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ABSTRACT: “k-matching” of a graph G is a set of k independent edges
of G. The sum of k-matching of G is nowadays commonly called the Hosoya
index. Denote by An the set of h-polygonal chains with n congruent
regular h-polygons (h greater than 4). In this paper, we determine the the
extremal polygon chains on k-matchings in the set of molecular graphs
An. Thus we extend the main results (for h = 6) of [9], [10], and [11] to a

more general case.

1 Introduction

Let G = (V, E) be a simple graph with the vertex set V(G) and the edges set E(G). Let e
and z be an edge and a vertex in G, respectively. We will denote by G — e (resp. G — )
the graph obtained from G by removing e (resp. x and all its incident edges). Our standard

reference for graph theoretical terminology is [1].

A matching of G is a subset M C F(G) in which any two edges are not incident.

A matching M is called a k-matching if [M| = k. We denote by m(G) the number of

matchings of G, and denote by my(G) the number of k-matchings of G. It is obvious

that m(G) = Y my(G). The graph invariant m(G) introduced by Hosoya [2] is nowadays
£>0
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commonly called the Hosoya index. It is important in structural chemistry and it has been
extensively studied (the details see [3] chapter 11 and references cited therein and the recent
publications [4-7]).

A polygonal chain is a 2-connected simple graph G obtained by identifying a finite
number of congruent regular polygons (called basic polygons) one by one such that each
vertex of G has degree 2 or 3 and each basic polygon, except the first one and the last one,
is adjacent to exactly two basic polygons. In other words, a polygonal chain is obtained
by adding some chords to a closed polygonal curve C' in the 3-dimensional Euclidean space
so that C' is divided into congruent regular polygons. We note that a polygonal chain may
be geomitrically non-planar. A polygonal chain is called an h-polygonal chain if its basic

polygons are h-polygons.

For h > 6, we denote by A, the set of h-polygonal chains with n basic polygons (for
example, when h = 7, Ay denote heptalene and A3 denote heptaphen respectively; when
h = 8, Ay denote octalene and A3 denote octaphen respectively). For A, € A,, let H be
the subgraph of A, induced by the vertices of degree 3. A polygonal chain A, is called a
chain of type one and denoted as Z! if H is a path. A, is called a chain of type two and
denoted as Z2 if it satisfies the following two conditions: (1) H is an n — l-matching; and
(2) each basic polygon C; of A,, except the first and the last, has exactly two distinct edges
in H, in which the first one is shared with C;_; and the last one is shared with Cj,;. And
from the first one to the last one have clockwise distance 2 (i.e., they are connected through

a clockwise path with two edges not in H.)

TNlustrative examples for Z! and Z2 are shown in Figures 1 (a) and 1 (b), where h = 8.
It is easy to see that for hexagonal chains, Z! are exactly the zig-zag chains (see Figure 2
(b)) and Z?2 are exactly the linear chains (see Figure 2 (a)). Note that A; = {Z]} = {Z?}
and Ay = {Z3} = {Z2} (when h = 8, the molecule have been considered by chemist [8]).

In 1993, Gutman discussed the extremal hexagonal chains with respect to three topo-
logical invariants : Hosoya index, largest eigenvalue and Merrified-Simmons index. His work
greatly stimulated the study of extremal polygonal chains with respective to different types

of topological invariants. On the Hosoya index, he obtained the following

Theorem 1.1 (Gutman [9]) For any n > 1 and any hexagonal chain A, € A,,m(L,) <
m(A,) with equality holding only if A, = L,,, where m(L,,) is the number of matchings of
L,, and L,, denote the linear chain (see Figure 2 (a)).

In [10], L. Zhang proved the following result, which is conjectured by Gutman in [9].

Theorem 1.2 (Zhang [10]) For any n > 1 and any hexagonal chain A4, € A, m(A,) <
m(Z,) with equality holding only if A,, = Z,,, where Z,, denotes the zig-zag chain (see Figure
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(b) Z2,

Fig 1: Chains of type one and type two

2 (b)).
In [11], L. Zhang and one of the present authors determined the extremal hexagonal

chains with respect to k-matchings
Theorem 1.3 For any n > 1 and any hexagonal chain A4, € A,,

my(Ly) < mp(A,) < my(Z,).
Moreover, the equalities on the left side holds for all k£ only if A, = L,; and the equalities
on the right side hold for all k£ only if A, = Z,, where L, and Z, denote the linear chain
and the zig-zag chain, respectively. (See Figures 2 (a) and 2 (b))

Clearly, Theorem 1.3 implies Theorem 1.1 and Theorem 1.2.

In [12, 13], Zhang , Wang and Li determined the extremal hexagonal chains concerning

the total m-electron energy, which are similar to the extremal chains in [9-11] (see Figure 2).

