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Abstract

A benzenoid graph is a finite connected graph with no cut vertices in which every interior
region is bounded by a regular hexagon of a side length one. A benzenoid graph G is elementary if
every edge belongs to a 1-factor of G. The vertex set of the resonance graph of a benzenoid graph
G consists of 1-factors of G, two 1-factors being adjacent whenever their symmetric difference

forms the edge set of a hexagon of G. The resonance graphs of benzenoid graphs are partial
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cubes (as well as median graphs). The 7-graph G7 of a partial cube G has the equivalence classes
of the Djokovié-Winkler relation © as vertices, two classes E and F' being adjacent if some edges
e € F and f € F induce a convex P3. We show a new characterization of elementary benzenoid
graphs based on 4-tiling. We also present a decomposition theorem for the resonance graph of
a benzenoid graph without a coronene. Moreover, we show that the 7-graph of the resonance

graph of a benzenoid graph without a coronene is closely related to 4-tiling.

1 Introduction

Benzenoid graphs (molecular graphs of benzenoid hydrocarbons) are one of the most examined
classes of graphs within the chemical graph theory. The interested reader is invited to consult
the books |2, 6] dedicated to these graphs and a sample of papers on different aspects of these
graphs [3, 7, 10, 11, 15].

The concept of a resonance graph has been introduced in chemistry by Griindler [8, 9] and
later reinvented by El-Basil [4, 5] as well as by Randi¢ with co-workers [24, 25]. Independently,
Zhang et al. introduced this concept to mathematics, more precisely to graph theory, under the
name Z-transformation graphs [29]. Resonance graphs of benzenoid graphs have been studied
in [29], where it is established that such graphs (with the understanding that they contain at
least one vertex) are connected, bipartite, and either isomorphic to a path or have girth 4. An
extensive survey on resonance graphs of plane bipartite graphs was presented by Zhang [28].
Restricting to the catacondensed benzenoid graphs even more is known about the structure of
their resonance graphs. Particularly, every such graph possesses a Hamilton path [1, 16] and
belongs to the class of median graphs [18]. The latter result makes up the basis for an algorithm
that assigns a binary code to every 1-factor of a catacondensed benzenoid graph [17, 23|. Recently
Lam et al. [19] generalized these results by showing that the resonance graph of a plane weakly-
elementary bipartite graph is a median graph. Since benzenoid graphs are all weakly-elementary,
the resonance graph of an arbitrary benzenoid graph is median as well.

The relation © on the edge set of a graph plays a very important role in many graph theo-
retical concepts and results. It is intrinsically connected with partial cubes and enables several

characterizations and recognition algorithms for this class of graphs. Moreover, since a ben-
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zenoid graph is a partial cube, the relation © induces several interesting applications in chemical
graph theory (cf. [13, 14]).

The transitivity of the relation © in partial cubes admits the concept of 7 graph. This
concept also found a very appealing application in mathematical chemistry. In [27] one of the
authors proposed a characterization of the resonance graphs of catacondensed benzenoid graphs
as those median graphs for which G” is a tree 7" with largest degree at most 3 such that the
vertices of T of degree 3 correspond to the peripheral ©-classes of G.

In the next section we formally introduce the concepts and notations of this paper. In
Section 3 we give a new characterization of elementary benzenoid graphs with the concept of
4-tilings. A decomposition theorem of the resonance graphs of elementary benzenoid graphs
without a coronene as a subgraph is presented in Section 4. In the final section we explore some
properties of elementary benzenoid graphs connected to the 7-graphs of their resonance graphs

and 4-tilings.

2 Preliminaries

A benzenoid graph is a finite connected graph with no cut vertices in which every interior region
is bounded by a regular hexagon of a side length 1. A coronoid is a connected subgraph of a
benzenoid graph such that every edge belongs to at least one hexagon and it contains at least one
non-hexagonal interior face. A benzenoid graph G is catacondensed if any triple of hexagons of G
has empty intersection. In our case, benzenoid graphs are drawn in such way (where important)
that we have vertical edges and the peaks are colored black.

A graph G is called bipartite if it is connected and its vertex set can be divided in two disjont
sets V4 and V; such that V3 U Va = V(G) and no two vertices from the same set are joined by
an edge.

A matching of a graph G is a set of pairwise independent edges. A matching is a 1-factor, if
it covers all the vertices of G. If M is a 1-factor of G and H a subgraph of G then My denotes
the restriction of M to H.

A planar graph G is called elementary if G is connected and every edge belongs to a 1-factor

of G. Elementary components of G are components of the graph obtained from G by removing
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those edges of G that are not contained in any 1-factor. G is called weakly elementary if every
inner face of every elementary component of G is still a face of the original G.

It is well known that benzenoid graphs and catacondensed benzenoid graphs are weakly
elementary and elementary, respectively.

The symmetry difference of finite sets A and B is defined as A¢ B := (AUB)\ (AN B).

