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Abstract. Counting polynomials are those polynomials having at exponent the extent
of a property partition and coefficients the multiplicity/occurrence of the
corresponding partition. In the present paper three related counting polynomials are
discussed: Omega Q, Equidistance ® and Non-Equidistance IT polynomials, and
their mutual inter-relations in some particular graphs and lattices, as well. Analytical

close formulas for some cubic lattices and their corresponding cages are derived.

1. Counting Polynomials

A graph can be described by a connection table, a sequence of numbers, a matrix,
a polynomial or a derived unique number (often called a topological index). In
Quantum Chemistry, the early Hiickel theory calculates the levels of m-electron
energy of the molecular orbitals, in conjugated hydrocarbons, as roots of the

characteristic polynomial:'™*

P(G,x) = det[xI - A(G)] (1)

In the above, I is the unit matrix of a pertinent order and A the adjacency matrix of

the graph G. The characteristic polynomial is involved in the evaluation of topological
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resonance energy TRE, the topological effect on molecular orbitals TEMO, the

aromatic sextet theory, the Kekulé structure count, etc.*®

The coefficients 72(G,k) in the polynomial expression:

P(G,x) =3, m(G,k)-x* Q)

are calculable from the graph G by a method making use of the Sachs graphs, which
are subgraphs of G. Relation (2) was found independently by Sachs, Harary, Mili¢,
Spialter, Hosoya, efc.' The above method is useful in small graphs but, in larger ones,
the numeric methods of linear algebra, such as the recursive algorithms of Le Verier,
Frame, or Fadeev, are more efficient.”'°

An extension of relation (1) was made by Hosoya'' and others'>"® by changing the
adjacency matrix with the distance matrix and next by any square topological matrix.

Relation (2) is a general expression of a counting polynomial, written as a
sequence of numbers, with the exponents showing the extent of partitions p(G),
U p(G) = P(G) of a graph property P(G) while the coefficients m(G, k) are related
to the occurrence/multiplicity of partitions of extent .

Counting polynomials are related, in the Mathematical Chemistry literature, to the

16,17

name of Hosoya: independent edge sets are counted by Z(G,x) and distances

18,19

counted by H(G,x) (initially called Wiener and later Hosoya) polynomials. Their

roots and coefficients are used for the characterization of topological nature of
hydrocarbons. Hosoya also proposed the sextet polynomial’** for counting the
resonant rings in a benzenoid molecule. The sextet polynomial is important in

2425

connection with the Clar aromatic sextets, expected to stabilize the aromatic

molecules.

26-2
\

The independence polynomial’*?* counts selections of k-independent vertices of

G. Other related graph polynomials are the king, color, star or clique polynomials >
More about polynomials the reader can find in ref 1.

Some distance-related properties can be expressed in polynomial form, with
coefficients calculable from the layer and shell matrices.>*>® These matrices are built
up according to the vertex distance partitions of a graph, as provided by the
TOPOCLUTJ software package.*” The most important, in this respect, is the evaluation
of the coefficients of Hosoya H(G,x) polynomial from the layer of counting LC

matrix. >
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The aim of this paper is to clarify the relation of Omega with other two counting
polynomials and to present new close formulas for calculating Omega polynomial in

some 3D infinite networks.
2. Definitions

Let G(V,E) be a connected bipartite graph, with the vertex set V(G) and edge set
E(G). Two edges e = (u,v) and /= (x,y) of G are called codistant (briefly: e co f) if

dw,x)=dWv,y)+1=du,x)+1=d(u,y) 3)

For some edges of a connected graph G there are the following relations
satisfied:***!

ecoe @)

ecofo feoe 5)

ecof& fcoh=ecoh 6)

though the relation (6) is not always valid (Figure 1 and Table 1).
Let C(e):={f € E(G); f co e} denote the set of edges in G, codistant to the

edge e € E(G). If relation co is an equivalence relation (i.e., all the elements of C(e)
satisfy the relations (4) to (6), then G is called a co-graph . Consequently, C(e) is
called an orthogonal cut oc of G and E(G) is the union of disjoint orthogonal cuts:
CiuC,u..uCiand CinGj=Qfori= j,i,j=12,.k.