In [14], J. Rada and A. Tineo considered the polygonal chains and showed that among
all polygonal chains with polygons of 4n — 2 vertices (n > 2), the linear polygonal chain has
minimal energy. In their paper, they gave an example to show that the above result does
not hold for octagonal chains. Such an example was also found for polyomino chains in [15].
These results show that we can not unify the solution of extreme h-polygonal chain problem

concerning the total m-electron energy even when restricting h to be even integers .

To our surprise, we found that we can get a unified result of extremal h-polygonal chains

on k-matchings for all integers h > 6. Our main results are as follows
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(a) the minimal hexagonal chains concerning
their k-matching

(b) the maximal hexagonal chains concerning
their k-matching

z

n

Fig 2: Extremal hexagonal chains

Theorem 1.4 Let A, be the set of h-polygonal chains (h > 6). For any A, € A,,
the following inequalities hold for all £ > 0,
my(Z%) < mi(A,) < me(Z}).
Moreover, the equalities on the left side hold for all k only if A, = Z2;

»; and the equalities on
the right side hold for all k only if A, = Z}.

The cases of h = 4,h = 3 need different approach. The result for h = 4 is already
given in [15], and the extremal polyomino chains concerning the k-matchings can be found
in Figure 3. The case h = 3 is to be considered in another paper. For the case of h = 5
(pentagonal chains), a shorter proof can be provided. We will discuss it elsewhere. Some

other results on pentagonal chains can be found in [16, 17].

In order to prove Theorem 1.4, we need to consider the Z-polynomial (Z-counting poly-
nomial) introduced by Hosoya [2]:

2(G) = ka( )z*(mo(G) = 1).
Note that this is a kind of matching polynomial defined later by mathematicians in [18]
and [19].
We will prove a result (Theorem 1.5) equlvalent to Theorem 1.4, which involves a quasi-
ordering defined as follows. Let f(z) Z apz® and g(z Z bpz"* be two polynomials of

k=0 =0
x. We say f(z) = g(x) if ap < b for all k. If f(z) < g(x) and there exists some k such that
a < by, then we say f(x) < g(z).
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(a) the maximal polyomino chains concerning
their k—matching

u,

Vo

(b) the minimal polyomino chains concerning
their k-matching

Fig 3: Extremal polyomino chains

Theorem 1.5 Let A, be the set of h-polygonal chains (b > 6), for any n > 3 and
for any A, € A,,

(a) If A, # Z2, then Z(A,) = Z(Z2).
(b) If A, # Z1, then Z(A,) < Z(Z).

2 Some preliminaries

We mention some auxiliary results from [2, 18-20] as follows.

Claim 2.1 Let G be a graph consisting of two components G; and G, then Z(G) =
Z(Gh) - Z(Ga).

Claim 2.2 Let uv be an edge of G, then Z(G) = Z(G — w) + 2Z(G — u — v).

Claim 2.3 For each wv € E(G),Z(G) — Z(G — u) — 2Z(G — u — v) = 0, Moreover,
the equalities hold only if v is the unique neighbor of u .

In the following, we will use the notation G for Z(G), when it would lead to no confusion.
Some lemmas we need are as follows.
Lemma 2.4 Let A, B denote two disjoint graphs and a,b denote vertices in A, B

respectively. Let X be the graph obtained from the union of A, B by adjoining the edge ab
(see figure 4), then X = AB + (A — a)(B — b). (1).
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Proof: From Claim 2.2, we can obtain the result immediately.

x

Fig 4:

As usual, we denote by P, the path with n vertices. We also define Z(P,) = P, If we
apply Lemma 2.4 with A = a and B = P, , we obtain

Pn+1:Pn+xPn,](n20)(P0:P]:1.,P,1:0,P,2:%) (2)

From Claim 2.2 and Lemma 2.4 we have
Porg =Bl + 2P, 1P a(p,q>0) (3)

Lemma 2.5 Let G, A, B be three pairwise disjoint graphs. Two distinct vertices u, v
belong to G and two vertices a,b belong to A and B respectively. Let Y be the graph
obtained from the union A|JGJ B by adjoining the edges au, bv (see figure 5), then

Y = ABG + z[A(B —b)(G —v) + (A — a) B(G — u)]
+2%(A —a)(B - b)(G —u—). (4)

Fig 5:

Proof: It follows from repeated applications of Lemma 2.4. a

Remark 2.6 Let A = P,, B = P, and a,b be endpoints of A, B respectively. Using
Lemma 2.5, we have
Y = P,P,G + z[P,Py_1(G — v) + Py_1 PJ(G — )| + 2*P,_1 P,_1(G — u — v). (5)
Any element A,, of A,, can be obtained from an appropriately chosen graph A,,_1 € A,,_;
by attaching to it a new polygon C' (figure 6).