Let G be a benzenoid graph. Then the vertex set of the resonance graph R(G) of G consists
of the 1-factors of G, two 1-factors being adjacent whenever their symmetric difference forms
the edge set of a hexagon of G. In Figure 1 the resonance graph of pyrene is shown, with the
vertices being its 1-factors (double edges). The numbers next to the edges refer to the ©-class
to which the edge belongs.

The hypercube of order n and denoted @, is the graph G = (V, E) where the vertex set V(G)
is the set of all binary strings by,—1, ... b1,by. Two vertices z,y € V(G) are adjacent in @, if and
only if H(z,y) = 1.

Isometric subgraphs of hypercubes are called partial cubes.

For a triple of vertices u, v and w of given graph G, a vertex x of G is a median of u, v and
w if x lies simultaneously on shortest paths joining v and v, v and w, and w and u, respectively.
If G is connected and every triple of vertices admits a unique median, then G is a median graph.
It is well known that median graphs are partial cubes.

Let G be a connected graph and e = zy, f = uv be two edges of G. We say e is in the
Djokovi¢-Winkler relation © to f if d(z,u) + d(y,v) # d(z,v) + d(y,u). © is reflexive and
symmetric, but need not be transitive. Note that in partial cubes © is transitive and therefore
an equivalence relation.

Let M be a 1-factor of G. A cycle C is M-alternating if edges of C' appear alternately in and
off the M. An M-alternating cycle C of G is said to be proper (improper) if every edge of C
belonging to M goes from white (black) end-vertex to black (white) end-vertex by the clockwise
orientation of C.

Let us call the boundary of the infinite face of G the outer boundary or the outer cycle.

Let G be a plane bipartite graph. Let M(G) denote the set of all 1-factors of G. It was shown
in [31] that G has a unique 1-factor Mj such that G has no proper M;y-alternating cycles. We call

M, the minimal 1-factor of G, since M is the minimal element of the poset induced by M(G)
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Figure 1: The resonance graph of pyrene.

[19, 20]. In addition, G has a unique 1-factor Mj such that G has no improper Mj-alternating

cycles. Mj is called the mazimal 1-factor of G.

Proposition 1. [26] Let G be an elementary benzenoid graph. Then the outer cycle of G is

improper Mg-alternating as well as proper Mj-alternating.

An important property of elementary bipartite graphs is the bipartite ear decomposition
[22]. In [32] Zhang and Zhang evolved this concept and presented the so-called reducible face
decomposition. This decomposition can serve as a construction method for elementary bipartite
graphs.

Let = be an edge. Join its end vertices by a path P; of odd length (first ear). Then proceed
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inductively to build a sequence of bipartite graphs as follows: if G,y =+ P+ Py +...+ P
has already been constructed, add the rth ear P, (of odd length) by joining any two vertices
of different colors in G,_1 such that P, has no internal vertices in common with G,_;. The
decomposition G, =z + Py + Py + ... + P, is called an (bipartite) ear decomposition of G,. It
was shown in [21] that a bipartite graph is elementary if and only if it has an (bipartite) ear
decomposition.

An ear decomposition (G1,Ga,...,G,(= G)) (equivalently, G =z + P+ P, +...+ P.) of a
plane elementary bipartite graph G is called a reducible face decomposition (RFD) if Gy is the
boundary of an interior face of G and the ith ear P; lies in the exterior of G;_; such that P; and
a part of the periphery of G;_1 surround an interior face of G for all 2 <1 <.

It was proved in [32]| that a plane bipartite graph G is elementary if and only if G has a
reducible face decomposition starting with the boundary of any interior face of G. This result
gives the construction method for plane elementary bipartite graphs: starting with some face,
then adding one new face at each step gives any plane elementary bipartite graph.

A face f of a plane bipartite graph G is peripheral if the peripheries of G and f have a
nonempty intersection. Let G be a plane bipartite graph. Let f be a peripheral face of G and P
a common path of the peripheries of f and G. Let G — f denote the resultant subgraph of G by
removing the internal vertices and edges of P. If G — f is elementary than we call f a reducible
face of G.

If G is a plane elementary bipartite graph with at least two finite faces, then G has at least
two reducible faces [32].

The reducible hexagons of an elementary benzenoid graph can be characterized as follows.

Theorem 1. [26] Let G be an elementary benzenoid graph. Then h is a reducible hezagon of G
if and only if the following holds
(i) the common periphery of h and G is a path of odd length and

(i1) G admits a peripheral 1-factor M such that the edges of h form an M-alternating cycle.

3 Characterization of elementary benzenoid graphs

In this section we will characterize elementary benzenoid graphs with the concept of a 4-tiling.
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Figure 2: A benzenoid graph with its inner dual.