Observe co is a @ relation, (Djokovié-Winkler relation) and € is a co-graph
if and only if G is a partial cube, as Klavzar* correctly stated in a recent paper,
dedicated to our C/ index (see below). In this respect, recall some basic definitions
(Ovchinikov™®).

A subgraph H < G is called isometric, if dy(u,v)=dg(u,v), for any
(u,v) € H ; it is convex if any shortest path in G between vertices of H belongs to H.
A partial cube is a graph that can be isometrically embedded into a hypercube H(X),
which vertices are finite subsets P¢(X) of X. A pair of such subsets (4,B) is an edge of
H (X) if the symmetric difference AAB is a singleton. The graph H (X) is called the

hypercube on X. The dimension of # (X) is the cardinality of the set X. The shortest
path d(4,B) on H(X) is the Hamming distances between subsets 4 and B:

d(A4,B) = ‘AAB‘ . The set P¢(X) is a metric space with the metric d.
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Figure 1. Cuneane G, and its derived graphs G to Gj.

G;: the equidistant (see below) edges 3-6 and 7-8 do not belong to the same face/ring,
so they do not belong to a strip in Q(G,x), the last one being counted by the term of
exponent unity (together with 1-7, 2-7, 4-8 and 5-8). G, and G, show the same strips in
(G, x)and correspondingly degenerate polynomial, while different ®(G,x) and

I1(G, x) . All the graphs show distinct ®(G, x) and I1(G, x) polynomials.

Let G(V,E) be a connected graph and d be its distance function. For any two
adjacent vertices (a,b) € E(G), let denote by W, the set of vertices lying closer to a

than to b: W, = {we V0d(w,a)< d(w,b)}. The set W, and its induced subgraphs
(W,,)are called semicubes of G. The semicubes W, and W, are called opposite
semicubes. Two opposite semicubes are disjoint. A graph G is bipartite if and only if
its semicubes W, and W, form a partition of V for any (a,b) € E(G). Let we W,
for some edge (a,b)e E(G). Then d(w,b)=d(w,a)+1 and consequently
W, ={weV |d(wb)=d(w,a)+1}.

If G(V,E) is a connected graph and e = (#,v) and f= (x,y) are two edges of G, a
relation @ on E(G) can be defined (Djokovié**) as:

e 0 f < fjoins avertex in Wy, with a vertex in W (@)
We can change the notation such that u € W, ,and veW,, .
Winkler* has defined a different relation ® on E(G) as:

e®f <du,x)+dv,y)=du,y)+dv,x) ®)
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In general, € ® while a graph G is bipartite if and only if #=0.1In a
bipartite graph, all semicubes are convex and the relation & is an equivalence relation
on E. A partial cube is just a bipartite graph, having all of its semicubes convex
subsets of ¥, each pair of opposite semicubes forming a partition of /" and & is an
equivalence relation on E. In a partial cube, for any pair of adjacent vertices of G,
there is a unique pair of opposite semicubes separating the two vertices. From the
above statements, we also can write: d(v,x) =d(v,y)+1=d(u,y).

The isometric dimension dim,(G) of a partial cube G is the smallest dimension
of a hypercube H(X) in which G is isometrically embeddable. It can be evaluated as:

dim,(G)=|E/ 6| 9)
where E /6 is the set of its equivalence classes, also called the ©-classes of G. The
edges in each class are parallel to each other.

It is now clear that the relation co is a relation ©. In a plane bipartite graph, an
edge f'is in relation ® with any opposite edge e if the faces of the plane graph are
isometric (which is the case of the most chemical graphs). Then an orthogonal cut oc
with respect to a given edge is the smallest subset of edges closed under this operation
and C(e) is precisely a @-class of G. Concluding, a graph G is a co-graph if and only
if it is a partial cube. Note that Cluj polynomial*® is based on calculation of opposite

semicubes (non-equidistant vertices).

Table 1. Counting polynomials of Cuneane and its derived graphs in Figure 1.

