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Abstract. Counting polynomials are those polynomials having at exponent the extent 

of a property partition and coefficients the multiplicity/occurrence of the 

corresponding partition. In the present paper three related counting polynomials are 

discussed: Omega , Equidistance  and Non-Equidistance  polynomials, and 

their mutual inter-relations in some particular graphs and lattices, as well. Analytical 

close formulas for some cubic lattices and their corresponding cages are derived. 

1. Counting Polynomials 

A graph can be described by a connection table, a sequence of numbers, a matrix, 

a polynomial or a derived unique number (often called a topological index). In 

Quantum Chemistry, the early Hückel theory calculates the levels of -electron 

energy of the molecular orbitals, in conjugated hydrocarbons, as roots of the 

characteristic polynomial:1-4 

( , ) det[ I A( )]P G x x G             (1) 

In the above, I is the unit matrix of a pertinent order and A the adjacency matrix of 

the graph G. The characteristic polynomial is involved in the evaluation of topological 
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resonance energy TRE, the topological effect on molecular orbitals TEMO, the 

aromatic sextet theory, the Kekulé structure count, etc.4-8

The coefficients ),( kGm  in the polynomial expression: 

k
kxkGmxGP ),(),(              (2) 

are calculable from the graph G by a method making use of the Sachs graphs, which 

are subgraphs of G. Relation (2) was found independently by Sachs, Harary, Mili ,

Spialter, Hosoya, etc.1 The above method is useful in small graphs but, in larger ones, 

the numeric methods of linear algebra, such as the recursive algorithms of Le Verier, 

Frame, or Fadeev, are more efficient.9,10 

An extension of relation (1) was made by Hosoya11 and others12-15 by changing the 

adjacency matrix with the distance matrix and next by any square topological matrix. 

Relation (2) is a general expression of a counting polynomial, written as a 

sequence of numbers, with the exponents showing the extent of partitions p(G), 

)()( GPGp  of a graph property P(G) while the coefficients ),( kGm  are related 

to the occurrence/multiplicity of partitions of extent k.

Counting polynomials are related, in the Mathematical Chemistry literature, to the 

name of Hosoya:16,17 independent edge sets are counted by Z(G,x) and distances 

counted by H(G,x) (initially called Wiener and later Hosoya)18,19 polynomials. Their 

roots and coefficients are used for the characterization of topological nature of 

hydrocarbons. Hosoya also proposed the sextet polynomial20-23 for counting the 

resonant rings in a benzenoid molecule. The sextet polynomial is important in 

connection with the Clar aromatic sextets,24,25 expected to stabilize the aromatic 

molecules.  

The independence polynomial26-28 counts selections of k-independent vertices of 

G. Other related graph polynomials are the king, color, star or clique polynomials.29-33

More about polynomials the reader can find in ref 1. 

Some distance-related properties can be expressed in polynomial form, with 

coefficients calculable from the layer and shell matrices.34-38 These matrices are built 

up according to the vertex distance partitions of a graph, as provided by the 

TOPOCLUJ software package.39 The most important, in this respect, is the evaluation 

of the coefficients of Hosoya H(G,x) polynomial from the layer of counting LC 

matrix.36,37 
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The aim of this paper is to clarify the relation of Omega with other two counting 

polynomials and to present new close formulas for calculating Omega polynomial in 

some 3D infinite networks. 

2. Definitions 

Let G(V,E) be a connected bipartite graph, with the vertex set V(G) and edge set 

E(G). Two edges e = (u,v) and f = (x,y) of G are called codistant (briefly: e co f ) if

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y           (3) 

For some edges of a connected graph G there are the following relations 

satisfied:40,41 

ecoe             (4) 

e co f f co e              (5) 

hcoehcoffcoe &          (6)  

though the relation (6) is not always valid (Figure 1 and Table 1).  