Referring to figure 6, by Claims 2.1, Claim2.2 and Remark 2.6 we have
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Fig 6:

An - P’L*ZATL*I + IPh*S{(Anfl - Snfl) + (Anfl - tnfl)}

+22 Py 4(An 1 — St — tn1) (6)
Ap—1=P 3Py iAn 1+ 2[PaPyg(An g —sp1) + PgPho 1 (At — La1)]
F?ProaPpi-1(Ap1 — sp-1 — ta-1)(L € {3,4,- -+, h}) (7)
(In this paper, [ denote both a vertex of h-polygon and the nature number labeling the
vertex.)
and
A, —1—(1+1)
=P 3P An 1+ 2[PaPr 1 (Any — sn1) + PaPu (A1 — )]
+22P 4Py o(Apn 1 — Sn1 —tn1) (8)

3 The proof of theorem 1.5

Now we are in the position to prove our main results. First we give the following two lemmas.
Lemma 3.1 Let Z! (n > 2) be the chain of type one (see figure 1(a)). Then
(a) Z} —at < Z} —1 < Z} — a?,
(b) Zt —a}—5<2Z}—1—(1+1) < Z} —ay —a],
(€) (Zy —ai)+(Z, =5) = (Z, =)+ (Z, = (14 1) < (2, — a§) + (2, — a}),
where [ € {5,6,--- ,h}.
Lemma 3.2 Let Z2 (n > 2) be the chain of type two (see figure 1(b)). Then
(a) Z2-bp < Z2—-1=<2Z2-3,
(b)y Z2 b7 =2 = Z2—1—(1+1) < Z2 -3 -0},
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() (22— W)+ (22— ) < (22— 1) + (22— (1 4+ 1)) < (22— 3) + (22— b}),
where [ € {5,6,--- ,h}.
In order to prove the two lemmas, we need the following two claims.
Claim 3.3 Forany A, € A, (n>2),if A,_1 —sp—1 = A1 —t,—1 (see figure 6), then
(a) A, —4 <A, —1 <A, -3,
() Ay —d—5 <Ay —1—(I+1) <A, —3—4,
(€) (A —4)+ (4, =5) < (A =D+ (A, —(1+1) < (A —3) + (4, — 4).
where [ € {(5), (6),---,(h)}
Proof of Claim 3.3: (a) By (7), A, — 3= Py_3An_1 + 2Py_s(An—1 — tn_1)
Ay, —4 =P Py yAn 1+ 2[PoPr_a(An1 — $p1) + PiPrs(An—1 — th_1)]
+22PyPy_5(Ap_1 — Sp_1 —tn_1)
=Py An 1+ aPy_a(Ap1 — Sp—1) + &Ph_5(An_1 — th_1)
+2?Py_5(Ap-1 — $n—1 — tn-1)
Ap—1=P 3Py An +2[PaPyy(An g — sn1) + PaPho 1 (Any — ta1))]
+22 Py Poci—1(An1 — Sp1 — L) (3 < U< )
So (A, —3)— (A, =)
= (Phrs—P—3Py1)Apn1+(xPy_s—2P_3Py_1_1)(An_1 —tn_1) — 2 P4 Py (An_1—5n-1)
—2? Py Py 1 (Apt — Sy — ty1)
(Apply eqs(2) (3)) = xP_ 4Py 1A 1+ 22P_ 4Py o(An_y — tn 1)
— &Py (Proioy + 2Phy—2)(Ano1 — 8p—1) — 2Py Pooy1 (Any — Sney — tat)
=2P 4Py a[Ana — (Ant = Suc1) = 2(Anr — spo1 — ta)]
+22 P aPri2[(Anot — tno1) — (Anot — 80-1)] = 0
Let [ = 4, we obtain
(A =3) = (An —4) = 2P 5[An1 — (Anc1 — 8n1) = 2(An1 — Sp1 — ta1)]
+22P, 6[(Ap_1 — tn1) — (A1 — 501)]
Consequently,
(An = 4) = (An = 1) = [(An = 4) = (A = 3)] + [(An = 3) = (An — )]
= —2Py s[An1— (An1—Sp—1) —@(Ap1—Sn_1 —tn1)] — 22 Ph6[(An_1 —tn_1) — (Apo1—
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s$n-1)] + @P-aPri-1[An1 = (A1 — 8p-1) — 2(Apo1 = Spo1 — o)
+22 Py Py of(An1 — tao1) — (An1 — Sn1)]
= =2’ PlsPhi-a[An-1 — (Ano1 — $n-1) — 2(Ano1 — Spo1 — ooy
—23P 5Py 3[(An1 — 1) — (An1 — 8n-1)] < 0
(Where Py_5 — P_yPy_1-1 = Pu—ays(h—i—1) — P—aPri1 = 2P 5Py
and Py¢ — PaPy 2 =3P 5P 1 3)
(b) By (8), An =1 = (14 1) = PsPh1-1An
+2 [Py Proi—1(An—1 — sp—1) + P_sPh—2(An1 — tho1)]
+2 Py Py o(An_ 1 — Spo1 — tn_1)
Let [ = 3, we obtain
Ay —3—4 =Py gy +2Prs(Ans — tns)
Consequently,
[A,—3—4]—[A, 1= (14 1)] = (Phroa— P3Ph1-1)An-1— 2P 4Py 1(Ap_1 — Sp-1)
+(@Py s — 2P 3Py 2)(Ap1 —tn 1) — 2P 4Py o(Ayy — Sp1 —tn 1)
=xP 4Py 2An 1 — P y(Phg o+ 2Py 3)(An1 — sn1)
+22 P 4Py 3(An oy —th1) — 2P 4Py o(Ap1 — Sno1 — th1)
=P 4Py o[An—1 — (A1 — $n—1) —@(Ap—1 — Sn1 — tno1))
+22 P 4Py 3[(Any —tn1) — (A1 — 5,21)] = 0
Let | = 4, we obtain
(Ap—3—4)— (A, —4-=5)=2P[An-1 — (An-1 — Sn—1) — 2(Ap1 — Sp—1 — tn-1)]
+2° Pyr[(Ano1 = tao1) = (Ano1 = s5-1))]
Consequently,
(Ap—4—5)—[Ap—l—(1+1)] = [(Ay—4—5)— (Ap—3—4)] + [(An—3—4) — (A, —I—(1+1))]
=—aPy ¢[An-1— (An—1 — Sn—1) —2(Ap—1 — Sn1 — tn1)]
—2?Pyr[(An1 — ta1) = (Ano1 — s0-1))]
+2P_ 4Py o[An—1 — (An—1 — Sn—1) — (Ap—1 — Sn1 — tno1)]
+22 P 4Py 3[(An1 — ta1) — (A1 — 801))]
= —2*P 5P 3[An1 — (Ano1 — Sno1) — (Aot — Spe1 — tn1))]
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—2° P Puial(Ano1 = ta1) = (Anot = 50-1)] < 0

