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Abstract

The anti-forcing number of a graph is the smallest number of edges
that have to be removed so that the remaining graph contains only
one perfect matching. In this paper, the anti-forcing number of double
hexagonal chains is determined and the extremal graphs are charac-
terized.

1 Introduction

The anti-forcing number was recently introduced by Vukičević and Trinajstić

[1]. The roots of these concepts can be traced to reports by Randić and Klein

[2] and Harary et al. [3]. Randić and Klein introduced the term the innate

degree of freedom or the forcing number of a Kekulé structure. Later Harary

et al. discussed the concept of forcing number in more detail.
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The forcing number is equal to the smallest number of double bonds that

completely determine the Kekulé structure of a given benzenoid. After the

initial report [3], several papers appeared reporting the forcing number of

hexagonal systems and square grids [4,5].

Later, Vukičevic, Sedlar and Došlić [14-15,6] introduced the global forcing

number of a graph and gave several results concerning global forcing sets and

numbers of grid and benzenoid graphs. In particular, Došlić proved that all

catacondensed benzenoids and catafused coronoids with n hexagons have the

global forcing number equal to n, and that for pericondensed benzenoids the

global forcing number is always strictly smaller than the number of hexagons.

All graphs in this paper are simple, connected, and have a perfect match-

ing, if not explicitly stated otherwise. For all terms and notation not defined

here we refer the reader to [7].

A perfect matching in a graph G is a set M of edges of G such that every

vertex of G is incident with exactly one edge from M .

Let G = (V, E) be a graph G with a perfect matching. In [1], an anti-

forcing set of G is a subset A of E such that G − A has a unique Kekulé

structure. An anti-forcing set of the smallest cardinality is called a minimal

anti-forcing set, and its cardinality is the anti-forcing number of G. We

denote it by af(G). It is the smallest number of edges that have to be

removed from a benzenoid to obtain a graph with a single Kekulé structure.

The minimal anti-forcing set and the anti-forcing number of the benzenoid

parallelogram ([8-10]) Bm,n are determined in [1], where Bm,n is consisting of

m × n hexagons, arranged in m rows, each row consisting of n hexagons. It

was proved there that af(Bm,n) = 1. In [11], the author gave an algorithm

for computing the anti-forcing number of hexagonal chains and determine

the bounds of the anti-forcing number of hexagonal chains.

The aim of this paper is to analyze the anti-forcing number of double

hexagonal chains.

2 The anti-forcing number of double hexag-

onal chains

Let us now consider the main subject of the present paper, the double

hexagonal chains. Hexagonal systems are of great importance for theoreti-

cal chemistry because they are the molecular graphs (or, more precisely, the

graphs representing the carbon-atom skeleton) of benzenoid hydrocarbons.

The mathematical theory of hexagonal systems is nowadays being greatly
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expanded.

Our standard reference for any terminology of hexagonal systems is [8,12-

13].

A hexagonal system is a 2-connected plane graph whose every interior

face is bounded by a regular hexagon of unit length 1. A vertex of a hexag-

onal system belongs to at most three hexagons. A vertex shared by three

hexagons is called an internal vertex of the respective hexagonal system. A

hexagonal system H is said to be catacondensed if it does not possess internal

vertices, otherwise H is said to be pericondensed. A hexagonal chain is a cat-

acondensed hexagonal system which has no hexagon adjacent to more than

two hexagons. An n-tuple hexagonal chain consists of n condensed identical

hexagonal chains. When n = 2, we call it a double hexagonal chain [9].
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Figure 1. α-type fusing, β-type fusing.
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A double hexagonal chain can be constructed inductively. Let us orient

the naphthalene so that its interior edges are horizontal. There are two types

of fusion of two naphthalenes: (i) b ≡ r, c ≡ s, d ≡ t, e ≡ u; (ii) a ≡ s,

b ≡ t, c ≡ u, d ≡ v as shown in Figure 1. We call them α-type and β-type

fusing, respectively. Any double hexagonal chain can be obtained from a

naphthalene B by a stepwise fusion of new naphthalene, and at each step a

type of fusion is selected from θ-type fusing, where θ ∈ {α, β}.
Let B(θ1, θ2, · · · , θn) be the double hexagonal chain obtained from a naph-

thalene B by θ1-type, θ2-type, · · ·, θn-type, successively. Then, B(θ1, θ2, · · · , θn)

has n+1 naphthalenes or 2(n+1) hexagons. And B(α, α, · · · , α) or B(β, β, · · · , β),

i.e., θi = θi+1 for each i, is called the double linear hexagonal chain and de-

noted by DLn; if θi �= θi+1 for each i, then B(θ1, θ2, · · · , θn) is called the

double zig-zag hexagonal chain and denoted by DZn (see Figure 2(a)(b)).
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Let

θ =

{
β, if θ = α;
α, if θ = β.