Let });({:)( ecofGEfeC  denote the set of edges in G, codistant to the 

edge )(GEe . If relation co is an equivalence relation (i.e., all the elements of C(e)

satisfy the relations  (4) to (6), then G is called a co-graph . Consequently, C(e) is 

called an orthogonal cut oc of G and E(G) is the union of disjoint orthogonal cuts: 

kCCC ...21 and CjCi Ø for kjiji ,..,2,1,, .

Observe co is a  relation, (Djokovi -Winkler relation) and  is a co-graph

if and only if G is a partial cube, as Klavžar42 correctly stated  in a recent paper, 

dedicated to our CI index (see below). In this respect, recall some basic definitions 

(Ovchinikov43).

A subgraph H G is called isometric, if ),(),( vudvud GH , for any 

( , )u v H ; it is convex if any shortest path in G between vertices of H belongs to H.

A partial cube is a graph that can be isometrically embedded into a hypercube H(X), 

which vertices are finite subsets Pf (X) of X. A pair of such subsets (A,B) is an edge of 

H (X) if the symmetric difference BA  is a singleton. The graph H (X) is called the 

hypercube on X. The dimension of H (X) is the cardinality of the set X. The shortest 

path d(A,B) on H(X) is the Hamming distances between subsets A and B:

BABAd ),( . The set Pf (X) is a metric space with the metric d.
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G1 G2

G3 G4

Figure 1. Cuneane G1 and its derived graphs G2 to G4.

G1: the equidistant (see below) edges 3-6 and 7-8 do not belong to the same face/ring, 
so they do not belong to a strip in ),( xG , the last one being counted by the term of 
exponent unity (together with 1-7, 2-7, 4-8 and 5-8). G2 and G4 show the same strips in 

),( xG and correspondingly degenerate polynomial, while different ),( xG  and 
),( xG . All the graphs show distinct ),( xG  and ),( xG polynomials. 

Let G(V,E) be a connected graph and d be its distance function. For any two 

adjacent vertices )(),( GEba , let denote by Wab, the set of vertices lying closer to a

than to b: ),(),(| bwdawdVwWab . The set Wab and its induced subgraphs 

abW are called semicubes of G. The  semicubes Wab and Wba are called opposite 

semicubes. Two opposite semicubes are disjoint. A graph G is bipartite if and only if 

its semicubes Wab and Wba form a partition of V for any )(),( GEba . Let abWw

for some edge )(),( GEba . Then 1),(),( awdbwd  and consequently 

1),(),(| awdbwdVwWab .

If G(V,E) is a connected graph and e = (u,v) and f = (x,y) are two edges of G, a

relation  on E(G) can be defined (Djokovi 44) as: 

ffe joins a vertex in Wxy with a vertex in Wyx   (7) 

We can change the notation such that xyWu and yxWv  . 

Winkler45 has defined a different relation  on E(G) as: 

( , ) ( , ) ( , ) ( , )e f d u x d v y d u y d v x    (8) 
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In general,  while a graph G is bipartite if and only if . In a 

bipartite graph, all semicubes are convex and the relation  is an equivalence relation 

on E. A partial cube is just a bipartite graph, having all of its semicubes convex 

subsets of V, each pair of opposite semicubes forming a partition of V and  is an 

equivalence relation on E. In a partial cube, for any pair of adjacent vertices of G, 

there is a unique pair of opposite semicubes separating the two vertices. From the 

above statements, we also can write: ),(1),(),( yudyvdxvd .

The isometric dimension dimI(G) of a partial cube G is the smallest dimension 

of a hypercube  H(X) in which G is isometrically embeddable. It can be evaluated as: 

/)(dim EGI        (9) 

where /E  is the set of its equivalence classes, also called the -classes of G. The 

edges in each class are parallel to each other.  

It is now clear that the relation co is a relation . In a plane bipartite graph, an 

edge f is in relation  with any opposite edge e if the faces of the plane graph are 

isometric (which is the case of the most chemical graphs). Then an orthogonal cut oc

with respect to a given edge is the smallest subset of edges closed under this operation 

and C(e) is precisely a -class of G. Concluding, a graph G is a co-graph if and only 

if it is a partial cube. Note that Cluj polynomial46 is based on calculation of opposite 

semicubes (non-equidistant vertices).  