(©) (An=3)+(An—4)— (A=) =[Ap—(I+1)] = PrsAn 1+2Py 4(Ap_1—tn1)+Pr 34y
+2Pya(An-1 = $p-1) + 2 Py5(An1 — tn1) + 27 Pos(An1 — $po1 — ta1)
—PisPhiAny = 2P aPhi(Any = sn1) — 2B 3Py 1 (A — tna)
—2?P_4Pyy1(Ant — Sn1 — tno1) — PaPr1Any — 2P 3Py 1(Anot — sp1)
2 PaPrt oAyt — 1) — x2p173ph7172(14n,1 — Sp_1—ty_1)

= (Ph-s + Phoa — PigPhy — PaPhoi-1) Ay
+(@Ph—a + x5 — 2P 3 Phg1 — P2 Ppg2) (Apy — ta1)
+(xPh—g — 2P_4Phy — v P_3Py_y—1) (Ap—1 — Sn-1)
+(2*Pys — 2*PiaPh1 — 2P Phog2) (A1 — $p1 — ta1)

= 2P 4 P2 An 1 +2° PaPyoi3(Ano1 —ta1) =2 Pios(Phi2 + 2 Phoios) (An1 — sp1)
2P 4Py 2(Ap 1 — $p1 = tna)

(Where by (2) and (3) the coefficient of A,y = Ph_g+ Pyy — P_sPhy — P2Py

= Pusys(h-ty t Pooa— P3Py — PoPhy 1 =Py Ppy 1 — Pobhy 1+ Pry

=—P 3Py 1+ Pyoa=aP_4Py_i_,

the coefficient of A1 —t,_1 =Py +2Py5 — 2P 3Py -1 — 2P 9Py

= (@Pya—aP 3Py 1) — 2P oPy o+ 2Py 5 =3P 4Py o~ 2P 2Py 2+ 2Py s

= 2P 3Py 1o+ 2Py 5 =3P 4Py i3,

the coefficient of A,_1 — sp_1 = ¥Phy — vFaPhy — P-3Pp- 11

= 22P_ 5Py — P3Py = —xP_4Py_i_1 = —xP,_4(Pa_i—s + 2Py_i_3),

the coefficient of A, 1 — sy — tnq = 22Py_5 — 32P,_4Py11 — 22P,_sPy_1_s

=3P _sPy_jo0 — 22 P3Py 19 = —2?P_4 Py _2)

= oPabhia[Any — (An1 = sn1) = 2(Any = sn1 — o))
2Py Pyt s[(Any — tn1) — (Au_y — 5p_1)] = 0

Let [ = 4, we obtain

[(An = 3) + (An = )] = [(An = 4) + (A = 5)] = 2Pu6[An-1 — (An-s = 50-1) = (A1~
St — tn1)] + 2°Py_z[(An-1 — tn1) = (An_1 — 5n-1))]