Omega Theta PI
G, Sx+2x% +x° 4x+5x7 4200 +x* x4+ 207 + 5210 4 4x!
=12 CI=122 ®' =24 PI=120
G, 6x +4x2 +x° 2x+6x7 +7x + 2x*  wet 2x3 + 7 4 6x" 2510wt
e=17 CI=258 0'=43 PI=246
2x+12x2 + 3 +2x* cut 2+ M 125" 4 20" et
®' =37 PI=252
G; 22+t e xt 4’ a5 H 130 e 3!+ 4x'2 4 5213 4 4x! fwer
e=16 CI=198 ®'=54 PI=202
4 4857 + 2x* + 2 feut 2xM 42012 4 8x"3 + 4!/ cur
®'=50 PI=206
Gy 6x+4x% +x° 2x+7x% + 75 +x* x4+ 7 72 g 2xt0
e=17 CI=258 0’ =41 PI=248

topologically parallel within the same face/ring of the covering/tiling, such a

If any two consecutive edges of an edge-cut sequence are opposite, or
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sequence is called a quasi-orthogonal cut qoc strip. This means the transitivity
relation (6) of the co relation is not necessarily obeyed. Any oc strip is a goc strip but

the reverse is not always true.*”*

3. Omega-type Polynomials

Let m(G,c) be the number of goc strips of length ¢ (i.e., the number of cut-off
edges); for the sake of simplicity, m(G,c) will hereafter be written as m. Three
counting polynomials can be defined,* in simple bipartite planar graphs (e.g., acenes,

fenacenes), on the ground of goc strips:

Q(G,x) = zcm-xc (10)
0(G,x) = Zcm-c-f an
I1(G, x) :Z(:m-ox‘k” (12)

Omega and Theta polynomials count equidistant edges in G while PI polynomial,
non-equidistant ones. Note that Ashrafi ef al.>® have firstly proposed I1(G,x), (written
as PI(G,x)), to account for the Khadikar’s PI=PI(G) topological index®' (see below).
Theta polynomial is presented here for the first time.

Note that edge equidistance relation includes co relation; to check the equidistant
edges, the following relation, true in case of non-opposite edges, is added to (3):

du,x)=du,y)=d(v,x)=d(v,y) (13)

In this respect, edges 3-6 and 7-8 of G (Figure 1) are equidistant.
In a counting polynomial, the first derivative (in x=1) D1|,—, defines the type of

property which is counted; for the three polynomials they are:

QG Xy = ), m-c=e=|E@G) (14)
O'(G.x)yy = ), m-¢* =6(G) (15)
(G, x),, = Zcm-cl(e—c) = PI(G) (16)

Reformulating (16) function of (10) and (11) we can write:
PI(G)=€& =) m- ={[Q(G,x)] -0'(G,x)},, (17)

The first part of relation (17) is just the formula proposed by John et al.*® to
calculate the P/ index (see also ref. 52).
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On the other hand, the Cluj—llmenau41 index, C/=CI(G), is calculable from

Omega*’ polynomial as:

CI(G) ={[Q (G, 1) ~[Q(G.1) +Q(G, 0]}, (18)

It is easily seen that, for a single goc, one calculates the polynomial:
Q(G,x)=1xx° and CI(G)=c* —(c+c(c-1) =c* —c* =0.

Proposition. There exist bipartite planar graphs for which CI=P1.

Applying definition (18), C/ is calculated as:
CI(G) =(Z:Cm~c)2 -1 Z:Cm-c+z‘“m~c-(c—1)]=e2 —Zcmw:z =PI(G) (19)

There are graphs (bipartite, like Ceqee, Figure 2a, or non-bipartite, like those in
Figure 1 and Table 1) where ©O(G,x) and II(G,x), respectively, show different
expressions, function of the manner of distance counting: (i) within the subgraph G,
obtained by cutting-off the two edges searched for equidistance (denoted cuf) or (ii)
within G (denoted no cut).

The two indices CI and PI show identical values if the subgraphs G,
corresponding to all pair edges in G, are isometric to G. In such cases, the two
distance counting methods give one and the same result.

As clear examples, the bipartite planar graphs of acenes and phenacenes are given
in Table 2. Analytical formulas> for the Omega and related polynomials, in these two

classes of polyhex molecular graphs are given in Tables 3 and 4.

