or equivalently that: 

1
' ' ' '2 1 1 1 0l l l ld d d d .

Using the Lagrange theorem, one gets that 1
' ' ln 1 t

l l ld d d d 'l  for some 

2 1,t . Hence,

1 2
' ' ' 'ln 1l l l ld d d d 1 .

Analogously, 1
' ' 1 1l ld d t  for some ' 1,lt d d 'l . Hence, 

1
' ' '1 1l l ld d d .

It follows that: 

 . 
1 2 1 1

' ' ' ' ' ' '

2 1 1
' '

2 1 1 1 ln 1 1

1 1.

l l l l l l l

l l

d d d d d d d

d d

0

Therefore, it is sufficient to prove that: 

.2 1 1
' '1 1l ld d

Note that function 2 1 1
4 1f t t t  is strictly increasing on 3, , because

2 1 1 1
4 ' 1 2 1 1 1 2 1f t t t t t 0

0

.

Hence, it is sufficient to prove that: 

.2 1 11 3 3 1

Substituting 3t , the last inequality is transformed to: 

21 1 0
3 3

t t .

By taking into the account that (1 ) / 3 0  one gets that it is sufficient to show that: 

2

2
1 12 12

2 1 2 1
t ,
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i.e. that: 

2 12 123
2 1

.

The last inequality can be rewritten as: 

2

2

12 123
2 1 12 12

63
12 12

Since, 2 2412 12 2 12 12 2 , it is sufficient to prove that: 

2 24

33
12 12

4 3 2ln 12 12 4 4 ln 3.

Since, left and right-hand sides are equal to 0 for 1, it is sufficient to prove that the first 
derivative of the left hand-side is smaller then the first derivative of the right hand-side, i.e. 
that:

3 2

4 3 2

4 36 24 4ln 3
12 12

,

or equivalently that: 

3 2

4 3 2

4 36 24 4ln 3
12 12

.

This follows from: 

3 2 3 2

4 3 2 4 3 2

4 36 24 4 1 36 0.99 24 1 7.2836 5 4ln 3
12 12 1 12 0.99 12 1 1.356412

.

This proves Claim B. 

From Proposition 4, the proof of Proposition 3 goes in a complete analogy with the proof of 
Theorem 2 in [2]: 
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Proof: If , the claim obviously holds, hence suppose that 2T K 2T K . Let  be vertex of 
the smallest degree  larger then 1. Since no two vertices of degree 1 are adjacent, it follows 

that

v

vd

2 1 vM m d . We have: 

221

2 2 2 2

the last expression is decreasing in ,
from Theorem 1 1

hence, it is minimal for 

11  is tree, hence 1 .

v v

v

v

v

MM d dM
M M M M m d

d m nT m n
m d m m

From here, it follows that: 1 2/ /M n M m .
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