Consequently,
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[(An =4) + (An = 5)] = [(An = ) + (A = (1 4+ 1))] = {[(An —4) + (A, = 5)] = [(An — 3)+
(An =} +{[(An = 3) + (An = 4)] = [(An = ) + (An — I+ 1))}

= —2Pys[An-1—(An1=80-1) —2(Ap1 = 81— tp-1)] = 2* Phg[(Apo1 —tn1) = (Ap-1—
Sn—1)] + @P_4Phya[An_1 — (An—1 — Sn—1) — (A1 — Sn1 — ta_1)]
+? PioaProi-3[(An-1 = th1) = (An1 = 5p-1)]

= —2?P 5Py 3[An1 — (A1 — Sp1) —2(An_y — Spo1 — tn1)]
—23P 5P a[(Any —ta1) — (A1 — 8021)] <0

Claim 3.4 Let Z} be the chain of type one (see figure 1(a)) and Z2 be the chain of
type two (see figure 1(b)) respectively. Then Z? — b} = Z? — b}, Z! —a} = Z} — a} and
Z2 b < Z2=0b), Z} —al < Z} —ai, 2<i<n.

Proof of Claim 3.4 : Obviously, ZZ — b} = Z? — b}, Z1 —a} = Z} —a}. For 2 <i <n,
by Claim 3.3 (a),
(2} —ap) = (Z} = at) = aPys{Z}, — (Z1, —ai") —a(ZL) — a5 ' — ")}
+1’2P}L*6{(Z7}—1 - az)il) - (Zil—l - aziil)}'
Thus, by Claim 2.3, if (Z}, —ai™") < (Z}, —a{™") then (Z} —a}) < (Z} — af). Hence,
by induction we can show for each 2 <i < n, (Z} —al) < (Z} — ab).

Similarly, by Claim 3.3 (a) and Claim 2.3, we can show that Z2—b < ZZ2—bj, 2 <i <n.
The proof of Claim 3.4 is complete.

From Claim 3.3 and Claim 3.4, we get Lemma 3.1 and Lemma 3.2 immediately.

In order to use induction to prove Theorem 1.5, we will prove the following result by

induction.
Theorem 3.5 For any h-polygonal chain 4, € 4, (n > 3),
(a) Z2 -0y = A, -1 =< Z} —al,
(b) Z2—b7 — b = A, —1—(1+1) 2 Z —ap — a},
() (Z2— W) + (22— 1) = (Au— D)+ (A — (1 + 1) = (21— af) + (7} — a),
where [ € {(3),(4),---,(h)}.

(d) Z2 =2 A, = Z).
Moreover, the equalities of the right-hand side of (a)-(d) hold only if A, = Z! and I,1 41
denote af,al respectively; and the equalities of the left-hand side of (a)-(d) hold only if

A, = Z2 and [,1 + 1 denote b7, b2 respectively.

Proof of Theorem 3.5: First we note that if A, = Z,Ql then the left-hand side parts of
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(a)-(d) hold by Lemma 3.2; and if A, = Z} then the right-hand side parts of (a)-(d) hold
by Lemma 3.1. Consequently, when we prove the left-hand side parts we may assume that