Table 2. Counting polynomials in acenes A,, and phenacenes Ph,

Omega ClI 0(G, x) 0 (G, x) PI
A3 6x%+x? 216 12x2 +4x* 40 4x'2 1124 216
A4 8xZ+x] 384 16x% +5x° 57 sx'0+16x" 384
Ph3  5x%+2x° 218 10x2 +6x° 38 6x" +10x" 218
Phd4  6x2 +3x° 390 12x% +9x° 51 9x'® +12x" 390

Table 3. Formulas for Omega-type polynomials in acenes 4;; # = no. hexagons in G.

Q(4,,x)=2h-x> +x"V;| D1|,_=e=5h+1; D2| _=h(h+5)

CI(4,) = (Q'(4,))* —(Q'(4,) +Q"(4,)) = (5h+1)* = (5h+ 1+ h(h+5)) = 24h*
Q(4,,x) | =v/2=2h+1

T1(4,,x) = 4h-x"" + (h+1)-x*; D1| _ = 24}

O(4,,x)=4hxx* +(h+D)xx""; D1| =" +10h+1
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Table 4. Formulas for Omega-type polynomials in phenacenes Ph;, ; & = no. hexagons in G

Q(Ph,,x)=(h+2)-X’ +(h—1)-x’; D1|_=e=5h+1;D2|_=8h-2
CI(Ph,) = (5h+1)’ = (5Sh+1+8h—2) =25k =3h+2
Q(Ph,,x)|,_=v/2=2h+1

T1(Ph,,x)=2(h+2)-x"" +3(h—1)-x™"; D1| _ = 25k —=3h+2
O(Ph,,x)=2(h+2)-x* +3(h-1)-x"; D1|_,=13h-1

Other example is the pcu cubic lattice C,e (Figure 2b), which is precisely a partial
cube (in our terms, a co-graph) and the strips represent orthogonal cuts oc; it means
that all the three relations (10) to (12) are valid, and G.,'s are isometric to G, such

that C/=PIl. At this stage, we cannot, however, give a general rule for the

isometricity. Note that, in Ref. 53, II(G, x) was denoted by NQ(G, x) .

() C(2,2,2)caget v = 26; € = 48; f;=24 () CQ2,2.2)ne; v=27; €= 54 r=36
Q(G,x)=6x"; CI=1920

Q(G,x) = 6x°; CI=2430
O(G,x)=24x% +24x""; O =432; no cut

0(G,x) = 24x% +24x° . ©' =408; cut O(G,x)=54x; O’ =486
T1(G, x) = 24x° +24x*; PI=1872; no cut i

I1(G,x) =54x™; =
T1(G,x) = 24x™ +24x™ ; PI=1896; cut (Gx) =34 PI=2430

Figure 2. A planar bipartite cage and its corresponding bipartite net

Comparing (17) and (18) it is evident that:

0'(G) =[Q(G,x) +Q"(G,x)] - (20)
In the above, the following relations hold:

e(G)=) m-c=Q(G,x),, =0(G,x),, @1

From relations (17) and (21), PI(G) can be calculated function of the only Theta

polynomial:
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PI(G)={[0(G. 0] ~O'(G.)],, @)
There exist bipartite non-planar graphs (of genus g>0, e.g., square tiled torus
TWOD[6,10]; Table 5: row 1) for which CI # PI. Conversely, there exist non-
bipartite non-planar graphs with C/=PI (TWV3D[6,10]; Table 5, row 7), in this last
case ¢ =Cg(see below). There exist graphs for which the discussed indices show
degenerate values: for C/ see Table 1, G, and G4 and Table 5 (rows 2 and 4, with
degenerate both polynomial and single number index). In case of P/ index, Table 5

(rows 2 and 6) shows degenerate index values (in italics) but distinct polynomials.

Table 5. Polynomials in square tiled (4,4) tori: a bipartite graph for which CI = PI (row 1)
and a non-bipartite graph showing CI=PI (row 7).

Torus Omega Theta PI

(4.4) CI PI
1 TWOD[6,10] 10x%+6x° 13440  60x™+60x° 12480 60X +60x
TWH2D[6,10]  6x/%+2x*" 12000 60x'*+60x* 11880  60x’*+60x'"
TWH3D[6,10] 6x'+x* 10200 120x" 13200 120x'"°
TWHG6D[6,10]  6x"’+2xX* 12000  60x**+60x* 11160  60x**+60x*
TWVID[6,10]  10x*+x** 10440  60x*+60x'® 12960  60x'**+60x'"*
TWV2D[6,10]  10x*+2x*° 12240  60x'°+60x*° 11880  60x*+60x'™
TWV3D[6,10]  10x*+3x™ 12840  60x°+60x* 12840  60x'"+60x""*

B = NV . N L)

Despite relations (11) and (12) are not valid in general, relation (22) is still true.