Then B(θ1, θ2, · · · , θn) and B(θ1, θ2, · · · , θn) are isomorphic, i.e., B(θ1, θ2, · · · , θn) ∼=
B(θ1, θ2, · · · , θn). If n ≥ 1, the double hexagonal chain B(θ1, θ2, · · · , θn) is a

pericondensed hexagonal system.
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Figure 2. (a) The double linear hexagonal chain DL4 = B(α, α, α, α);
(b) The double zig-zag hexagonal chain DZ4 = B(α, β, α, β);

(c) The double hexagonal chain B(α, α, β, α, β, β, α).

Now we define a segment in a double hexagonal chain. We scan a double

hexagonal chain G from left to right. The first maximal sub-double-linear-

chain S1 in G is called the first segment of G; if G �= S1, let G1 = G − S1,

where the last three fusing edges of S1 are left, then the first segment S2 of G1

is called the second segment of G, and so on. The number of the naphthalenes

in a segment S is called its length and is denoted by l(S). The length of a

segment is always at least 2, except, possible, for the last segment of G.

For example, there are four segments in B(α, α, β, α, β, β, α) with lengths

3, 2, 2, 1, respectively (see Figure 2(c)). The double linear hexagonal chain

DLn has only one segment and the double zig-zag hexagonal chain DZn has

[n
2
] + 1 segments, where [x] is the integer part of x.

Lemma 1. Let G = (V, E) be a graph obtained from a double hexagonal

chain G0 by gluing to it a (single) linear hexagonal chain in the way shown

in Fig.3. Then af(G) ≥ af(G0).

Proof. Let A be an anti-forcing set of the smallest cardinality in G and

M the unique perfect matching in G−A. Then either both the edges x and
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y are in M , or no one of them is in M .

If x, y �∈ M , then A0 = A ∩ E(G) is an anti-forcing set of G0. So,

af(G) = |A| ≥ |A0| ≥ af(G0).

If x, y ∈ M , then there is a conjugated circuit of M in part of the single

linear hexagonal chain of G, and A contains at least one edge of the single

linear hexagonal chain. Let M0 = (M ∩ E(G0)) ∪ {z}, A0 = (A ∩ E(G0)) ∪
{w} − {z} if z ∈ A and A0 = A ∩ E(G0) if z �∈ A. Then M0 is the unique

perfect matching of G0−A0 and A0 is an anti-forcing set of G0. So, af(G) =

|A| ≥ |A0| ≥ af(G0).

Therefore, the result holds.

x

y
z

w

Figure 3. The graph G in Lemma 1.
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Figure 4. A double hexagonal chain with an anti-forcing set.

e5

Lemma 2. Let G = B(θ1, θ2, · · · , θn) be a double hexagonal chain with

n + 1 naphthalenes and k segments. Then af(G) ≤ k.

Proof. Without loss of generality, we may assume that θ1 = α. Si is the

i−th segment of G, 1 ≤ i ≤ k. We only need to find an anti-forcing set of G

with k edges.

Let ei be the oblique edge at the bottom or the oblique edge at the top
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on the first column of Si depend on Si down or up from left to right (see

Figure 4). Then A = {e1, e2, · · · , ek} is an anti-forcing set of G with k edges

since each Si − ei has a unique perfect matching for 1 ≤ i ≤ k.

So, af(G) ≤ k.

Theorem 3. Let G = B(θ1, θ2, · · · , θn) be a double hexagonal chain with

n + 1 naphthalenes and k segments. Then af(G) = k.

Proof. We prove the result by induction on n. When n = 1, G is the

benzenoid parallelogram B1,2 with k = 1, and af(G) = 1. When n = 2, G is

the benzenoid parallelogram B2,2 if θ1 = θ2, i.e., k = 1, and then af(G) = 1;

If θ1 �= θ2, i.e., k = 2, then G = B(α, β) or G = B(β, α). For any edge e of

G, the graph G− {e} has a perfect matching with a conjugated circuit, and

hence af(G) = 2. The result holds for n = 1, 2. Now we assume inductively

that the result holds for all double hexagonal chains with at most n + 1

naphthalenes, n ≥ 2. We need to prove that if G = B(θ1, θ2, · · · , θn+1) be

the double hexagonal chain with n+ 2 naphthalenes, then af(G) = k, where

k is the number of segments in G.

By Lemma 2, we only need to prove that af(G) ≥ k.
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Figure 5. The graphs in Case I.