The vertices of the inner dual of G are the finite faces of GG, two vertices being adjacent if
and only if the corresponding faces share an edge in G. The inner dual of a benzenoid graph,
denoted I(G), is a subgraph of the regular triangular grid (see Fig. 2). Clearly, the inner dual
of a catacondensed benzenoid graph is a tree with maximum vertex degree three.

A subgraph H of G is a block of G if H is a maximal subgraph without cut vertices or edges
whose removal increases the number of components of G.

Let G be a benzenoid graph. The subgraph of G that corresponds to the block of the inner
dual of G is called a pericondensed component of G. By removing the pericondensed components
from G we obtain a graph that we call a catacondensed forest of G, while its connected component
is called a catacondensed tree.

A catacondensed tree is called a link if it joins the vertices of two pericondensed components

and a beam otherwise. These definitions are illustrated in Fig. 2.

Proposition 2. A benzenoid graph G is elementary if and only if every pericondensed component

of G is elementary.

Proof. If G has no pericondensed components, then G is catacondensed and the proposition
clearly holds. Suppose then that G is pericondensed.

Suppose there is an elementary benzenoid graph that possesses a pericondensed component
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which is not elementary. Let G' be such a graph with the smallest number of hexagons. Let H
denote its non-elementary pericondensed component and let h be a reducible hexagon of G. Then
h has to be in H, otherwise G — h is elementary with a non-elementary pericondensed component
contradicting the minimality of G. By the same argument H —h has to be elementary. It follows
that H is also elementary and h is its reducible face. Since we obtained a contradiction this part
of the proof is completed.

Let G be a benzenoid graph such that every pericondensed component of G is elementary.
Since G is not a coronoid system, it is not difficult to see, that G possesses at least one peri-
condensed component with at most one link. Let P denote this pericondensed component and
let L denote its link. The beams are clearly elementary, therefore we can use Theorem 1 and
proceed as follows:

1. Find a reducible sequence of hexagons for each beam of P, such that the last hexagon of

the reducible sequence is adjacent to a hexagon of P and remove the hexagons of that

sequence from the graph.

2. Find a reducible sequence of hexagons for P such that the last hexagon of the reducible
sequence is adjacent to a hexagon of L and remove the hexagons of that sequence from the
graph. If P intersects with an adjacent pericondensed component, then find a reducible
sequence of hexagons for P such that the last hexagon of the reducible sequence is the
common hexagon and remove the hexagons of that sequence (with the exception of the

common hexagon) from the graph.

We then repeat the steps above till the last hexagon. Since this procedure defines a reducible
sequence of hexagons of G (and the corresponding ear decomposition), G is elementary and the

assertion follows. O

The edge e of I(G) is peripheral, if it belongs to the infinite face of I(G) and internal,
otherwise. If h is a hexagon of a benzenoid graph, then h will also denote the corresponding
vertex of I(G).

Let I(G) be the inner dual of a benzenoid graph G and let S denote a subset of internal
edges of E(I). Then S is a 4-tiling of G if I(G) \ S is the graph where every finite face is a
4-cycle. If S is a 4-tiling of G then we set I4(G) := I(G) \ S (cf. Figure 3).
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Figure 3: A benzenoid graph with its 4-tiling.

Let G be a benzenoid graph with a 4-tiling. The walk in a clockwise direction along the
vertices of I4(G) induces three types of turns. The turns and the corresponding hexagons are

denoted F, %’r, and —% in a natural way. All turns are depicted in Figure 4.

Figure 4: Turns.

Let G be a benzenoid graph with a 4-tiling and let C' be the outer cycle of G. Let h be a

hexagon that corresponds to a vertex of C. Then the hexagon h is called removable if
e hisa I turn and the corresponding vertex in I(G) \ S is of degree two, or
e hisa —F turn and the corresponding vertex in I(G) \ S is of degree three.

Note that a 5 turn and a —% turn in Fig. 4 are both removable.
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Lemma 1. A benzenoid graph G with a pericondensed component that possesses a 4-tiling has

at least one removable hexagon.

Proof. Let P be a pericondensed component of G and let T" denote the set of all turns of P. We
first state the following Facts which can be easily proved with figures:

1. The boundary of P cannot have two consecutive 27” turns (cf. Fig. 5).

Figure 5: Two consecutive %’T turns A and B.

2. One of two consecutive § turns is always removable (cf. Fig. 6).

Figure 6: Two consecutive % turns A and B.

3. A % turn adjacent to a %’r turn is always removable (cf. Fig. 7).

. . . .
m .
QA . . . B .

Figure 7: A 7 turn B adjacent to a %” turn A.

4. A —Z turn adjacent to two %" turns is always removable (cf. Fig. 8).
5. If a =% turn is adjacent to two 5 turns then at least one of them is removable (cf. Fig.
9).
2

6. If a —% turn is adjacent to a % turn and to a 5 turn, then one of the former two is

removable (cf. Fig. 10).
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Figure 9: A —% turn B adjacent to two  turns A and C'

Figure 10: A —% turn B adjacent to a § turn C' and to a %” turn A.