Table 1. Counting polynomials of Cuneane and its derived graphs in Figure 1. 

 Omega Theta PI 
G1

e=12 

3225 xxx
CI =122 

432 254 xxxx
=24 

111098 452 xxxx
PI =120 

G2

e=17

3246 xxx
CI =258 

wctxxxx /2762 432

=43 
cutxxxx /2122 432

=37 

wctxxxx /2672 16151413

PI =246 
cutxxxx /2122 16151413

PI =252 
G3

e=16

54322 xxxx
CI =198

wctxxxx /3454 5432

=54 
cutxxxx /2284 5432

=50 

wctxxxx /4543 14131211

PI =202
cutxxxx /4822 14131211

PI =206
G4

e=17

3246 xxx
CI =258 

432 772 xxxx
=41

16151413 277 xxxx
PI =248

If any two consecutive edges of an edge-cut sequence are opposite, or 

topologically parallel within the same face/ring of the covering/tiling, such a 
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sequence is called a quasi-orthogonal cut qoc strip. This means the transitivity 

relation (6) of the co relation is not necessarily obeyed. Any oc strip is a qoc strip but 

the reverse is not always true.47,48

3. Omega-type Polynomials

Let m(G,c) be the number of qoc strips of length c (i.e., the number of cut-off 

edges); for the sake of simplicity, m(G,c) will hereafter be written as m.  Three 

counting polynomials can be defined,49 in simple bipartite planar graphs (e.g., acenes, 

fenacenes), on the ground of qoc strips: 

c
cxmxG ),(            (10) 

c
cxcmxG ),(            (11) 

( , ) e c
c

G x m c x            (12) 

Omega and Theta polynomials count equidistant edges in G while PI polynomial, 

non-equidistant ones. Note that Ashrafi et al.50 have firstly proposed ),( xG , (written 

as PI(G,x)), to account for the Khadikar’s PI=PI(G) topological index51 (see below). 

Theta polynomial is presented here for the first time. 

Note that edge equidistance relation includes co relation; to check the equidistant 

edges, the following relation, true in case of non-opposite edges, is added to (3): 

( , ) ( , ) ( , ) ( , )d u x d u y d v x d v y      (13) 

In this respect, edges 3-6 and 7-8 of G1 (Figure 1) are equidistant.  

In a counting polynomial, the first derivative (in x=1) D1|x=1, defines the type of 

property which is counted; for the three polynomials they are: 

| 1( , ) ( )x c
G x m c e E G               (14)

2
| 1( , ) ( )x c

G x m c G         (15)

)()(),( 1| GPIcecmxG
cx            (16)

Reformulating (16) function of (10) and (11) we can write: 
2 2 2

| 1( ) [ ( , )] ( , ){ } xc
PI G e m c G x G x          (17)

The first part of relation (17) is just the formula proposed by John et al.40 to 

calculate the PI index (see also ref. 52). 
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On the other hand, the Cluj-Ilmenau41 index, CI=CI(G), is calculable from 

Omega49 polynomial as:
2

| 1( ) [ ( , )] [ ( , ) ( , )]{ }xCI G G x G x G x       (18) 

It is easily seen that, for a single qoc, one calculates the polynomial: 
cxxG 1),(  and 0))1(()( 222 ccccccGCI .    

Proposition. There exist bipartite planar graphs for which CI=PI. 

Applying definition (18), CI is calculated as: 

      2 2 2( ) ( 1) ( )( ) [ ]
c c c c

CI G m c m c m c c e m c PI G   (19) 

There are graphs (bipartite, like Ccage, Figure 2a, or non-bipartite, like those in 

Figure 1 and Table 1) where ( , )G x  and ( , )G x , respectively, show different 

expressions, function of the manner of distance counting: (i) within the subgraph Gcut

obtained by cutting-off the two edges searched for equidistance (denoted cut) or (ii) 

within G (denoted no cut).