A, # Z2. Similarly, when we prove the right-hand side parts we may assume that A, # Z}.
We prove Theorem 3.5 by induction.
(i) First we consider the case n = 3.
(a) We show that if Az # Z1 then A3 —1 < Z} — a}.
By (7), let n = 3, then
A — 1 =P 3Py Ay + 2[P_4Py_1(As — 52) + P3Py -1(As — 13)]
+22P_ 4Py 1(Ay — 59 — ) (3 <1< h)
= P3Py 1 Zy + x[Pa Py (23 — 53) + P_3Ph1(Z3 — 13))
+22 P 4Py 1(Z3 — 89— 1)
Zy—a} =7} — 3= P37+ xPy_4(Z} — a?)
(Z3 —a3) — (A3 = 1) = (Po-3 — P3Ph1)Z + 2 Py-s(Z3 — af) — xPi-aPoi(Z — 52)
—xP 3Py 1(Z5 —to) — 2Py Pry1(Z3 — 59 — 1a)
( By Lemma 3.1 (a), we have Z3 — ty < Z3 — a3)
=P 4Py 125+ w(Po—y — PgPhi1)(Zy — af) — e P_y(Proiy + Puy2)(Z3 — 52)
—2? Py Proy_1(Z3 — s3 — )
= aPaPhia|Z; — (23— s2) —2(Zy — sa—ta) |+ 2* P Poio[(Z3 — af) — (23 — 52)] = O
Similarly, we can show that if A3 # Z2, then Z2 — b3 < A3 — [.
(b) We show that if A3 # Z3, then A3 — 1 — (I+ 1) < Z} — a3 — a.
By (8), let n = 3, then
Ay —1—(+1)=P 3P 173
2Py Po_i1(Z) — 2) + Pr_sPaoy_2(Z} — t2)] + 22 PraPy_io(Z1 — 55 — 1) (3 < 1 < )
Zi—ad—al=2s-3 -4 =P, 7} + 2Py 5(Z} — dd)
(Z3 —aj —a?) = (A3 =1 = (I + 1)) = (Phooa — PsPri1)Zy + 2 Py5(Z; — af)
—2P_4Ph11(Z3 — $2) — 8 P_3Pay_o(Z3 — ts) — 2® Py Poy_o(Z — 55 — 1s)
( By Lemma 3.1 (a), we have Z3 — ty < Z3 — a3)
= aP_4Pny_2Z5 + 1(Pas — B_sPa_i_2)(Z3 — af)
—& Py (Pooi—a + 2Pyy3)(Z3 — 53) — 22 Pi_sPh1-2(Z3 — 55 — ta)
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=P 4Py 9|73 — (Z2 —s9) —2(Z} — 89— t9)| + 2? P s Pry_3[(Z4 —a2) — (Z3 — 52)] = 0
Similarly, we can show that if A3 # Z2, then Z3 — b3 — b3 < A3 — 1 — (I +1).
(c) We show that if A3 # Z31, then (A3 — 1) + (A3 — (1+ 1)) < (Z3 — ad) + (Z3 — a3).
(Zs —aj) + (Z5 — af) — (A3 — 1) — [As = (I + 1)]
= Py3Z3 +2Pyu(Z3 — a}) + PosZs + 1 Py4(Z23 — a3) + xPy—5(Z3 — a?)
+962Ph75(Z21 - a% - Cll) P3P, zZ —xP_4Py_ I(Z - 52) —vP 3P 1(Z - t2)
—2?Pia Py 1(Z3 — so — to) — ProaPhoy 12y — xPi_sPy—i-1(Z3 — $2)
—x P oPhi-o(Z3 — o) — T2 P_3Pyy_2(Z) — 55 — )
(By Lemma 3.1 (b), Z} —a2 —a? = Z} -1 — (1 + 1))
¥ (Po—s+ Phoa — PsPuy — PoPay1)Z3 + xPy_s[(Z) — af) + (Z3 — a})]
—xP 3Py 1(Z3 — s9) —xP 9Py o(Z} — t3) + 2Py _5(Z3 — a?)
—x P4 Pyi(Z3 — $2) — xP_3Py_y1(Z3 — 1)
+(@2Py_s — 2?P_yPyy_1 — 0*P_3Py_1-2)(Z3 — af — a}) (%)
Where by (2) and (3),
the coefficient of Z3 = Py 3+ Py — P3Py — P_oPy 14
= (Pp—s— P—3Py—)) + Poos — P oPy 1 =a2P_ 4Py 1+ Poy — (P + 2P_4) Py
=Py a— P3P 1=2P 4Py o,
the coefficient of Z3 — a2 — a? = 22P,_5 — 2*P_4Py 11 — 2*P_ 3P,
= 'T3B—SPh—l—2 - 902]3173]3)1472 = _-T2Pl—4Ph—l—27

because P4 = Pu_3)1(h-1-1) = Pi-3Ph_1-1 + TP_4Pr o,

so, the coefficient of Z} — sy = —aP 3P, | 1 = 2P 4Py 2 — 2Py,
similarly, the coefficient of Z21 —ty=—aP _9Py_j_o=1>P_3Py_1_3 — xPy_4.
So,

(%) = aPi-aPhoi2Zy + aPoa[(Zy — ag) + (Zy — ai) — (Z3 — s2) — (Zy — to)]
+22 Py Py o(Z) — s9) + 2 P3Py _3(Z3 — t3) + 2Py _5(Z} — a?)
—xP4(Pooiy + 2Py 2)(Z5 — s59) — aPi3(Paia + ©Py13)(Z3 — ta)
—2 Py Py o(Z) — ak — a?)

= P4 Phoi-2Zy + 3Pha[(Zy — ) + (23 — af) = (Z3 — 52) — (Z3 — t2)]
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—xP_4Py_1(Z3 — s9) — xP_3Pyy_o(Z3 — to) + xPy_5(Z3 — al)
—2?PlaPy1-2(Z5 — af — af)

(By Lemma 3.1 (a), Z3 —a} = Z3 —1)

= aPiyPoy2Zy + aPya[(Z3 — af) + (23 — af) — (Z3 — s2) — (Z3 — t2)]
—xP 4Py (23 —ad) — aP 3Py (723 — ad) + xPy_5(Z3 — ad)
—I2P174Ph472(221 - (1(2] - a%)

= 2P aPolZ; — (Z3 — af) — 2(Z3 — af — a})]
+taPua(Z; — af) + (23 —ai) = (Zy — s2) = (Z3 —02)] - 0