In order to conclude the proof, observe three consecutive turns in the boundary of P. Note
first that from Fact 1 it follows that all triplets with two consecutive %’T turns can be neglected.
Moreover, from Facts 2 - 5 follows that any other triplet with at most one —% turn induces a
removable hexagon. It remains to explore the cases with two or three —% turns. Note that sum
of the values of a triplet of this kind is at most zero. Since the sum of values of turns in 7" must

equal 27, it is straightforward to conclude that P contains at least one triplet with at most one

—% turn. That concludes the proof. O
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Theorem 2. A benzenoid graph G is elementary if and only if G admits a j-tiling.

Proof. Let G be an elementary benzenoid graph. The proof that G admits a 4-tiling is by
induction on the number of hexagons r. If r < 4, the claim clearly holds. Let then G denote
an elementary benzenoid graph with r > 4 hexagons. From the reducible face decomposition
follows that G = G, = G,—1 + P, where P, is of length 1, 3 or 5. Let I and I,_; denote the
inner dual of G and G,_1, respectively. By the inductive hypothesis, G,_1 admits a 4-tiling.
Let us denote it S,_1.

a) |Pr| = 5. The new hexagon h has exactly one neighbor denoted i/ in G. Therefore I is
obtained from I,_; by adding the edge hh'. Since I and I,_; has the same set of finite faces,
Sr_1 is also a 4-tiling of G.

b) |P-| = 3. The new hexagon h has exactly three neighbors hq, hy and hg in G. Since hq,
ho and hg are peripheral in G,_1, the edges hihy and hohg are in I,_1 — S,. I is obtained from
I_1 by adding the edges hhi, hhy and hhs. It is straightforward to see that S,_1 U {hha} is a
4-tiling of G.

¢) |Py| = 5. The new hexagon h has exactly five neighbors hy, hg, hs, hs and hs in G.
Analogously as above we can see that S,_1 U {hha, hhy} is a 4-tiling of G.

Since a 4-tiling can be obtained in all three cases, this part of the proof is done.

Let G be a benzenoid graph that admits a 4-tiling S and let I be the inner dual of G. By
Proposition 2, we can without loss of generality suppose that G has exactly one pericondensed
component and no beams. It is straightforward to check that the graph that admits a 4-tiling
with exactly one 4-cycle is elementary.

Suppose now that an elementary benzenoid graph that admits a 4-tiling which is not ele-
mentary exists. Let G be such a graph with the smallest number of hexagons. From Lemma 1 it
follows that G has at least one removable hexagon. Denote it h. Suppose that h is a § turn and
let e be the edge of S with one end in the vertex that corresponds to h. It is straightforward to
see that S\ e is a 4-tiling of G — h. By the assumption, G — h is elementary. However, h induces
an ear of G, implying that G is elementary and we obtained a contradiction. Since the proof

that the case with h is a —% turn leads to a contradiction is analogous, the assertion follows. [l
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4 Decomposition

Let F be the set of all finite faces of a graph G. For each M € M, a function ¢y is defined on
F as follows: for any f € F, ¢pr(f) is the number of cycles in M & M with f in their interiors.

Particularly, M is constantly zero, i.e. every value on the inner faces is 0.

Lemma 2. [19] For M, M' € M, M and M’ are adjacent in R(G) if and only if |prm(f) —
o (f)| =1 for f = fo, where fo is an inner face bounded by the cycle M & M’ and 0 for the

other faces in F.

Since 1-factors compile pairwise independent edges, all the cycles induced by M © M; have
to be disjoint. It follows that for every peripheral face f, ¢p(f) is either 1 or 0.

It was shown in [19] that the resonance graph of a plane elementary bipartite graph is a
median graph. Moreover, if G is a benzenoid graph with p hexagons and without a coronene

(see Fig. 11), then ¢ is an isometric embbeding of R(G) into Q).

Figure 11: The coronene.

Lemma 3. Let e be an edge on the boundary of an elementary benzenoid graph G and let h be
the hezagon of G containing e. Let e € M’ and let ¢pp(h) =i, i = 0,1. If M is an arbitrary

1-factor of R(G), then ¢ar(h) =1 if and only if M contains e.

Proof. Let ¢p(h) = 0.

Suppose that a 1-factor M containing e such that ¢pr(h) = 1 exists. Let then M’ =
My, Ms,..., M, = M denote a shortest path between M and M’ in R(G). Since R(G) is a
partial cube (and a median graph), there exists exactly one pair M;, M;1; such that ¢y, (h) =0
and ¢pr,,, (k) = 1. Thus, for every j =1,...,i —L,i+1,...,k, M; ® Mj;, # h. Since e does



- 206 -

not belong to any other hexagon but h, M; and M; 1 must contain e. But then M; ® M;y; # h
and we obtain a contradiction.