The two indices CI and PI show identical values if the subgraphs Gcut

corresponding to all pair edges in G, are isometric to G. In such cases, the two 

distance counting methods give one and the same result.  

As clear examples, the bipartite planar graphs of acenes and phenacenes are given 

in Table 2. Analytical formulas53 for the Omega and related polynomials, in these two 

classes of polyhex molecular graphs are given in Tables 3 and 4.  

Table 2. Counting polynomials in acenes An, and phenacenes Phn

 Omega CI ),( xG ),( xG PI
A3 426 xx 216 42 412 xx 40 1412 124 xx 216

A4 528 xx 384 52 516 xx 57 1916 165 xx 384
Ph3 32 25 xx 218 32 610 xx 38 1413 106 xx 218
Ph4 32 36 xx 390 32 912 xx 51 1918 129 xx 390

Table 3. Formulas for Omega-type polynomials in acenes Ah; h = no. hexagons in G.
2 ( 1)

1 1( , ) 2 ; | 1| 5 1; 2 | ( 5)h
h x xA x h x x D e h D h h

2 2 2( ) ( ( )) ( ( ) ( )) (5 1) (5 1 ( 5)) 24h h h hCI A A A A h h h h h

1( , ) | / 2 2 1h xA x v h
5 1 4 2

1( , ) 4 ( 1) ; 1| 24h h
h xA x h x h x D h

2 1 2
1( , ) 4 ( 1) ; 1| 10 1h

h xA x h x h x D h h
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Table 4. Formulas for Omega-type polynomials in phenacenes Phh ; h = no. hexagons in G
2 3

1 1( , ) ( 2) ( 1) ; 1 | 5 1; 2 | 8 2h x xPh x h x h x D e h D h
2 2( ) (5 1) (5 1 8 2) 25 3 2hCI Ph h h h h h

1( , ) | / 2 2 1h xPh x v h
5 1 5 2 2

1( , ) 2( 2) 3( 1) ; 1| 25 3 2h h
h xPh x h x h x D h h

2 3
1( , ) 2( 2) 3( 1) ; 1| 13 1h xPh x h x h x D h

Other example is the pcu cubic lattice Cnet (Figure 2b), which is precisely a partial 

cube (in our terms, a co-graph) and the strips represent orthogonal cuts oc;  it means 

that all the three relations (10) to (12) are valid, and Gcut`s are isometric to G, such 

that  CI=PI. At this stage, we cannot, however, give a general rule for the 

isometricity. Note that, in Ref. 53, ( , )G x was denoted by N ( , )G x .

(a)  C(2,2,2)cage: v = 26; e = 48; f4=24 
86),( xxG ; CI=1920

108 2424),( xxxG ; =432; no cut 
98 2424),( xxxG ; =408; cut 

4038 2424),( xxxG ; PI=1872; no cut 
4039 2424),( xxxG ; PI=1896; cut 

(b)   C(2,2,2)net;  v = 27; e = 54; r4=36
96),( xxG ; CI =2430

9( , ) 54G x x ; =486 

4554),( xxG ; PI =2430

Figure 2. A planar bipartite cage and its corresponding bipartite net 

Comparing (17) and (18) it is evident that:  

1|)],(),([)( xxGxGG         (20)

In the above, the following relations hold: 

| 1 | 1( ) ( , ) ( , )x xc
e G m c G x G x       (21) 

From relations (17) and (21), PI(G) can be calculated function of the only Theta 

polynomial: 
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2
| 1( ) [ ( , )] ( , ){ }xPI G G x G x           (22) 

There exist bipartite non-planar graphs (of genus g>0, e.g., square tiled torus  

TW0D[6,10]; Table 5: row 1) for which PICI . Conversely, there exist non-

bipartite non-planar graphs with CI=PI (TWV3D[6,10]; Table 5, row 7), in this last 

case c c (see below). There exist  graphs for which the discussed indices show 

degenerate values: for CI see Table 1, G2 and G4 and Table 5 (rows 2 and 4, with 

degenerate both polynomial and single number index). In case of PI index, Table 5 

(rows 2 and 6) shows degenerate index values (in italics) but distinct polynomials.  