Where the coefficient of Z1 — a(l) =Py, 5 — 2P _4P,_1_1 —xP_3P,_;_»

= 2P 5Py — x(P—y + ©P_5)Pry

=—zP_ 4P

(d) By (6), let n = 3, then

Az = Py_gAs + 2Py 3{(Ay — 83) + (Ag — ta)} + 22 Py_4(As — 89 — ta)
=Py 275 + 1Py 3{(Z3 — s2) + (Z} — ta)} + 2®Py_s(Z} — 59 — 19)

Zy = PoaZy +aPys{(Z; — af) + (Z3 — a})} + 2* Pha(Z3 — af — a)

Thus, by Lemma 3.1 (b) and (c), we get that A3 < Z1.

Similarly, we can prove that Z2 < As.

Therefore, Theorem 3.5 holds for n = 3.

(ii) Suppose the Theorem true for all h-polygonal chains with fewer than n h-polygons.
Let A, be a h-polygonal chain with n > 4 h-polygons, which is obtained from A,,_; € A,,_;
by attaching to it a new h-polygon C' (figure 6).

(a) We show that if A, # Z}, then A, —1 < Z! — a?, where [ € {3,4,--- ,h}.

By (7), we have

A, —1=P 3P Ay 1+ 2|P—aPri(An-1— Sn-1) + P—3Pri—1(Ap_1 — tn_1)]
+2? Py Py 1(Anoy — sp1 — ty1)(3 <1< R)

ZY—ap =7} —3=P, 3Z' | +aP 4 (Z} | —ai™h)

(Zy —af) = (An —1)

=PysZy = PsPuAny + 3P ua(Z) —ai™") — 2P_yPyi(Any — 5p1)

_IF)l—SP)}L—l—l(ATL—l - tn—l) - I2P1_4HL_[_1(A"_1 — Sp—1 — tn—l)
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By the inductive hypotheses we have A,,_; < Z,Ll and A, —t,_1 = Z}Fl — ag’l.
So (Z} —aB) — (A —1) = (Ph—s — PresPu) Apos + 2(Pyea — PsPoi1) (22 — af ™)
—2 Py (Proimy + 2Phy—2) (Aot — 8n1) — 82 Py Proy1 (Any — Spe1 — tay)
=P 4Py a[An1 — (Anr — snc1) = 2(Ang — $p1 — 1))
+22 Py 4Py o[(ZE = af™) — (Apy — 801)] = 0
Similarly, we can show that if A, # Z2, then Z2 —b% < A, — 1, where [ € {3,4,--- ,h}.
(b) We show that if A, # Z}, then A, —1—(I41) < Z} —aj—a7, wherel € {3,4,--- ,h}.
By (8), we have
Ay —1—(14+1) = PaPyyrApy + 2| Ps Py (Apy — $n1)
+P_5Phi—o(An—1 — tao1)] + 22 Py Proi—o(Ap1 — $p—1 — ty1)(3 < UL < )
Zh—ap—at =Z) —3—4=P, 47} |+ 2Py s(Z_, —ai™h)
Consequently,
(22— —ap) — (Au— 1~ (14 1)
=PyaZt = P sPuy 1 Ap 1+ 2Py s(Z) ) —ag ") — 2 PeaPaois1(Apsy — Suct)
—2P 3Py a(An_y — tnoy) — 22 Pr_4Prio(Apoy — Snoy — tno1)
By the inductive hypotheses we have A, 1 < Z} | and A, 1 —t,.1 < Z) | —al™ "
So (ZL —al —a?) — (A, —1— (1 +1))
= (Po—a — PsPyoy1)Anoy + 2(Poes — PsPui2)(Z) ) —ag™")
—aP_y(Phi—o + xPyy—3)(Ane1 — Sne1) — 22 PaPryo(Anst — Spe1 — ty1)
=2P 4Py ofAn 1 — (An1 = Sn-1) —2(An1 — 5n1 — L)
+22 Py Pos[(Zy oy — ag ™) = (Aumt = s0m1)] = 0

Similarly, we can show that if A, # Z2, then Z2 — b} — by < A, — [ — (I + 1), where
le{3,4,--- ,h}.

(c) We show that if A, # Z}, then (A, — 1) + (A, — (I +1)) < (Z} —ad) + (Z} — a}).