Suppose that exists a 1-factor M not containing e such that ¢p(h) = 0. Let then M’ =
My, Ms,...,M, = M denote a shortest path between M and M’ in R(G). Since R(G) is a
partial cube, for every ¢ = 1,...,r — 1, M; ® M;+1 # h. Since e does not belong to any other
hexagon but h, M, must contain e and again we obtain a contradiction.

If ¢pr(h) = 1, the proof goes analogously. u

Let C denote the outer boundary cycle of G. We say an edge of C' is proper (improper) if it
goes from white (black) to black (white) end-vertex by the clockwise orientation of C.

From Lemma 3 and Proposition 1 we obtain the following

Corollary 1. Let h be a peripheral hexagon and M a 1-factor of an elementary graph G. Then
or(h) =1 (pp(h) = 0) if and only if a proper (improper) edge on the common boundary of h

and G belongs to M.

Let H be a fixed subgraph of a graph G, H C G. The peripheral ezpansion pe(G; H) of G
with respect to H is the graph obtained from the disjoint union of G and an isomorphic copy of
H, in which every vertex of the copy of H is joined by an edge with the corresponding vertex of
HCG.

Let G be an elementary benzenoid graph and h a reducible hexagon of G. Then the periphery
of h contains one, three, or five edges. We say that h is of type T1, T3 and T5, respectively.
Furthermore, reducible hexagons of type T5, T3 and T1 have one, three and five adjacent
hexagons, respectively. These hexagons will be denoted consecutively with hq, hg, ..., hs in the
clockwise direction with respect to the boundary of G — h.

Let G be an elementary benzenoid graph and h its reducible hexagon. Let P denote the
path induced by the intersection of h and G — h. We say that h is a proper (improper) reducible
hexagon of G if P starts with a white (black) vertex with regard to the clockwise orientation of
the boundary of G — h.

We are ready now to state the decomposition theorem for elementary benzenoid graphs which

do not posses a coronene as a subgraph.
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Theorem 3. Let G be an elementary benzenoid graph without a coronene as a subgraph and
h a reducible hezagon of G. Then R(G) = pe(R(G — h); X). If h is improper (proper) then a
1-factor M is a vertex of X if and only if ppr(hi) =1 (par(hi) = 0) for each hezagon h; adjacent
to h.

Proof. Let M and My denote the minimal 1-factor of R(G — h) and R(G), respectively. We
will prove the theorem for a reducible hexagon of type T5, T3, and T1.

(i) If h is of type T5, then h possesses only one adjacent hexagon (denoted hq). Denote the
vertices of h with vg,v;,...v5 in a clockwise direction, such that the common edge of h and hy
has the end-vertices vy and vy (see Fig. 12). Suppose first that & is proper.

Thus, the edge vov; does not belong to Mé. We first prove that R(G) = pe(G — h; X).

Clearly, ]Vfé U {vous, vqvs} is a 1-factor of G. Furthermore, since Mé is the minimal 1-factor

Figure 12: Reducible hexagon of type T5

of G — h and the newly introduced edges do not form a proper cycle in G, it follows that
]\Ié = M[; U {vav3,v4v5} is the minimal 1-factor of G.

Since G is a benzenoid graph without a coronene as a subgraph, ¢ is an isometric embedding of
R(G) into a hypercube. Let A denote the set of binary strings. We then state: A’ := {si;s € A},
i=10,1. Tn other words, the binary strings of A? are obtained by adding 0 to every string of V.

Let the string s correspond to a factor of R(G — h) and let the string si, ¢ = 0,1 correspond
to a factor of R(G). Figure 12 shows that s corresponds to a 1-factor of V(R(G — h)) if and only
if 50 corresponds to a 1-factor of V(R(G)). In other words, VO(R(G —h)) C V(R(G)). Let X be
the set of all vertices of V(R(G — h)), such that the last bit of the corresponding binary string
representing the hexagon hy, equals 1. We will show that V(R(G)) = VO(R(G — h)) U X!, In

particular, we need to determine when a string s of V/(R(G — h)) admits that the string s1 is a
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vertex of G. Let M and M’ denote 1-factors of G that correspond to sO and s1, respectively. If sO
is adjacent to s1, then M @M’ = h. This implies that vov; must belong to M. Furthermore, from
Proposition 3 and Corollary 1 it follows that ¢pr(hy) = 1. It is left to confirm that ¢ps(hy) =1
if pr(h) = 1. Note first that by Corollary 1 the edge v1v2 belongs to every 1-factor M with
¢rr(h) = 1. But then the adjacent edge of hy is not in M which implies that ¢pr(hy) = 1. It
follows that R(G) = pe(R(G — h); X) and this case is settled.

If h is proper, observe instead of the minimal 1-factors the maximal 1-factors of G and G — h.
The proof then goes analogously as above.

(i) If h is of type T'3, then h possesses exactly three adjacent hexagons denoted hy, ha, and
ha.