Table 5. Polynomials in square tiled (4,4) tori: a bipartite graph for which PICI (row 1) 
and a non-bipartite graph showing CI=PI (row 7). 

 Torus Omega Theta PI 

 (4,4)  CI  PI  

1 TW0D[6,10] 10x6+6x10 13440 60x12+60x20 12480 60x100+60x108

2 TWH2D[6,10] 6x10+2x30 12000 60x18+60x24 11880 60x96+60x102

3 TWH3D[6,10] 6x10+x60 10200 120x10 13200 120x110

4 TWH6D[6,10] 6x10+2x30 12000 60x26+60x28 11160 60x92+60x94

5 TWV1D[6,10] 10x6+x60 10440 60x6+60x18 12960 60x102+60x114

6 TWV2D[6,10] 10x6+2x30 12240 60x16+60x26 11880 60x94+60x104

7 TWV3D[6,10] 10x6+3x20 12840 60x6+60x20 12840 60x100+60x114

Despite relations (11) and (12) are not valid in general, relation (22) is still true. 

The two polynomials can be re-written as: 

( , ) ( , ) c
c

G x m G c x         (11`) 

( , ) ( , ) e c
c

G x m G c x         (12`)

where c has now the meaning of cardinality of sets of equidistant edges. From the 

complementariness of equidistant/non-equidistant edges in G, it follows that the two 

polynomials have the same coefficients but complementary (to e) exponents. The 

Khadikar’s index PI can thus be calculated from either of the two polynomials 

(relations (17) and (22)), for any graph.  

The major difference between Omega and Theta polynomials is the first one 
excludes the already cut edge to the further cuttings. This is not the case for the Theta 
polynomial, but in planar bipartite graphs its coefficients can be calculated from the 

coefficients of (G,x) by simply multiplying by c.
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In tree graphs, the Omega polynomial is either not defined or it simply counts the 
non-equidistant edges as self-equidistant ones, being included in the term of exponent 
c=1. In such graphs, CI=PI =(v-1)(v-2) (a result known from Khadikar54) and the 
Omega and Theta polynomials show the same expression (compare (10) and (11`).

The coefficient of the term of exponent c=1 has found utility as a topological 
index, called np, the number of pentagon fusions, appearing in small fullerenes as a 
destabilizing factor. This index accounts for more than 90 % of the variance in heat of 
formation HF of fullerenes C40 and C50.55

The following tables give examples for the three polynomials and derived 
numbers and formulas for counting their expressions: Tables 6 and 7 list data for the 
cubic cage Ccage (Figure 2a) and its medial transform. Tables 8 and 9 include data for 
the cubic net Cnet (Figure 2b) and its medial Med(Cnet) (Figure 3a). Note that the 
bipartite net Cnet can be represented as the Cartesian product of three copies of the 
path on three vertices. Formula for the PI index of such a net is also given in ref. 52. 
Table 9 also gives formula for counting Omega polynomial in Med(Med(OP))CO60,net

(Figure 3b), which is a unit of an infinite spongy network. 

Table 6. Counting polynomials in C(a,a,a)cage

 Omega  Theta  PI

a=1
v=8
e=12

43x
CI =96 

412x
=48

812x
PI=96 

a=2
v=26
e=48

86x
CI =1920 

98 2424 xx cut 
108 2424 xx nocut 

=408cut/432 no cut 

3940 2424 xx cut 
3840 2424 xx no cut 

PI =1896cut/1872 no cut 
a=3
v=64
e=108 

129x
CI =10368 

1412 4860 xx cut 
1612 4860 xx no cut 

=1392/1488 

9496 4860 xx cut 
9296 4860 xx no cut 

PI =10272cut/10176 no cut 
a=4
v=98
e=192 

1612x
CI =33792 

22201716 24482496 xxxx cut 
221816 722496 xxx no cut 

=3432/3552 

170172175176 72482496 xxxx cut 
170174176 722496 xxx no cut 

PI =33432cut/33312 no cut 

Table 7. Formulas for Omega polynomial in C(a,a,a)cage and its medial. 