The two polynomials can be re-written as:
®(G,X)=Zcm@(G,C@)’xce an
— .y¢ % .
I(G,x) =) mo(Gco)-x (12)

where cghas now the meaning of cardinality of sets of equidistant edges. From the
complementariness of equidistant/non-equidistant edges in G, it follows that the two
polynomials have the same coefficients but complementary (to e) exponents. The
Khadikar’s index P/ can thus be calculated from either of the two polynomials
(relations (17) and (22)), for any graph.

The major difference between Omega and Theta polynomials is the first one
excludes the already cut edge to the further cuttings. This is not the case for the Theta
polynomial, but in planar bipartite graphs its coefficients can be calculated from the

coefficients of Q(G,x) by simply multiplying by c.
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In tree graphs, the Omega polynomial is either not defined or it simply counts the
non-equidistant edges as self-equidistant ones, being included in the term of exponent
c=1. In such graphs, CI=PI =(v-1)(v-2) (a result known from Khadikar’*) and the
Omega and Theta polynomials show the same expression (compare (10) and (11°).

The coefficient of the term of exponent ¢=1 has found utility as a topological
index, called 7, the number of pentagon fusions, appearing in small fullerenes as a
destabilizing factor. This index accounts for more than 90 % of the variance in heat of
formation HF of fullerenes C49 and C50.55

The following tables give examples for the three polynomials and derived
numbers and formulas for counting their expressions: Tables 6 and 7 list data for the
cubic cage Ccage (Figure 2a) and its medial transform. Tables 8 and 9 include data for
the cubic net Cp (Figure 2b) and its medial Med(C,e) (Figure 3a). Note that the
bipartite net Cp can be represented as the Cartesian product of three copies of the
path on three vertices. Formula for the PI index of such a net is also given in ref. 52.
Table 9 also gives formula for counting Omega polynomial in Med(Med(OP))COgo,net

(Figure 3b), which is a unit of an infinite spongy network.

Table 6. Counting polynomials in C(a,a,a)cage

Omega Theta PI
a=1 34 12x* 12x%
V=8 CI=96 O’ =48 PI=96
e=12
a=2 g8 24x° +24x cut 245" + 245 cut
Viig CI=1920 24x* +24x' nocut 24x* +24x* no cut
e ®' =408cut/432 no cut PI=1896cut/1872 no cut
a=3 9x 12 60x'? + 48x'* cut 60x°0 + 48x* cut
‘f?gs CI=10368  60x'2 +48x'°no cut 60x% +48x%2 no cut
- 0’ =1392/1488 PI=10272cut/10176 no cut
a=4 12x'6 96x!% +24x'7 +48x% + 24xP cut  96x'70 +24x'7 + 48x'7* 1+ 72x' cut
V=98 133792 96+ 243 +72x% no cut 96x76 +24x'™ 1 7217 no cut
=192 @' =3432/3552 PI=33432cut/33312 no cut

Table 7. Formulas for Omega polynomial in C(a,a,a)cg. and its medial.

C(2,2,)cage
v(C(a,a,a)Mge) =(a+ 1)3 —(a— 1)3 ; c=4a; m=3a;a—no. of squares in a C(a,a,a)cage
QC(a,a,0) 1y, X) = 3a-x*

Med(C(a,a,a)cage)

Q(Med(C(a,a,a)

), x) =12x> + 4x5¢

cage
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(a) Med(C(a,a,a) ne); a =2; v =54 (b) Med(Med(OP))COy (a,a,a); a =1; v =60
Q(G,x) =36x> +18x* Q(G, x) = 24x% +12x° +18x*
CI=20304; PI=17712 CI=23844; PI=21384