Suppose first that A is proper. Denote its vertices consecutively vg, vy, ...vs with regard to
the clockwise direction of the boundary of G — h such that the first vertex of the intersection
of h and G — h is denoted vy (see Fig. 13). Note that the edge vov; belongs to ]V[é when h is

proper.

Figure 13: Reducible hexagon of type T3.

Let the string s correspond to a factor of R(G — h) and let the string si, ¢ = 0,1 correspond
to a factor of R(G). Clearly, s corresponds to a 1-factor of V(R(G — h)) if and only if sO
corresponds to a 1-factor of V(R(G)). Note that the peripheral edges of hy and hg, adjacent to
vo and v3, respectively, belong to both of My and M(;

Let M and M denote the 1-factors of G that correspond to s0 and sl, respectively. s0 is
adjacent to s1, thus M & M = h. This implies that vgv; and vevs must belong to M. Thus,
from Corollary 1 it follows that ¢ar(h1) = ¢ar(hs) = 1. Furthermore, hy is peripheral implying

by Corollary 1 that ¢ar, , (h2) = dar(he) = 1.
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It is left to confirm that for every 1-factor M with ¢p(h) = 1 follows that ¢rr(hy) =
¢r(he) = éar(hs) = 1. Note first that by Corollary 3 the edge vovs and the edge vzvy have
to belong to all 1-factors M with ¢pr(h) = 1. But then the peripheral edge of h; with end
vertex vy and the peripheral edge of hs with end vertex vs do not belong to any 1-factor M with
éum(h) = 1 and we have drr(h1) = ¢nr(hs) = 1.

Suppose now that a 1-factor M with ¢p(h) = 1 and ¢ar(ha) = 0 exists. Let M denote
a l-factor of G with ¢y (h) = 1 which is adjacent to a 1-factor M with ¢y(h) = 0. We
have already shown that ¢, (he) = 1. Moreover, the edge v1vs belongs to M. Let then M =
My, My, ..., M, = M denote a shortest path between M and M in R(G). Since R(G) is a
partial cube, exactly one pair M;, M1 such that ¢a(he) = 1 and ¢ay,,, (he) = 0. Thus, for
every j = 1,...,4 — 1, M; ® Mjy1 # ha. Moreover, since ¢pr(h) = ¢y (h) = 1, for every
j=1,...,i—1, M; ® Mjy1 # h. Note that vivy does not belong to any other hexagon but h
and hg, therefore M; must contain vjvy. But then M; must form a proper M;-cycle in hg and
we obtain a contradiction.

We proved that R(G) = pe(R(G—h); X ), where for every 1-factor M of X we have ¢pr(hy) =
¢ (ha) = ¢ar(hs) = 1, thus, this part of the proof is complete.

If h is improper, observe instead of the minimal 1-factors the maximal 1-factors of G and

G — h. The proof then goes analogously as above.

Figure 14: Reducible hexagon of type T1.

(1) Suppose first that h is proper. If h is of type T1, then h possesses exactly five adjacent
hexagons denoted hi, ha, hs, hy, and hs (see Fig. 14).

Denote the vertices of h with wvg,v1,...v5 with respect to the clockwise direction of the
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boundary of G — h such that the first vertex of the intersection of h and G — h is denoted vy
(see Fig. 14). Note that the edge v1vz belongs to M; when h is proper.

Let the string s correspond to a factor of R(G — h) and let the string si, i = 0,1 correspond
to a factor of R(G). Clearly, s corresponds to a 1-factor of V(R(G — h)) if and only if sO
corresponds to a 1-factor of V(R(QG)).

Let M and M denote the 1-factors of G that correspond to s0 and s1, respectively. s0 is
adjacent to s1, thus M @ M’ = h. Using analogous arguments as in case (ii) we obtain that
dm(h1) = oar(ha) = dnr(hs) = dar(ha) = dar(hs) = 1. Analogously we also confirm that for
every 1-factor M’ with ¢pp(h) = 1 follows that ¢pp (k1) = dar(he) = ¢ar(hs) = o (ha) =
¢ (hs) = 1. This proves that R(G) = pe(R(G — h); X ), where for every 1-factor M of X we
have ¢rr(h1) = ¢ar(he) = dar(hs) = dar(ha) = dar(hs) = 1.

If h is improper, then again observe the maximal 1-factors of G and G — h.

Since we elaborated all three cases, the proof is complete. O

5 7 graph

The transitivity of the relation © in partial cubes allows the concept of 7 graph.

Let e and f be two edges of a graph G. Then e and f are in relation 7 if e = f or if
they form a convex path on three vertices. For a partial cube G its 7-graph G7 is defined as
follows. V(GT) consists of the ©-equivalence classes of G, where O-classes E and F are adjacent

whenever F # F and there exist edges e € F and f € F with e7 f.