C(a,a,a)cage
3 3( ( , , ) ) ( 1) ( 1)cagev C a a a a a ; 4c a ; 3m a ; a – no. of squares in a C(a,a,a)cage

4(C( , , ) , ) 3 a
cagea a a x a x

Med(C(a,a,a)cage)
2 6( (C( , , ) ), ) 12 4a a

cageMed a a a x x x
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(a) Med(C(a,a,a) net); a =2; v =54 
2 4( , ) 36 18G x x x

CI = 20304; PI = 17712 

(b) Med(Med(OP))CO60 (a,a,a); a =1; v =60 
2 3 4( , ) 24 12 18G x x x x

CI = 23844; PI = 21384

Figure 3. Graphs showing PICI

Table 8. Data for the three polynomials in the cubic pcu net C(a,a,a)net

Cubic Net Omega  Theta  PI D1 Ratios 
a=1
v=8 
e=12 

43x
CI =96 

412x
=48

812x
=96 

/ =2
/ =8
/ =4

a=2
v=27 
e=54 

96x
CI =2430 

954x
=486 

4554x
=2430 

/ =5
/ =45
/ =9

a=3
v=64 
e=144 

169x
CI =18432 

16144x
=2304 

128144x
=18432 

/ =8 
/ =128 
/ =16

a=4
v=125 
e=300

2512x
CI =82500 

25300x
=7500 

275300x
=82500 

/ =11
/ =275 
/ =25

Table 9. Formulas for the three polynomials in  some selected nets   

(a) Cubic pcu net C(a,b,c)net;  (Figure 2b); (Gcut isometric to G)
3(C( , , ) ) ( 1)netv a a a a ; 2(C( , , ) ( 1)netc a a a c a ; (C( , , ) 3netm a a a m a

2( 1)(C( , , ), ) 3c aa a a x m x a x
22 ( 1)(C( , , ), ) 3 ( 1)c aa a a x mc x a a x

2( 1) 2 ( 1) (3 1)(C( , , ), ) 3 ( 1)c m a aa a a x mc x a a x

11)(
2

m
c
e

mc
cemc ; ce

mc
cemc )( ; c

mc
mc2

( 1)( 1) ( 1)( 1) ( 1)( 1)(C( , , ), ) b c a c a ba b c x a x b x c x
2( 1)( 1) ( 1)(C( , , ), ) 2 a c aa a c x a x c x

2( 1)(C( , , ), ) 3 aa a a x a x
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Table 9. (continued)

(b) Med(C(a,b,c) net); (Figure 3a) 
min( , ) 1

2 2min( , )

1
min( , ) 1

2 2min( , )

1
min( , ) 1

2 2min( , )

1

( (C)( , , ), ) 4( 1) 2( 1)( 1)

4( 1) 2( 1)( 1)

4( 1) 2( 1)( 1)

b c
i b c

i
a c

i a c

i
a b

i a b

i

Med a b c x a x b c a x

b x a c b x

c x a b c x

min( , ) 1 1
2 2min( , ) 2 2

1 1
( (C)( , , ), ) 8( 1) 4( 1)( 1) 4( 1) 2( 1)

a c a
i a c i a

i i
Med a a c x a x a c a x c x c x

1 1
2 2 2 2

1 1
( (C)( , , ), ) 12( 1) 6( 1) 6( 1)[2 ]

a a
i a i a

i i
Med a a a x a x a x a x x

(c) Med(Med(OP))CO60(a,b,c)net; (Figure 3b) 
2 3

60
4 6

(CO ( , , ), ) 8( ) (16( ) 12( ))

((12 2( )) ((12 6( ) 2( ))

a b c x a b c x ab ac bc a b c x

abc a b c x abc ab ac bc a b c x
2 2 3 2 4

60
2 2 6

(CO ( , , ), ) 8(2 ) (16( 2 ) 12(2 )) ((12 2(2 ))

((12 6( 2 ) 2(2 ))

a a c x a c x a ac a c x a c a c x

a c a ac a c x
2 3 2 4 2 6

60(CO ( , , ), ) 6 (4 (8 6) (2 1) (2 3 1) )a a a x a x a x a x a a x

Conclusions 

Three counting polynomials: Omega , Equidistance and Non-Equidistance 

have been defined and their mutual inter-relations established. All the three 

polynomials count sets of edges related to quasi-orthogonal cut “qoc” strips, at their 

turn related to partial cubes.  