Without loss of generality, we may assume θn+1 = β. If k = 1, then

G is a double linear hexagonal chain and it is a benzenoid parallelogram,

its anti-forcing number is 1. The result holds. In the following, we assume

k ≥ 2. Let A be an anti-forcing set of the smallest cardinality in G and M

the unique matching in G−A. If x, y, z are the three horizontal edges in the

last naphthalene, then exactly one of x, y, z belongs to M .

Case I. x ∈ M . Then y, z �∈ M .
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(i) If w ∈ M , see Figure 5, then A1 = A ∩E(G1) is an anti-forcing set of

G1, and |A| ≥ |A1|+1 since there is a conjugated circuit of M in G−E(G1).

So, af(G) = |A| ≥ |A1|+1 ≥ af(G1)+1. Note that G2 is a double hexagonal

chain with at most n naphthalenes and at least k − 1 segments. By Lemma

1 and the inductive hypothesis, we have

af(G1) ≥ af(G2) ≥ k − 1

and af(G) ≥ k.

x

y

z

w

G1

(a)

z

x

y
w

G′

(b)
Figure 6.

(ii) If w �∈ M , then G is shown in Figure 6(a) when the length of the

last segment is 1. Let A1 = A ∩ E(G1), then A1 is an anti-forcing set of G1,

and |A| ≥ |A1|+ 2 since G−E(G1) has two conjugated circuits of M whose

common edge is in M . So, af(G) = |A| ≥ |A1| + 2 ≥ af(G1) + 2. G1 is a

double hexagonal chain with at most n−1 naphthalenes and k−2 segments.

By the inductive hypothesis, we have af(G1) = k − 2, and af(G) ≥ k.
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When the length of the last segment in G is at least 2, G is shown in

Figure 6(b). Then A is also an anti-forcing set of G′, and G′ is a double

hexagonal chain with n+1 naphthalenes and k segments, af(G′) = k by the

inductive hypothesis. We have af(G) = |A| ≥ af(G′) = k.

y

z

x

Figure 7. The graphs in Case II.

G1

Case II. y ∈ M . Then x, z �∈ M and G is showed in Figure 7.

As in Case I(i), we have af(G) ≥ k.

y

z

x

Figure 8. The graphs in Case III.

G1

Case III. z ∈ M . Then x, y �∈ M and G is showed in Figure 8.

Let A1 = A ∩ E(G1). A1 is an anti-forcing set of G1, and |A| ≥ |A1| + 1

since G − E(G1) has a conjugated circuits of M . So, af(G) = |A| ≥ |A1| +
1 ≥ af(G1) + 1. Note that G1 is a double hexagonal chain with at most

n naphthalenes and k − 1 segments. By the inductive hypothesis, we have
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af(G1) = k − 1, and af(G) ≥ k.

So, af(G) ≥ k, and hence af(G) = k by Lemma 2.

The following results are immediate from Theorem 3.

Corollary 4. Let G = DZn be a double zig-zag hexagonal chain with

n + 1 segments. Then af(G) = [n
2
] + 1, where [x] is the integer part of x.

If a double hexagonal chain with n+1 segments G = B(θ1, θ2, · · · , θn) has

only one segment, then G ∼= DLn. And if k is the the number of segments

of G = B(θ1, θ2, · · · , θn), then n + 1 ≥ 2k − 1 since the lengths of segments

except the last segment are at least 2. So, k ≤ n
2

+ 1, and k ≤ [n
2
] + 1 since

k is an integer. We can obtain the following result.

Corollary 5. Let G = B(θ1, θ2, · · · , θn) be any double hexagonal chain

with n + 1 naphthalenes. Then

1 = af(DLn) ≤ af(G) ≤ af(DZn) = [
n

2
] + 1

with the left equality if and only if G ∼= DLn and the right equality if and

only if

(i) the sequence of lengths of segments in G is 2, · · · , 2, 1 when n is even;

(ii) the sequence of lengths of segments in G is 2, 2, · · · , 2 or 3, 2, · · · , 2, 1
when n is odd, where the sequence of lengths of segments in G is the ordering

of lengths of all segments in G from large to small.

3 Conclusion

How difficult it would be to generalize the results to the case of n-tuple

hexagonal chains? From our proofs, it seems that only real difficulty is in

the case I(i) and II of Theorem 3. In fact, we need a result analogous to

Lemma 1: If G be a graph obtained from a n-tuple hexagonal chain G1 by

gluing to it a m-tuple linear hexagonal chain G2, 1 ≤ m ≤ n − 1, then

af(G) ≥ af(G1). But then it is complicated since any 2k (0 ≤ 2k ≤ m + 1)

edges of the m + 1 edges in G − E(G1) and neighbor to G1 can belong to a

perfect matching M .
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bons (Springer, Berlin, 1988).
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