1 2

N L

3 4

Figure 15: The inner dual of pyrene (left) and the 7-graph (right) of the pyrene’s resonance graph.

In [27] it was shown that if G is the resonance graph of a catacondensed hexagonal graph H,
then G7 is isomorphic to the inner dual of H. This result leads to the characterization of the

resonance graphs of catacondensed benzenoid graphs as those median graphs G for which G7 is
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a tree 7" with largest degree at most 3 such that the vertices of 7" of degree 3 correspond to the
peripheral ©-classes of G.

In Figure 15 we can see that the inner dual of pyrene differs from the 7-graph of the resonance
graph of the pyrene. The O-classes of the 7 graph are labeled as in Figure 1. We can see in
Fig. 15 that the inner dual of a pericondensed benzenoid graph G does not coincide with R(G)".
However, the 7 graph of the resonance graph of the graph from the figure is isomorphic to I4(G).
We will show in the sequel, that the same can be proved for every benzenoid graph which does
not posses a coronene.

We proved in Theorem 3 that R(G) = pe(R(G — h); X). Note that the ends of the newly
introduced edges induce a ©-class E in pe(G; H). Moreover, a subgraph of pe(G; H) induced

by the edges of E is isomorphic to HOK,. This fact implies the following lemma.

Lemma 4. Let E be the ©-class induced by the peripheral expansion pe(G; H) and let E' be a

©-class induced by an edge of H. Then E and E' are disjoint in R(G)™.

In order to prove the next theorem we will need the following lemma.

Lemma 5. Let G be an elementary benzenoid graph and let h be a hexagon of G such that
its set of peripheral edges, denoted Ey(h), induces a cut in G. Let Gy and Go denote the
connected components of G induced by E,(h) and let hy and hy denote the hezagons of Gi and
Ga, respectively, both adjacent to h. If G admits a 1-factor M with ¢pr(h1) = ¢ar(he) =0 and
onm(h) =1 then a 1-factor My in G, such that ¢ar, (h1) = dar, (R) = 1 and ¢ar, (he) = 0 always

erist.

Proof. Let G admit a 1-factor M with ¢ar(h1) = ¢ar(he) = 0 and ¢ar(h) = 1. Since G contains
the maximal 1-factor, G must admit a 1-factor M’ with ¢y (he) = ¢ar(h) = éar(h1) = 1.
Since the resonance graph of G is connected, the claim of the lemma must hold for at least
one of the connected components induced by E,(h). Let then M denote a 1-factor in G, such
that ¢, (h2) = ¢, (k) = 1 and ¢pr,(hy) = 0. Since ¢pr(h) = ¢prr(h) = ¢ar,(h) = 1, from
Corollary 3 it follows that My, M’ and M contain the very same edges of E,(h). Now we set
My := (M'\ E(G1)) U (M NE,(h))U (M, \ E(G2)). Since E,(h) induces a cut of G, it follows
that M is a 1-factor of G with ¢ar, (h1) = ¢ar,(R) = 1 and ¢pr, (he) = 0 and the assertion

follows. u
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In the next theorem we will use the notation N¢(v) for the neighborhood for a vertex v of a

graph G.

Let G be an elementary benzenoid graph without a coronene as a subgraph and h a reducible
hexagon of G. Let us again denote the hexagons adjacent to h consecutively with hy, ha, ..., hsin
the clockwise direction with respect to the boundary of G —h. Since ¢ is an isometric embedding
of R(G) into a hyper cube, every hexagon of G correspond to exactly one O-class of R(G). Let
then O-classes Ep, Eq, Ea, ..., E5 correspond to the hexagons h, hy, hg, ..., hs, respectively.
Theorem 4. Let G be an elementary benzenoid graph without a coronene as a subgraph and h
a reducible hexagon of G. Then

(i) N(Ep)pq)r = {E1}, if h is of type T5,

(i) N(Ep) gy = {E1, Es}, if b is of type T3,

(iit) N(Ep)rey- = {E1, B3, B}, if h is of type T1.

Proof. (i) If h is of type T5, then h possesses only one adjacent hexagon denoted h;. From
Theorem 3 it follows that R(G) = pe(R(G — h); X). Moreover, the newly introduced edges
connecting X and its copy in R(G) belong to the same ©-class which corresponds to the new
hexagon h. Let X’ be the copy of X in pe(R(G);X). Note that X and X’ both contain all
O-classes of R(G) except Ej, and Ej. Furthermore, if E is one of these ©-classes, then from
Lemma 4 it follows that E' is not adjacent to Ej.

Finally, since R(G) is connected, in X exists a vertex v adjacent to the vertex v" in R(G) \
(X UX'). Let v' denote the copy of v in X’. Clearly, vv' and vv” do not lie on a common
4-cycle. Therefore, Ej, and Ej are adjacent in R(G)™ and this part of the proof is complete.