It was shown that the indices CI (derived from Omega polynomial) and PI

(derived from  polynomial) show identical values if all the subgraphs Gcut (obtained 

by cutting-off the two edges searched for equidistance) are isometric to G. Examples 

of graphs showing CI PI  and CI PI , respectively, were presented.  

Extension from faces to rings (namely strong rings, which are not the sum of other 

smaller rings) enabled calculation of ( , )G x in 3D networks, either bipartite or non-

bipartite. Analytical close formulas for the polyhex graphs of acenes and phenacenes, 

and for some cubic lattices and their corresponding cages were derived. 

Acknowledgements. This work was supported by the Romanian CEEX CHEMMOD 233 
/2006 and the grant PN-II, ID_506. The authors acknowledge the referees valuable help in 
improving this paper. 

- 248 -



References  

1. M. V. Diudea, I. Gutman, and L. Jäntschi, Molecular Topology, NOVA, New York, 

2002. 

2.       F. Harary, SIAM Rev., 1962, 4,  202-210.  

3. H. Sachs, Publ. Math. (Debrecen), 1964, 11, 119-134.  

4. N. Trinajsti , Chemical Graph Theory, IInd Ed. CRC Press, 1992. 

5. I. Gutman, M. Milun, and N. Trinajsti , MATCH Commun. Math. Comput. Chem.,

1975, 1, 171-  175. 

6. J. Aihara, J. Am. Chem. Soc., 1976, 98, 2750-2758.  

7. I. Gutman, M. Milun, and N. Trinajsti , J. Am. Chem. Soc., 1977, 99, 1692-1704.  

8. A. Tang, Y. Kiang, G. Yan, and S. Tai, Graph Theoretical Molecular Orbitals; Science 

Press, Beijing, 1986. 

9. P. S. Dwyes, Linear Computations, Wiley, N. Y. 1951. 

10. D. K. Fadeev and I. S. Sominskii, Problems in Higher Algebra, Freeman, San 

Francisco, 1965. 

11. H. Hosoya, M. Murakami, and M. Gotoh, Natl. Sci. Rept. Ochanomizu Univ., 1973, 24,

27-34. 

12. R. L. Graham and L. Lovasz, Adv. Math., 1978, 29, 60-88. 

13. M. V. Diudea, O. Ivanciuc, S. Nikoli , and N. Trinajsti , MATCH Commun. Math. 

Comput. Chem., 1997, 35, 41-64. 

14. O. Ivanciuc, M. V. Diudea, and P. V. Khadikar, Indian J. Chem., 1998, 37A, 574-585.

15. O. Ivanciuc, T. Ivanciuc, and M. V. Diudea, Roum. Chem. Quart. Rev. 1999, 7, 41-67. 

16. H. Hosoya, Bull. Chem. Soc. Japan, 1971, 44, 2332-2339. 

17. H. Hosoya, Discrete Appl. Math., 1988, 19,  239-257. 

18. E. V. Konstantinova and M. V. Diudea, Croat. Chem. Acta, 2000,73, 383-403. 

19. I. Gutman, S. Klavžar, M. Petkovšek, and P. Žigert, MATCH Commun. Math. Chem.,

2001, 43, 49-66. 

20. H. Hosoya and T. Yamaguchi, Tetrahedron Lett., 1975, 4659-4662.  

21. N. Ohkami and H. Hosoya, Theoret. Chim. Acta, 1983, 64, 153-170. 

22. N. Ohkami, A. Motoyama, T. Yamaguchi, and H. Hosoya, Tetrahedron, 1981, 37,

1113-1122. 