Figure 3. Graphs showing CI # PI

Table 8. Data for the three polynomials in the cubic pcu net C(a,a,a)net

Cubic Net Omega Theta PI D1 Ratios
a=1 3x* 12x* 12x* n'/e'=2
v=8 CI1=96 @' =48 ' =96 n'/Q'=8
e=12 Q'/Q =4
a=2 6x° 54x° 545 In'/e'=s
v=27 CI=2430 ®' =486 1" =2430 '/ Q' =45
e=54 0'/Q'=9
a=3 9x'6 144" 144x'% In'/e'=8
V=64 CI=18432  @'=2304 II' =18432 1II'/Q'=128
e=144 '/Q'=16
a=4 12x% 300x% 300577 I1'/0'=11
V=125 CI=82500  @'=7500 II' =82500 T1'/Q'=275
=300 0'/Q’' =25

Table 9. Formulas for the three polynomials in some selected nets

(a) Cubic pcu net C(a,b,¢)ne; (Figure 2b); (G, isometric to G)

W(C(a,a,a),,) =(a+1)*; c¢(Cla,a,a),, =c=(a+1)*; m(C(a,a,a),,, =m=3a

Q(C(a,a,a),x)=m-x° = 3a.x@

O(C(a,a,a),x) = mc-x° =3a(a+1)? . xla+D?
II(C(a,a,a),x) = mc-x" D =3a(a+1)* . x(@+h*Ga-D)
Wm0 e T _melemo) O _me
o' me? c T Q me Q' me

2

=c

Q(C(a,b, C),x) =a- x(b+l)(c+l) +b- x(a+l)(c+l) +e .x(a+l)(b+l)
Q(C(a,a,¢),x) = 2a-x' DD o e’

Q(Cla, a,a),x) = 3a-xV’
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Table 9. (continued)

(b) Med(C(a,b,c) ne); (Figure 3a)

min(b.c)-1
O(Med(C)a,bc)x) =4a+1): 3 3 +2(bc|+ a+ )20 1
i=1
min@.c)-l .
4(b+1)- z x.l+2(‘a7c‘+1)(b+1)_x.mm(a.<)+
i=1
min(a,b)-1
4(C+1)~ z x:; +2(‘67—b‘+1)(c+1)-xzmm(a‘h>

i=l

min(a,c)-1 . a-1
Q(Med(C)(a,a,c),x)=8(a+1)- Y. x*+4(a—c|+D)(@+1)-x""" +4(c+1)- > x* +2(c+1)-x*
i=1

i=1

Q(Med(C)(a,a,a),x)=12(a+1)- i ¥ +6(a+1)-x* =6(a+ 1)[2§ X+ x]

i=1 i=l

(¢) Med(Med(OP))COgo(a,b,c)ne; (Figure 3b)

Q(COy(a,b,c),x) = 8(a+b+c)-x2 Jr(16(ab+ac+bc)712(a+b+c))»x3 +
+((12abc +2(a+b+c))-x* +((12abc — 6(ab+ ac + be) + 2(a+b+c)) - x°
Q(COg(a,a,¢),x) =8(2a+c)- x> +(16(a* +2ac)—12(2a+c)) - x° + ((12a°c + 2(2a+¢)) - x* +
+((12a%c - 6(a® +2ac) +2(2a+c))- x°
Q(COg¢(a,a,a),x) = 6a(4- 2 +8a-6)-x°+(2a> +1)-x* +(2a® -3a+1)-x%)

Conclusions

Three counting polynomials: Omega Q, Equidistance ® and Non-Equidistance 11
have been defined and their mutual inter-relations established. All the three
polynomials count sets of edges related to quasi-orthogonal cut “qoc” strips, at their
turn related to partial cubes.

It was shown that the indices CI (derived from Omega polynomial) and P/
(derived from 11 polynomial) show identical values if all the subgraphs G, (obtained
by cutting-off the two edges searched for equidistance) are isometric to G. Examples
of graphs showing CI = PI and CI # PI , respectively, were presented.

Extension from faces to rings (namely strong rings, which are not the sum of other
smaller rings) enabled calculation of Q(G,x) in 3D networks, either bipartite or non-
bipartite. Analytical close formulas for the polyhex graphs of acenes and phenacenes,

and for some cubic lattices and their corresponding cages were derived.
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improving this paper.
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