(i) If h is of type T3, then h possesses exactly three adjacent hexagons denoted hy, ha, and
hs. Suppose first that h is proper.

We proved in Theorem 3 that R(G) = pe(R(G — h); X), where for every 1-factor M of X we
have ¢pr(h1) = ¢dar(he) = ¢ar(hg) = 1. The newly introduced edges connecting X and its copy
in R(G) belong to the same ©-class which corresponds to the new hexagon h. Let X' be the
copy of X in pe(R(G); X). Note that X and X’ both contain all ©-classes of R(G) except Ej,
Ey, E,, and E3. If E is a ©-class from X, then from Lemma 4 it follows that E is not adjacent
to B, in R(G)™. Denote the vertices of h with vg,v1,...v5 as defined in the proof of Theorem

3 (see Fig. 13). In order to prove that F5 cannot be adjacent to E, note that every 1-factor
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M in X contains the edges vov; and vevs. This yields that the edge vjvy cannot belong to any
1-factor M' € G\ X’ adjacent to M with ¢y (hy1) =1 or ¢ppr(hs) = 1. Since v1vy is a boundary
edge of G — h, from Corrolary 1 it follows that ¢pp.  (h2) = @ (ha) = 1.

We conclude the proof by showing that that both of Ey and E3 are adjacent to Ej in R(G)7.
In other words, we claim that a 1-factor M; with ¢ar (h1) = 0 and @ar, (he) = dar (hs) =1
as well as a 1-factor My with ¢ar, (hs) = 0 and ¢ar,(he) = éar, (k1) = 1 exist. But since the
peripheral edges of hy induce a cut of G — h, by Lemma 5 G — h (as well as G) admits the
1-factors of interest and this part of the proof is complete.

If h is improper, then R(G) = pe(R(G — h); X), where for every 1-factor M of X we have
éar(h1) = ¢ar(ha) = éar(hs) = 0. The proof goes analogously.

(#3) If h is of type T1, then h possesses exactly five adjacent hexagons denoted hy, ha, hg, hq,
and hs. Suppose first that h is proper. We proved in Theorem 3 that R(G) = pe(R(G — h); X),
where for every 1-factor M of X we have ¢pr(h1) = ¢ar(he) = dar(hs) = dar(ha) = oar(hs) = 1.
The newly introduced edges connecting X and its copy in R(G) belong to the same ©-class which
corresponds to the new hexagon h. Let X’ be the copy of X in pe(R(G); X). Note that X and

X’ both contain all ©-classes of R(G) except E1, Es, E3, Ey, and Es.

If F is a ©-class from X, then from Lemma 4 it follows that E is not adjacent to Ej in
R(G)™. In order to prove that E, cannot be adjacent to E, note that every 1-factor M in X
contains the edges vov1, vavs, and vqvs. This yields that the edge vivy cannot belong to any
1-factor M’ € G\ X' adjacent to M with ¢ (h1) =1 or ¢pp(hs) = 1. Since v1vs is a boundary
edge of G — h, from Corollary 1 follows that (Z)ME,-?;. (h2) = ¢arr(he) = 1. A similar argument
shows that E4 cannot be adjacent to F.

In order to conclude the proof by showing that all of Ey, E3, and Es5 are adjacent to Ej
in R(G)", we invoke that the peripheral edges of hy and h4 both induce a cut of G — h. Then
Lemma 5 again yields that G — h (as well as G) admits the 1-factors adjacent to F1, F3, and
Es.

If h is improper, the proof goes analogously.

Since we settled all three cases, the proof is complete. O

Corollary 2. Let G be an elementary benzenoid graph without a coronene as a subgraph. Then

G admits a 4-tiling S such that R(G)™ embedded in I(G) in a natural way equals I(G) \ S.
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Proposition 3. Let G be an elementary benzenoid graph without a coronene as a subgraph.

Then G has a unique 4-tiling.

Proof. Note first that a 4-tiling induced by R(G)" is unique. It is trivial to check the claim for
catacondensed benzenoid graph graphs. Suppose that an elementary benzenoid graph without
a coronene as a subgraph that admits at least two different 4-tilings exists. Let G' denote such
a graph with the smallest number of hexagons. Let S; denote the 4-tiling induced by R(G)".
By assumption G has at least one another 4-tiling. Let us denote it S3. From Lemma 1 and the
proof of Theorem 2 follows that G possesses a removable hexagon h with regard to Sz. Note that
h is also a reducible hexagon of Gi. Suppose that h is a § turn with regard to Sz and let e be
the edge of Sy with one end in the vertex that corresponds to h. It is straightforward to see that
Sy \ e is a 4-tiling of G — h. By the assumption, G — h is elementary graph that admits exactly
one 4-tiling. In other words, Ss \ e equals the 4-tiling induced by R(G — h)™. By Theorem 4,
since h is a reducible hexagon of G, S is also induced by R(G)". But then S3 equals S; and

the proof is complete.
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