23. H. Hosoya, Topics Curr. Chem., 1990, 153, 255-272.  

24. E. Clar, Polycyclic Hydrocarbons, Acad. Press, London, 1964. 

25. E. Clar, The Aromatic Sextet, Wiley, New York, 1972. 

26. I. Gutman and H. Hosoya, Z. Naturforsch., 1990, 45a, 645-648.  

27. I. Gutman, MATCH Commun. Math. Chem., 1992, 28, 139-150.  

- 249 -



28. D. Stevanovi , Graph Theory Notes New York, 1998, 34, 31-36.  

29. A. Motoyama and H. Hosoya, J. Math. Phys., 1977, 18, 1485-1490.  

30. K. Balasubramanian and R. Ramaraj,  J. Comput. Chem., 1985, 6, 447-454 

31. E. J. Farrell, Canad. Math.  Bull., 1978, 2, 35-46.  

32. E. J. Farrell and C. De Matas, Ark. Math., 1988, 26, 185-190.  

33. E. J. Farrell and C. De Matas, Util. Math., 1988, 33, 33-45.  

34. M. V. Diudea, J. Chem. Inf. Comput. Sci., 1994, 34, 1064-1071. 

35. M. V. Diudea, Studia Univ. “Babes-Bolyai”, 2002, 47, 131-139.

36. M. V. Diudea, MATCH Commun. Math. Comput. Chem., 2002, 45, 109-122. 

37. M. V. Diudea and O. Ursu, Indian J. Chem., 2003, 42A, 1283-1294.

38. M. Stefu and M. V. Diudea, in: M. V. Diudea, (Ed.), Nanostructures – Novel 

Architecture,   Nova, New York, 2005, 127-165.

39. O. Ursu and M. V. Diudea, TOPOCLUJ software program, Babes-Bolyai University, 

Cluj, 2005; available at http://chem.ubbcluj/~diudea.

40. P. E. John, P. V. Khadikar, J. Singh, J. Math. Chem., DOI:10.1007/s10910-006-9100-2. 

41.     P. E. John, A. E. Vizitiu, S. Cigher, and M. V. Diudea, MATCH Commun. Math. 

Comput. Chem., 2007, 57, 479-484.

42.     S. Klavžar, MATCH Commun. Math. Comput. Chem., 2008, 59, 217-222. 

43.     S. Ovchinikov, arXiv: 0704.0010v1 [math CO] 31 Mar 2007. 

44.     D.Ž. Djokovi , J. Combin. Theory Ser. B, 1973, 14, 263–267. 

45.     P.M. Winkler, Discrete Appl. Math.,1984, 8, 209–212. 

46.     M. V. Diudea, A. E. Vizitiu, and D. Janeži , J. Chem. Inf. Model., 2007, 47, 864-874. 

47.     M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu, and P. E. John, Croat. Chem. Acta,

2006, 79, 445-448.

48.    A. E. Vizitiu, S. Cigher, M. V. Diudea, and M. S. Florescu, MATCH Commun. Math.

Comput. Chem., 2007, 57, 457-462.        

49.     M. V. Diudea, Carpath. J. Math., 2006, 22, 43-47. 

50.     A. R. Ashrafi, M. Manoochehrian, and H. Yousefi Azari, Util. Math., 2006, 71, 97-108.  

51.     P. V. Khadikar, Nat. Acad. Sci. Letters, 2000, 23, 113-118.  

52.     S. Klavzar, MATCH Commun. Math. Comput. Chem., 2007, 57, 573-586. 

53.     M. V. Diudea and Cs. L. Nagy, Periodic Nanostructures, Springer, 2007. 

54.     M. V. Diudea, M. S. Florescu, and P. V. Khadikar, Molecular Topology and Its

          Applications, EFICON, Bucharest, 2006.  

55.     M. V. Diudea, S. Cigher, A. E. Vizitiu, M. S. Florescu, and P. E. John, J. Math.  

          Chem., 2007, 44, 000-000.  

- 250 -