(Zn = ag) + (Zy —al) = (An = 1) = [An = (1 + 1)]

= PosZy 1 +aPos(Zy_—ay )+ PoaZy+xPoa(Zy —a ) vaPus(Z)h —ag )

+$2Ph75(Z71171 - CL871 - ll?fl) — P3P, Ay — 2Py Pyy(Anq — 5pm1)

—@ P3Py 1-1(An—1 — tho1) — 22 PyPhi1 (Apo1 — Sne1 — tae1) — PaPyyo1An
—2P 3Py —1(An—1 — Sn—1) — P9 Phy_a(An1 — th_1)
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—@?P_3Py_y—o(An—1 — Sp—1 — ty_1)

(By the inductive hypotheses we have A,y < Z! , and A, 1 — s, 1 —t, 1 X Z} | —

a7 = ap )

= (Ph-s + Paoa = PigPaot = PaPaio)Ana + 2Phal(Zhy —ap ™) + (Zhy —af )]
—2P 3Py 1 (Ap 1 — 80 1) — 2P 9Py o(Apy —ty 1) + 2Py 5(Z2 | —al™h)
—2P 4Py i(An1 — 8n1) = 2P 3Py 1 (Apy — 1)
+(@?Pys — 22 P aPh11 — 3PPy 2)(An1 — Sn1 — tn1)

(Where by (2) and (3), similar to (i) (c)),

=3P 4Py oAn  + 2P 4[( 2 —al ) (2 —ah) — (At — 801)
—(Ap1 = ta)] + 22 P 4Py o(Apy — Sno1) + 22 P3Py 3(An_y — 1)
+2Py-s5(Z}_ —ap ™) — 2 P—y(Phoi—1 + 2Pyy—2) (Ap—y — 50-1)
—2P 3(Pyy 2+ 2Py 3)(An1 —tw1) —2°PyPyg o(Any — p1 — 1)

=P 4Py 2A,1+2P,_4[(Z} —%171) +(ZL, —a? ) = (Ap 1 —8n1)—(An —tn-1)]

n—1
—2P_4Pyi-1(An_y — sn1) — 2P_3Pyio(Any — tn1) + 2Pus(Z)  —ag™")
—22P 4Py —2(An1 — Sp1 — ta1)
=aPuu[(Z) = ag )+ (2 —ai ™) = (Any — sno1) — (Apoy — taa)]
+2P 4Py 2Ay 1 —2P_a(Proi—o+2Py_13)(An—1—$n1) —2P_3Ppi—2(Apn—1—tn_1)
+2Py_5(Z}_ —ap ™) — 2?2 Py Pry—o(Ap_1 — Sn_1 — tao1)
=aPial(Zpoy —ag ™)+ (Zhoy — i) = (Aner = spm1) = (Aot = taa)]
+a PPy o[An—1 — (A1 — Sn-1) — 2(Ap_1 — Sp-1 — tn-1)]
—22P 4Py 1_3(An_1 — Su_1) — TP_3Ph_io(An1 — tnr) + 2Pas(Z ) —ag™h)
(By inductive hypotheses, A, 1 — s, 1 = Z} | —ap ™ Ay —ty 1 2 ZE  —al™h)
= aPoal(Zyy —ag )+ (Zh = i) = (Apey = sp1) = (Ane = taea)]
+2 Py Pho—a[Apn—1 — (An—1 — Sn—1) — 2(Ap_1 — Sp—1 — tn1)]
+(aPys — 2P _3Py_2 — 2*P 4Py y_3)(Z) | —ag™")
=aPa(Zyy —ag) + (Zh = ai™h) = (Auoy = sum1) = (Apy — taoa)]
+a P4 Pyo1o[An—1 — (An-1— Sn-1) — @(Ap_1 — Sp—1 — tn-1)] = 0
(Where the coefficient of Z! | —al™' = 2P, 5 — 2P _3Py_1_» — *P_4Py_;_3

= I2P174Ph,7173 - 952P174Ph,7173 = 0)
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By inductive hypotheses and Claim 2.3, we get that
(A, =D+ (A= (1+ 1) = (Z—ap)+ (Z) — a}).

Similarly, we can show that if A,, # Z2, then (Z2—b%)+(Z2-b2) < (A,—1)+(A,—(I+1)),
where [ € {3,4,--- ,h}.
(d) We show that if A, # Z},
Ay =Py oA, 1+ 2P 3{(An1 — Sn-1) + (Ant — tao1)}
+22Py_4(An 1 — St — ),

Zy = PuoZy  +aPus{(Z)  —ag )+ (Zh, —al™h)}

then A, < Z!. By (6), we get

42 Py 4 (Z) | =l —at )
By the inductive hypotheses we have A, 1 < Z! |, (Ap_1 — 8n_1) + (A — ta1) =

(Z)  —al™M+(Z  —ar™Y),and A, — sy —ty = Z)  —ad™t — a7l Since A, # Z},
either A, 1 # Z! | or {sp_1,tn1} # {ad7,a?"'}, and hence, at least one of the three

inequalities is strict. Therefore, we get that A, < Z}.
Similarly, we can show that if A, # Zf“ then ZTQL < A,
The proof of Theorem 3.5 is complete.

For the Merrified-Simmons index, the parallel result can also be obtained. We will

discuss it elsewhere.
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